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Abstract 

Data assimilation combines observation and data from a mathematical model to compute the best 
initial condition. Inverse problems can be classified according to the nature of the estimated property 
type: source term, system property, boundary condition, and initial condition. Extended Kalman filter 
(EKF) and four dimensional variational method (4D-Var) are two procedures employed to perform DA. 
Artificial neural networks are applied here for reducing the computational complexity for a given DA 
scheme. The supervised multi-layer perceptron is used to emulate the Kalman filter. The designed neural 
network was implemented on a FPGA (Field-programmable Gate Array), employed as a co-processor. 
The linear 1D wave equation is the dynamical system used for testing the framework. A good 
performance was obtained with neural network emulating the Kalman filter, with an average error 5.18E-
05 (software and FPGA comparison) on the FPGA implementation. 
 
Introduction 

Inverse problems can be classified according to the nature of the method (explicit or implicit), nature 
of the unknown set (function or parameter), or the nature of the estimated property type: source term, 
system property, boundary condition, and initial condition. Data assimilation combines observation and 
data from a mathematical model to compute the best initial condition. The estimation of initial condition 
is an essential issue for operational prediction centers for weather forecast [1, 2], ocean circulation [3], 
space weather [4], hydrology [5], and environmental prediction [6].  

Modern techniques as ensemble Kalman filter (EnKF) [7, 8], particle filter (PF) [9, 10] – two 
Bayesian techniques, and 4D variational methods [1, 2, 11] represent high level standards for data 
assimilation process. However, these schemes are very expensive, from computational point of view.  

Nowosad et al. [13] employed a multi-layer perceptron neural network (MLP-NN) by data 
assimilation emulating the extended Kalman filter. In the approach suggested by Härter and Campos 
Velho [14], a local NN was employed, instead of the use the strategy used before [13]. The application of 
neural networks for data assimilation was also tested to emulate particle filter [14], and variational 
method [15]. Recently, the neural network was applied to a 3D general circulation atmospheric model 
(SPEEDY: Simplified Parameterizations PrimitivE-Equation Dynamics), where the MLP-NN was able to 
produce a similar analysis than the local ensemble transform Kalman filter (LETKF) [16], but the neural 
network was 75 times faster than LETKF [17]. 

However, a difficult task is to find out the best configuration of the ANN for a given application. 
Some studies are addressed to develop automatic schemes for configuring an ANN. In our approach, the 
configuration of the multi-layer perceptron (MLP) is formulated as an optimization problem. A new 
meta-heuristic, the multi-particle collision algorithm (MPCA) [19], is used to identify the best 
configuration [20]. The MPCA is inspired to emulate the behavior of neutrons transport in a nuclear 
reactor, where absorption and scattering are considered.  

Data assimilation is performed by MLP-NN by using the FPGA (Field-programmable Gate Array. In 
the 1980s, many studies were carried out to design hardware neurocomputers. However, the development 
was based on application-specific integrated circuit (ASIC). At that time, there is no demand for large-
scale production. On the other hand, FPGAs worked with relatively small memory, and they were not fast 
enough for real applications of ANN [21]. The technology changed, and the current performance for 
FPGA allows a configuration to be neurocomputers for facing applications with intensive computation.  
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The experiment for data assimilation by a FPGA-neurocomputer is carried out with linear 1D wave 
equation [3, 22]. A comparison between data assimilation using neural network by software and 
hardware is shown, where small differences are reported.  

 
2. Forward model: Linear 1D wave equation 

The dynamical system used in our tests is a linear, first-order partial differential equation, called here 
linear 1D wave equation: 

 
∂η
∂t
+ c ∂η

∂t
= F(x, t)                                                                                       (1) 

 
where η(x,t) is the unknown variable to be estimated by data assimilation, c is the constant phase speed, 
F(x,t) is the external forcing, t is time, and x is space. Periodic boundary conditions are assumed. The 
initial condition is given by the following equation: 

 

η(x, 0) =η0
1

cosh2[(x −ν ) /Δ]
      0 ≤ x ≤ Lx                                             (2) 

 
with η0 = –60, ν = c + αη0/3, α = –1.62×10-2, c = 2.42, and Δ = 1340. The equation (1) is integrated 
using finite difference (for space), and Crank-Nicholson (for time).  
 
