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Abstract—This work deals with satellite sun sensor placement
using genetic algorithms. For a simplified but realistic problem
scenario, this problem is solved and many simulation results are
shown. The proposed methodology, which relies on numerical
shadow analysis and multi-objective optimization, is discussed
and a typical satellite design problem, that is frequently solved
by a try-and-error approach, is converted into an optimization
problem that can be solved automatically.

Keywords—Genetic algorithms, satellite design, attitude control
subsystem.

I. INTRODUCTION

During almost all space missions, the design team is faced
with many trade studies and very challenging optimization
problems. These problems can be experienced in early mis-
sion phases, such as in feasibility study, or in late stages
like mission operations and support. Moreover, as the time
progresses and the mission life cycle evolves, the nature of
these problems gradually changes from the need for a general
conceptual description to a detailed system/subsystem design,
mission operation strategy and spacecraft disposal [1]. A
feasible approach to deal with these problems is to use genetic
algorithms (GAs), which are global randomized optimization
tools that are inspired by the mechanics of natural selection
[2], [3].

The idea of using GAs during space mission life cycle is
not new and can be found in many papers. In [4], GAs are used
in spacecraft conceptual design and launch vehicle selection
during feasibility study, moreover, this paper prescribes an
iterative preliminary design process where tasks like evaluation
and design changing are replaced by a GA search tool. In [5],
the problem of spacecraft sun sensor (SS) placement, which
can be regarded as a detailed design problem, is treated in
a simplified scenario where the optimizer searches for some
sensor set configuration in a way to ensure a full sky coverage
by at least four SS. Concerning operation mission phases,
such as satellite constellation operations, in [6] GAs were
applied to constellation maneuver planning, where satellite
trajectories are optimized in a way to avoid collisions, save
and equalize fuel consumption and reduce maneuver duration.
Regarding attitude maneuvers involving a single spacecraft, [7]
proposes the utilization of GAs in attitude path planing when

the spacecraft has to deal with geometric, timed and dynamic
constraints.

In this paper, we use genetic algorithms as tools to automat-
ically select the number, position and orientation of SS used
in a simplified satellite Attitude and Orbit Control Subsystem
(AOCS) design. When compared to [5] and [8] (which is based
on traditional constrained optimization methods), our paper has
the following original contributions:

• The shadow analysis, which is based on a realistic
spacecraft operation environment, is explicitly treated
(i.e. the shadow caused by any spacecraft part, such
as payloads and solar panels, are not ignored);

• Not only the position but also the sensor orientation
problem is treated;

• Instead of using a fixed number of SS per algorithm
run, our work also deals with the number of sensors
optimization, which characterizes an multi-objective
optimization problem with conflicting goals.

The following textual structure applies to this paper: Sec-
tion II states the sun sensor placement problem based on the
need for sun direction determination and taking into account
fault tolerance, moreover, the shadow analysis process is
briefly described; Section III describes the specific genetic
algorithm design that is applicable to this work; Section IV
shows simulation results for two different problem scenarios;
The paper is finished in Section V, where overall conclusions
are made and directions for further works are discussed.

II. PROBLEM DESCRIPTION

Many artificial satellites require some kind of attitude
determination and control. This characteristic is typically due
to power generation needs (e.g. to point solar arrays towards
the Sun), payload data labeling, thermal constraints and so
on [9], [10]. To perform such a task, which is required by
the attitude controller, the satellite can rely on measurements
from equipments like star sensors (that are very expensive,
complex and generally require some sort of initial attitude
determination), from cheaper and simpler equipments, such as
magnetometers and sun sensors, or from a combination of both.
Moreover, once the architecture has been chosen, the designer
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shall perform a careful analysis, concerning the sensor set
configuration, to ensure that attitude determination is always
possible provided that the correct operation condition for the
sensor set is satisfied.

