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Static Load Distribution in Ball Bearings 
 

Mário Ricci* 
 
   

Abstract 
 
A numerical procedure for computing the internal loading distribution in statically loaded, single-row, 
angular-contact ball bearings when subjected to a known combined radial and thrust load is presented. 
The combined radial and thrust load must be applied in order to avoid tilting between inner and outer 
rings. The numerical procedure requires the iterative solution of Z + 2 simultaneous nonlinear equations – 
where Z is the number of the balls – to yield an exact solution for axial and radial deflections, and contact 
angles. Numerical results for a 218 angular-contact ball bearing have been compared with those from the 
literature and show significant differences in the magnitudes of the ball loads, contact angles, and the 
extent of the loading zone. 
 

Introduction 
 

Ball and roller bearings, generically called rolling bearings, are commonly used machine elements. They 
are employed to permit rotary motions of, or about, shafts in simple commercial devices and also used in 
complex engineering mechanisms. 
 
This work is devoted to the study of the internal loading distribution in statically loaded single-row angular-
contact ball bearings. Several researchers have studied the subject [1] [2] [3] [4]. The methods developed 
by them to calculate distribution of load among the balls and rollers of rolling bearings can be used in 
most bearing applications because rotational speeds are usually slow to moderate. Under these speed 
conditions, the effects of rolling element centrifugal forces and gyroscopic moments are negligible. At high 
speeds of rotation, these body forces become significant, tending to alter contact angles and clearance. 
Thus, they can affect the static load distribution to a great extent. 
 
Harris [5] described methods for internal loading distribution in statically loaded bearings addressing pure 
radial; pure thrust (centric and eccentric loads), and combined radial and thrust load. These methods use 
radial and thrust integrals introduced in [2] and those initially due to [3] for ball bearings under combined 
radial, thrust, and moment load. 
 
There are many works describing the parameters variation models under static loads but few 
demonstrate such variations in practice, even under simple static loadings. The author believes that the 
lack of practical examples is mainly due to the inherent difficulties of the numerical procedures that, in 
general, deal with the resolution of various non-linear algebraic equations that must to be solved 
simultaneously.  
 
In an attempt to cover this gap, studies are being developed in parallel [6] [7]. In this work, a numerical 
procedure is described for an internal load distribution computation in statically loaded, single-row, 
angular-contact ball bearings when subjected to a known external combined radial and thrust load. The 
novelty of the method is in the choice of the set of the nonlinear equations, which must be solved 
simultaneously. The author did not find in the literature the solution of this problem using the same set of 
equations. 
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Static Load Distribution under Combined Radial and Thrust Load in Ball Bearings 
 

It is possible to consider how the bearing load is distributed among the rolling elements having defined in 
other works analytical expressions for geometry of bearings and for contact stress and deformations for a 
given ball or roller-raceway contact (point or line loading) in terms of load. In this section, a specific load 
distribution consisting of a combined radial and thrust load must be applied to the inner ring of a statically 
loaded ball bearing so that no tilt is allowed between inner and outer rings. 
 
Let a ball bearing with a number of balls, Z, symmetrically distributed about a pitch circle according to 
Figure 1, to be subjected to a combined radial and thrust load, so that a relative axial displacement, δa, 
and a relative radial displacement, δr, between the inner and outer ring raceways may be expected. Let ψ 
= 0 to be the angular position of the maximum loaded ball. 
 
Figure 2 shows the initial and final curvature centers positions at angular position ψ, before and after 
loading, considering the centers of curvature of the raceway grooves fixed with respect to the 
corresponding raceway. If δa and δr are known, the contact angle at angular position ψ, after the 
combined load has been applied, is given by 
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where A is the distance between raceway groove curvature centers for the unloaded bearing, βf is the 
free-contact angle, and δn is the total normal deflection at the contacts. 
 
Also, from Figure 2, 
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and we can arrive in the expression for the extent of the loading zone, that is given by 
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From (1), the total normal approach between two raceways at angular position ψ, after the combined load 
has been applied, can be written as 
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From Figure 2 and (4) it can be determined that s, the distance between the centers of the curvature of 
the inner and outer ring raceway grooves at any rolling element position ψ, is given by 
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From (2) and (5) yields, for ψ = ψj, 
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From the load-deflection relationship for ball bearings and (4) yields, for ψ = ψj, 
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Figure 1.  Ball angular positions in the radial plane that is perpendicular to the bearing’s 

axis of rotation, Δψ = 2π/Z, ψj = 2π/Z(j−1) 
 
 

 

 

 
 

 
 

 
 
 

 
 
 
 
 