3. Data assimilation schemes 
 
3.1 Kalman filter 

The Kalman filter is a well established statistical estimation process under a stochastic Gaussian 
process. The algorithm for the cycle of data assimilation when the observation is available can be 
summarized as following: 

 
1. Forecast model for state vector: ηv,n+1

f =Mn+1ηv,n
a , with: ηv,n

f = [η1
f (tn ) … ηNx

f (tn )]T . 

2. Up-date the covariance matrix: Pn+1
f =Mn+1Pn+1

a Mn+1
T +Wn

Mod  
3. Compute the Kalman gain: Kn+1 = Pn+1

f Hn+1
T [Wn

Obs +Hn+1Pn+1
f Hn+1

T ]−1  
4. Compute the analysis (data assimilation): ηv

a =ηv
f +Kn+1[ηv

Obs −Hn+1ηn+1
f ]  

5. Up-date the analyis covariance: Pn+1
a = [I −Kn+1Hn+1

T ]Pn+1
f  

 
The state value η(x,t) is discretized: η(xi,tn), and the matrix Mn represents the state transition matrix 

from the state ηn up to ηn+1 for the discrete dynamical system. Matrices P, H, WObs, WMod are the state 
covariance matrix, observation system matrix, and error covariance matrices for observations and 
modeling, respectively. The superscript f and a are the predicted values (forecasting, or also background), 
the analysis. Subscripts ν and n identifies the grid point (xi) and discrete time (tn), respectively. Finally, 
the matrix K is the Kalman gain. Several studies are dedicated to evaluate the matrix WMod. The ensemble 
Kalman filter [8, 16] is a procedure to identify this matrix. For non-linear and non-Gaussian stochastic 
process, the particle filter is an alternative estimation procedure [9, 14]. 
 
3.2 Neural network: Multi-layer perceptron 

Artificial Neural Network (ANN) are distributed parallel systems, they are composed by simple 
processing units (node) that calculate certain mathematical functions (typically nonlinear), emulating the 
human brain function to accomplish specific tasks. These units are arranged in one or more 
interconnected layers by a large number of connections. These connections are associated with weights in 
various models, which store the knowledge represented in the model and serve to balance the input 
received by each network neuron [23].   
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Multilayer Perceptron (MLP) is one of the most commonly used topologies, they have at least one 
intermediate layer or hidden, MLP have been applied successfully to solve several and difficult problems 
by training them with a supervised manner with a highly popular backpropagation algorithm.  

The backpropagation learning error consists to compute the weight connections (synaptic weights) in 
order to produce the best fitting with the target values. The synaptic weights are all adjusted in 
accordance with an error correction rule [23]. 

MLP with backpropagation learning algorithm are feedforward networks composed of an 
input layer, an output layer, and a number of hidden layers, whose aim is to extract high order 
statistics from the input data [23]. Figure 1a is an outline of an artificial neuron, and Figure 1b 
depicts a multilayer neural network with one hidden layer. Neural networks will solve nonlinear 
problems, if nonlinear activation functions are used for the hidden and/or the output layers. 
From several activation functions, the sigmoid are commonly used (a is a free parameter): 
 

ϕ(ν ) = 1− exp(−aν )
1+ exp(−aν )

 .                                                                                            (3) 

 

                        
                                        (a)                                                                         (b) 

Figure 1: (a) single neuron, (b) multi-layer neural network. 
 

3.2.1 MPCA for ANN self-configuring  
For finding the best configuration for an ANN for a given application, many parameters must be 

evaluated: number of hidden layers, number of neurons for each layer, type of activation function, 
learning ratio, and momentum rate. These parameters are identified by minimizing a cost function. The 
optimization problem is solved by the MPCA (Multi-Particle Collision Algorithm) [19] meta-heuristic. 

The standard PCA starts with a selection of an initial solution (Old-Config), and it is modified by a 
stochastic perturbation (Perturbation {.}), leading to the construction of a new solution (New-Config). 
The new solution is compared (function Fitness {.}), and the new solution can or cannot be accepted. If 
the new solution is not accepted, the scheme of scattering (Scaterring {.}) is used. The exploration 
around closer positions is guaranteed by using the functions Perturbation {.} and Small-Perturbation {.}. 
If the new solution is better than the previous one, this new solution absorbed. If a worse solution is 
found, the particle can be sent to a different location of the search space, it enables the algorithm of 
escaping a local minimum [19].  