Concerning attitude determination, a simple geometric
method called TRIAD, which relies on the sun vector de-
termination, is typically used by many satellites [9]. As a
consequence, sun vector calculation is directly related to
attitude determination.

The easiest and cheapest way to determine the Sun direc-
tion in space is to perform the reading of three coarse sun
sensors measurements and to execute a change of basis to
compute the sun direction in the spacecraft coordinate frame.
So, all the three sensors shall be illuminated simultaneously
and their orientation vector shall form a basis of a three-
dimensional (3D) space. Moreover, because of the fact that
no single point of failure shall exist, the configuration design
must be performed in a way that at each time instant there are
at least four illuminated sensors. However, the need for a single
point of failure fault tolerance increases the potential number
of sensors to assure a full sky coverage and, consequently, the
spacecraft cost (i.e. number of computer interfaces, harnesses,
geometrical dimensions, launcher costs, etc.).

The scope of our work is the utilization of GAs in the
process of finding possible sensor set configurations that
assures full sky coverage in a two-dimensional (2D) space.
In spite of being a simplified scenario, it is a realistic one and
is equivalent of having a spacecraft in a sun-synchronous orbit
with sun sensors placed on one plane.

Figure 1 shows a schematic diagram which maps the 3D
problem to the simplified 2D problem and Fig. 2 shows the
notation used throughout the paper to represent a simple sun
sensor orientation on the satellite surface. It must be pointed
out that, throughout this work, each sun sensor is assumed to
be a cosine detector with 180 deg field of view (FOV).

��������

	
���� ������
�����������

Fig. 1. Mapping the 3D problem to 2D simplified problem.

A. Sensor Placement and Shadow Analysis

To ensure a full sky coverage in a plane, at least 2 sensors
must be illuminated at any time. This is the primary objective
of the 2D optimization problem. Secondly, a single point
of failure is not desired, so, the number of simultaneously
illuminated sensors is increased by one (3 total). The last
problem is to reduce the total number of sensors, placed on
allowed spacecraft surfaces, required to achieve these goals.

Fig. 2. Sun sensor representation.

The analysis which is performed to ensure full sky coverage
is done through the shadow analysis. To do so, it was assumed
that the Sun was a point source of light at infinity (angular
radius almost equal to zero degrees), a sensor placed outside
the spacecraft is not allowed and any sensor inside or exactly
on the surface of a spacecraft object is completely obscured.
In regard to computational implementation, the main inputs to
this analysis are:

• Geometric characteristics of the satellite, including all
possible objects placed on the spacecraft body that can
cause a sun ray obstruction;

• Number of sun sensors used;

• Sun sensor parameters: Position, orientation, FOV,
resolution and type;

• Angular step used to vary the Sun position.

After a candidate configuration solution is proposed, the anal-
ysis returns a matrix that relates the number of sensors to the
sky coverage. For instance, the first row in Table I means that
100 degrees are uncovered by sensors due to lack of field of
view, shadow or placement in a forbidden region (e.g. inside
or on the surface of some instrument); the fourth row means
that 106 degrees of the sky are simultaneously covered by 3
sensors. It can be noted that addition of all elements in the
second column must always result in 360 degrees.

TABLE I. EXAMPLE OF SHADOW ANALYSIS OUTPUT

Number of Sensors Angular Coverage
0 100
1 30
2 54
3 106
4 70
5 0
6 0
7 0

Still concerning the computational aspects of the shadow
analysis problem, it must be emphasized that the following
parameters have a significant impact on the algorithm perfor-
mance:

• Sun step: This is directly related to the time required to
perform the analysis and with the numerical error that
arises when an object border or sensor FOV boundary
is encountered. In our implementation, if δSun denotes
the Sun step (δSun > 0), noi represents the number of
objects that can cause sun obstruction for the sensor i
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and NSS represents the total number of sensors for a
given configuration, the analysis output will have an
uncertainty less than or equal to

∑NSS

i=1
δSun∗(noi+1).