 
Figure 2.  Initial and final curvature centers positions at angular position ψ,  

with and without applied load 
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If a thrust load, Fa, and a radial load, Fr, are applied then, for static equilibrium to exist 
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Additionally, each of the normal ball load components produces a moment about of the inner ring center 
of mass in the plane that passes through the bearing rotation axis and contains the external radial load 
(moments about the other two perpendicular planes are self-equilibrating). For static equilibrium, the 
thrust load, Fa, and/or the radial load, Fr, must exert a moment, M, about the inner ring center of mass 
that must be equal to the sum of the moments of each rolling element load, that is, 
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where 
( ) fiei DfdR βcos5.02/ −+=  

expresses the locus of the centers of the inner ring raceway groove curvature radii. 
 
Substitution of (7) into (8) yields 

 0
cos
cos

1
cos
cos

sin
1

2/3

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−∑

=

Z

j j

jr

j

f
jnja AKF

β
ψδ

β
β

β    (11) 

Similarly, 
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Equations (6), (11) and (12) are Z + 2 simultaneous nonlinear equations with unknowns δa, δr, and βj, j = 
1,…,Z. Since Knj are functions of final contact angle, βj, the equations must be solved iteratively to yield an 
exact solution for δa, δr and βj. 
 

Numerical results 
 
A numerical method (the Newton-Rhapson method) was chosen to solve the simultaneous nonlinear 
equations (6), (11) and (12). To show an application of the theory developed in this work, a numerical 
example is presented. I have chosen the 218 angular-contact ball bearing that was also used by [5]. 
Thus, the results generated here can be compared to a certain degree with the Harris results.  
 
Figures 3 - 5 show some parameters as functions of the applied thrust load under a radial load of 17,800 
N. We can observe a substantial difference between results found in this work and those found by Harris, 
for a thrust load of 17,800 N. 
 
Figure 3 shows the normal ball loads, Q. Harris found the following ball load magnitudes: 6571; 5765; 
3670; and 1200 N, for the balls located at angular positions: |ψ| = 0; 22.5o; 45o; and 67.5o, respectively, 
and found zero ball load magnitudes for the balls located at angular positions |ψ| ≥ 90o (p. 262). This work 
found the following ball loads magnitudes: 5997; 5395; 3807; 1820; and 239 N, for the balls located at 
angular positions: |ψ| = 0; 22.5o; 45o; 67.5o; and 90o, respectively, and found zero ball load magnitudes for 
the balls located at angular positions |ψ| > 90o. 
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This means that Harris calculation has overestimated (or underestimated) the normal ball loads for balls 
located at angular positions satisfying |ψ| < 45º (|ψ| ≥ 45º); representing an error of 9.56% in the 
determination of maximum normal ball load and errors of 6.86%, –3.59%, –34.06% and –100% in the 
determination of normal ball load for the eight balls immediately about the most heavily loaded ball, 
respectively. 
 

 
Figure 3.  Normal ball load, Q, for 17,800 N radial load, as a function of the thrust load, Fa. 

 
Figure 4 shows the contact angle, β. While Harris assumed a contact angle magnitude of 40o for all balls 
(p. 260), contact angles ranging from 38.2o to 42.7o were found in this work, while ψ were varied from ψ = 
0º to ±180o, respectively. This represents errors between 4.71% and –6.28% in the contact angles 
determination, meaning that Harris assumption has overestimated (underestimated) the contact angles 
for balls located at angular positions satisfying |ψ| < 90º (|ψ| ≥ 90º). 

 
Figure 4.  Contact angle, β, for 17,800 N radial load, as a function of the thrust load, Fa. 
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Figure 5 shows the loading zone, ψl. While Harris found a loading zone of 84.84º (p. 262), this work found 
a loading zone of 97.74º. This represents an error of –13.2% in the loading angle, meaning that the Harris 
calculation has underestimated the effect of the loading. 
 

 
Figure 5.  Contact zone, ψl, for 17,800 N radial load, as a function of the thrust load, Fa. 

 
 

Conclusion 
 
A numerical procedure for computing the internal loading distribution in statically loaded, single-row, 
angular-contact ball bearings when subjected to a known combined radial and thrust load has been 
presented. The combined radial and thrust load must be applied in order to avoid tilting between inner 
and outer rings. The procedure requires the iterative solution of Z + 2 simultaneous nonlinear equations 
with unknowns δa, δr, and βj, j = 1,…,Z. Numerical results for a 218 angular-contact ball bearing have 
been compared with those from the literature and show significant differences in the magnitudes of the 
ball loads, contact angles, and extent of the loading zone. 
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