The implementation of the MPCA algorithm is similar to PCA, but it uses a set with N particles, 
where a mechanism to share the particle information is applied. A blackboard strategy is adopted, where 
the best-fitness information is shared among all particles in the process. This process was implemented in 
Message Passing Interface (MPI), looking for application into a distributed memory machine. The 
pseudo-code for the MPCA is presented in Figure 2.  

The best configuration for the ANN is obtained by minimizing the following objective function [18]: 
 

J(X) = penality× ρ1ε1 + ρ2ε2
ρ1 + ρ2

                                                                         (4) 
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where ρ1 and ρ2 are learning and generalization weights, with ε1 and ε2 errors for each process cited. The 
vector X is the unknown parameter set: number of hidden layers and neurons per hidden-layer, type of 
activation function, learning and momentum ratios. The penality function is given by [18]: 
 

penality =C1(e
#neurons )2 × (C2 (#epochs))+1 .                                                   (5) 

 
Therefore, simpler ANN are chosen, i.e., ANN with few neurons and fast convergence. The values for 
constants C1 and C2 are the same used in reference [18].  

 

 
Figure 2. MPCA pseudo-code. 

 
4. Data assimilation by hardware device: FPGA as a neurocomputer 

The Cray XD1 is a hybrid computer system combining CPU and FPGA in the same computer node. 
Our implementation was in a machine with 6 interconnected nodes (blades). Each blade has two AMD 
Opteron 2.4 GHz processors and one FPGA Xilinx Virtex II. Data transfer between the CPU and FPGA 
is performed by the API (application programming interface) RapidArray transport core. This API allows 
the CPU sending and receiving data to the FPGA, and the FPGA can read and write on the shared 
memory regions with the CPU.  

 

 
 

Figure 3. Cray XD1 blade. 
 

In the Cray XD1, the FPGA can access to different levels of memory. The Dynamic random-access 
memory (DRAM) has up to 8GB and variable reading latency.  A board with QDR II SRAM (QDR: 
Quad Data Rate; SRAM: Static Random-Access Memory) – it is a type of static RAM computer memory 
with capacity to transfer up to four words of data in each clock cycle – is available. Four independent 
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QDR II SRAM with 4MB can be directly accessed by FPGA, with latency of 8 cycles. There is an 
internal FPGA memory, with smaller capacity, and it can be accessed every cycle.  Figure 3 shows the 
architecture for the Cray XD1 blade. 

 
4.1 MLP-NN for the Cray XD1 

The implementation of the MLP-NN on FPGA, designed for the data assimilation, has different 
modules. Each module is embedded into other modules – as computation components.  

The MAC (Multiplier and ACcumulator) unit – see Fig. 4a – storages the result of the product 
between inputs and synaptic weights, adding the bias. Each input xi is multiplied by a weight wi and 
added to the register acc or to the bias. For selecting the operation to be done, the signal fc is provided. 
The next module is the artificial neuron, and it uses a MAC and control structures – see the diagram in 
Fig. 4b. In this module, the fc signal is generated by a shifting register with only one bit. For the weights 
management, interconnected registers are used on the circular queue. The weights are shifted at each xi 
input. The last computational module is a combination of neurons, with the inputs are connected by a 
unique bus. The output of each neuron is connected to a position of a shifting register with parallel 
loading – see Fig. 4c. The neurons can receive data, and the results (outputs) are flowing to the Lookup 
Table (LUT) unit: this is operation to simulate the activation function.  

The MLP-NN design is complete with serial concatenating of layers forming a neural network. The 
input of each layer is directly concatenated to the output of the previous layer. Considering a layer as a 
computation module, a pipeline of a operation sequence is performed. The computation for each layer 
can be independently executed, allowing multiples data set can be computed with a sequential delay for 
each computation layer.  

 

          
                    (a)                                                  (b)                                                   (c)  
Figure 4: ANN on FPGA: (a) MAC unit: Multiplier and ACumulator, (b) neuron (using MAC), (c) 

ANN implemented: the pipeline. 
 