Therefore, the smaller δSun the smaller the error and
the slower the analysis. Moreover, in spite of being an
analysis design parameter, the choice of a value for
δSun is driven by the sensor resolution (i.e. δSun ≤

(sensor resolution))

• Object shapes: The more complex the object shapes
are, the slower the analysis is performed. A very
practical and feasible approach is to use an envelope
composed by simple shapes (i.e. rectangles, triangles
and circles) to represent an object with an irregular
shape. For the case of moving parts (i.e. a solar panel
that spins around some spacecraft axis), the envelope
can circumscribe the region where the movement takes
place.

In the next section it will be explained how genetic
algorithms can be used to optimize the number, the position
and the orientation of the sun sensors.

III. OPTIMIZATION USING GENETIC ALGORITHMS

Every optimization problem that makes use of genetic
algorithms is characterized mainly by: a) The way the solutions
are represented in the search space (coding); b)The objective
function (fitness); c)The number of solutions that are evaluated
at each step (population size); d) Reproduction, crossover and
mutation parameters. In the following subsections, these design
parameters are defined and explained for the case where the
satellite side is represented by a square (1.45m x 1.45m) and
for two obstacle configuration cases: A) Simple satellite with
a locked solar panel (1.41m x 0.05m) and no thrusters and
other objects (see Fig. 3); B) A satellite with a moving solar
panel (1.00m x 0.05m), three thrusters in one side (0.20m x
0.30m), a imager (0.30m x 0.20m) and one antenna (0.30m x
0.20m) see Fig. 4).

Fig. 3. Satellite face with a locked solar panel.

A. Representation

In this work a binary code scheme was used and the
following parameters where used to make up the chromosome:
a) Sensor position (xss and zss, for cartesian coordinates, or
θss and ρss, for polar form); b) sensor orientation in degrees
(Θss); c) Activation flag (single bit for the multi-objective
optimization case).

Fig. 4. Satellite with thrusters, rotating solar panels, imager and antenna.

Cartesian coordinates were used in the single-objective
optimization. For this case, the chromosome length per sensor
was equal to 24bits (7 for xss, 7 for zss and 10 bits for
Θss). This design assures an spacial resolution of 1.1cm and
an angular resolution of 0.35 deg. Moreover, the number of
sensors was equal to seven, so the chromosome length was
equal to 168 bits.

Concerning the multi-objective optimization, a polar coor-
dinate representation was used. The reason to do this is because
it is straightforward to deal with the constraint of not putting
any sensor inside the region where the solar panels are moving.
In this case, chromosome length per sensor was equal to 21
bits (4 bits for ρss, 8 bits for θss, 8 bits for Θss and 1 bit
for the activation flag). Such configuration provided a position
resolution equal to of 2.8 cm and an angular resolution equal
to 1.4 deg. The number of sensors among solutions could vary
from 0 to 15, so the chromosome length was equal to 315 bits.

B. Fitness Function

For the single-objective optimization case, the fitness func-
tion consisted of a weighted sum involving the output from
the shadow analysis. Mathematically, it can be expressed as
follows:

FS =

NSS∑
i=0

(wsi × ϕi) (1)

Where:

• FS : Fitness function for single-objective optimiza-
tion;

• NSS : Maximum number of available sensors;

• wsi: Weight related to i simultaneously illuminated
sensors (coverage);

• ϕi: Total angular interval with i illuminated sensors.

The fitness function used in the multi-objective optimiza-
tion was a weighted average of two functions [11], being the
first one equal to that used in the simple optimization, and the
second one related to the number of sensors in the solution in a
way to penalize configurations with a large number of sensors
(i.e. more than 8 sensors) or that will never assure a full sky
coverage or single point of failure fault tolerance (e.g. solutions
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with 0 to 5 sensors). Mathematically, the fitness function for
this case is given by.

FM =
WS ×FS +WN ×FN

WS +WN

(2)

FN = wNi (3)

Where:

• FM: Fitness function for multi-objective optimization;

• FN : Fitness function related to the number of sensors.

• WS : Weight related to the sky coverage fitness func-
tion component;

• WN : Weight related to the number of sensors fitness
function;

• wNi: Weight related to the number of sensors for a
configuration with i sensors.

Because the fact that ensure a full sky coverage is consid-
ered more important than reducing the total number of sensors
WS = 2 ∗WN .

It is also important to point out that the choice of the
weights, which are related to sky coverage and maximum
number of sensors, is driven by AOCS requirements and
design constraints. For example, suppose that the AOCS
computer of the spacecraft has at most 8 interfaces that
are to be used to collect data from sun sensors and that
double point of failure tolerance is a primary subsystem
requirement. For this single optimization problem, a can-
didate vector for Wsi = [ws0 ws1 ws2 ... ws8]

T is
Wsi = [0 1 5 10 15 10 5 1 0]T . If the AOCS
computer was not yet designed and if there are some
flexibility to the maximum number of sensors (e.g. at
most 11), multi-optimization can be used with Wsi =
[0 1 5 10 15 15 15 15 15 15 15 15]T and wNi

given by

wNi =

{
900× i if 0 ≤ i ≤ 6
5400 if 7 ≤ i ≤ 8
(11− x)× 1800 if 9 ≤ i ≤ 11

. (4)

Regarding the shadow analysis output, since coarse sun
sensors typically present resolution of a couple of degrees [9],
we considered δSun = 1deg a good trade-off between the
expected numerical error and the computational time needed
to achieve the stop condition.

C. Population Size

In this paper, the population size was fixed to be equal to
100. Some preliminary tests were performed with population
size varying from 100 to 300 chromosomes but no relevant
improvement was observed.

D. Reproduction, Crossover and Mutation

Two selection methods were used to implement reproduc-
tion. For the case of single-objective optimization and locked
solar panel case, a simple roulette wheel scheme (with and
without elitism) was used. For the multi-objective optimization
and the satellite with many obstacles, a roulette wheel with
fitness scaling was applied.

A single point crossover was used and the crossover rate,
which determines the generation gap, was fixed equal to 0.98,
while mutation rate was fixed to be equal to 0.002.

In all the simulations the stop condition was the maximum
number of generations equal to 1000.

The following section presents some simulation results for
both single and multi-optimization problems.

IV. SIMULATION RESULTS

A. Satellite With Locked Solar Panel

Regarding the single-objective optimization problem, in
20 simulation runs (10 with and 10 without elitism) the
algorithm was able to find solutions that ensure a full sky
coverage with single point of failure fault tolerance. Table
II shows the average value for 10 simulations runs for the
case were elitism was used and with a weight set Wsi =
[5 10 19 35 19 10 5 0]T (the case without elitism
performed almost the same).

TABLE II. AVERAGE SKY COVERAGE FOR 10 RUNS FOR THE CASE
WITH LOCKED SOLAR PANEL, SINGLE OBJECTIVE AND ELITISM.

Number of illuminated sun sensors Angular Coverage
0 0
1 0.3

◦

2 2.8
◦

3 355.6
◦

4 1.3
◦

5 0
6 0
7 0

REMARK: When the shadow analysis was repeated with
δSun = 0.1deg for the configurations that resulted from the
optimization process, the uncovered area almost disappeared,
so the remaining uncovered area in the original results were
due to the shadow analysis and not to the GA optimization
process itself.

For the multi-optimization problem, 10 runs were per-
formed and elitism was used. Similar results were achieved but
with a reduced number of sensors (6 in all simulation runs).
Figure 5 illustrates the boundaries of the multi-objective func-
tion while Table III illustrates the average result concerning
sky coverage.

TABLE III. AVERAGE SKY COVERAGE FOR 10 RUNS FOR THE CASE
WITH LOCKED SOLAR PANEL, MULTIOBJECTIVE AND ELITISM.