5. Results 
The linear 1D wave equation was discretized using Nx = 128 grid points for the space mesh (Lx = 

NxΔx = 128×150 = 19200 m), with time integration up to 200 time-steps  (tmax = NtΔt = 3000×10 = 30000 
seconds). For the Kalman filter implementation, the following values were assumed: 

 

Wn
Mod = 0.1I  , Wn

Obs = 0.5I  , Hn = I  ,  

 
with I being the identity matrix. The observations were generated synthetically, and the assimilation 
cycle is carried out every 10 steps. The synthetic observations were computed from the time integration 
of Eq. (1), and adding to the result a Gaussian random noise with 5% for level of noise. In general, data 
assimilation is a two steps process: 

 
Forecast step:   ηn+1

f =M[ηn
f ]                                                                          (6) 

 
Analysis step:   ηn+1

a =ηn+1
f + dn+1                                                                      (7) 
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where dn+1 is the innovation. For the Kalman filter, the innovation is computed using the Kalman gain. In 
this paper, the analysis ηa is calculated by 
 

Analysis step:   ηn+1
a = FNN (ηn+1

Obs,ηn+1
f )                                                              (8) 

 
being FNN(.) the output from the multilayer perceptron neural network.  
 
5.2 Data  assimilation with neurcomputer (FPGA) 

The ANN implementation on FPGA is evaluated with the MLP-NN described by [22], with two 
inputs (forecasting and observation), three neurons in the hidden layer, and one neuron for the output 
layer. The VHDL (VHSIC Hardware Description Language) description for the mentioned NN was 
compiled. The activation function is not fully implemented: its values are computed and storage in a table 
(look-up-table procedure). 

The results for assimilation process with FPGA are shown in Figure 6 (software, FPGA, and square 
error). The mean square error was 5.18×10-5, with variance 1.79×10-8. The largest square error was 
1.30×10-3. 

   
                      (a)                                                   (b)                                                  (c)  

Figure 6: Data assimilation using MLP-NN: (a) Software, (b) FPGA, (c) square error. 
 

5.1 MLP-NN design for data assimilation using MPCA 
The MPCA was executed with: 6 particles, one particle per processor, total 6 processors. The 

maximum number of evaluations of the objective function was adopted as stopping criterion. The results 
are presented considering the average of 4 experiments. The numerical experiments were performed with 
synthetic observational data. The MPCA was applied to optimize the parameters of ANN following: 
number of neurons in the hidden layer, activation function, learning and momentum ratios. 

The numerical experiment used different initial guess for the ANN connection weights and bias. In 
the first experiment, the first guess was the fixed value of 0.5 for all weights and bias. In the second 
experiment, random values were used to weights and bias. The best architectures for both experiments 
found with MPCA are shown in Table 1, and the parameters selected by an expert [22] are also shown. 

 
Table 3: ANN topologies 

       Parameters MPCA-ANN Exp-1 MPCA-ANN Exp-2 Empirical-ANN 
Hidden layers        1        1        1 
Hidden layers neurons        2        23        1 
Learning ratio        0.53        0.4        0.9 
Momentum rate        0.2        0.6        0.0 
Activation function        tanh        tanh        tanh 
Square error        0.5264        0.1583        0.4212 

 
Figure 5a shows the results for the wave profile at time-step 3000. The blue curve correspond to the 

true state, the red curve is the result of the analysis (ANN emulating the Kalman filter), and the 
observation are represented by green square. Data assimilation with empirical ANN (Fig. 5c) presented a 
better performance than ANN-1 (configured by MPCA). The assimilation with the ANN2 (Fig. 5b) has 
the best performance of all ANNs, the analysis reproduced with great fidelity the real dynamics. 
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(a) 

 
(b) 

 
(c) 

Figure 5: (a) MPCA-ANN1: fixed weight-bias; (b) MPCA-ANN2: random weight-bias; (c) ANN [22] 
 

 
6. Conclusions 

The self-configuring strategy of the MLP-NN using MPCA meta-heuristic, applied to emulate the 
Kalman filter for data assimilation, was effective. Actually, one of the found topologies produced better 
results than a topology selected by an expert. This scheme allows the use of ANN for a larger 
community. The implementation on FPGA works well, where the fixed point arithmetic was adopted for 
avoiding memory constraints. In a future work, we want to repeat the experiment, but employing the 
floating-point arithmetic.  
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