Number of illuminated sun sensors Angular Coverage
0 0.1

◦

1 0.3
◦

2 4.8
◦

3 354.0
◦

4 0.8
◦

5 0
6 0
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Fig. 5. Fitness function for the satellite with locked panel and multi-
optimization.

REMARK: The uncovered 0.1deg shown in Tab. III was due
to a singe run that presented both 1deg uncoverd neither by 1
nor 2 sensors. After the simulation was repeated with δSun =
0.1deg, these uncovered area almost disapeared.

B. Satellite with thrusters, imager, antenna and rotating solar
panel

The previous section showed that the adopted approach
was quite effective in dealing with a simple problem that
could be solved manually. In this section simulation results are
shown for the scenario illustrated by Fig. 4, which constitutes
a problem that can not be solved easily by a designer without
using too many sensors.

For this problem, in many runs tournament selection and
a elitism caused premature algorithm convergence without
having any solution with a tolerable single point of failure
(i.e. with an uncovered region bellow the expected numerical
error limit). When elitism was eliminated and a simple roulette
wheel scheme was used, the algorithm experienced frequent
losses of the best solutions and, in contrast with the previ-
ous simulation scenarios, did not converged at all. This was
noted in both simple and multi-objective optimization problem.
Moreover, it should be pointed out that selecting the number
of sensors for the single optimization problem to be executed
was not a convenient task.

To overcome the experienced difficulties, the selection
algorithm was changed to include a linear fitness scaling
scheme [3]. So, the roulette wheel slots were filled according
to the following scaled fitness values:

FMS i = 2×

(
1 +

FMi −FMMAX

FMMAX −FMMIN

)
+ ε (5)

where FMi is the original fitness of the solution i, FMS i

is the resulting scaled fitness value, FMMAX and FMMIN

are the maximum and the minimum unscaled fitness at the

generation, respectively, and ε = 0.01 was used to avoid
numerical problems during selection.

Figure 6 illustrates the surface for the unscaled fitness
function that was used in the multi-objective optimization.
Note that the maximum values are achieved by solutions with
6 to 8 sensors and with a full sky coverage by three or more
sensors.
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Fig. 6. Multi-objective fitness function for the satellite with rotating solar
panels, thrusters, imager and antenna.

Table IV illustrates the coverage of the best solution in 20
runs, Table V illustrates the average values and Fig. 7 shows
the fitness function evolution for the best solution. Satellite
configuration at the beginning and by the end of the best run
is also shown in Figs. 8 and 9.

TABLE IV. BEST SKY COVERAGE FOR THE MULTI-OBJECTIVE
OPTIMIZATION REGARDING THE SATELLITE WITH ROTATING SOLAR

PANELS, IMAGER, THRUSTERS AND ANTENNA.

Number of illuminated sun sensors Angular Coverage
0 0

◦

1 0
◦

2 0
◦

3 281
◦

4 79
◦

5 0
◦

6 0
◦

TABLE V. AVERAGE SKY COVERAGE OF 20 RUNS FOR THE
MULTI-OBJECTIVE OPTIMIZATION REGARDING THE SATELLITE WITH
ROTATING SOLAR PANELS, IMAGER, THRUSTERS AND ANTENNA.

Number of illuminated sun sensors Angular Coverage
0 0

◦

1 0
◦

2 18.57
◦

3 252.57
◦

4 82.58
◦

5 6.27
◦

6 0
◦

Note that the proposed modification allowed us to achieve
a full sky coverage with 2 sun sensors in all the simulations.
Moreover the remaining area uncovered by at least 3 SS lied
within the acceptable numerical error boundaries. In almost
all the cases, when the shadow analysis was performed with
a reduced step in the obtained solution, the uncovered area
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Fig. 7. Evolution of the fitness function for the best solution.
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Fig. 8. Best satellite configuration by the beginning of the simulation.
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Fig. 9. Best satellite configuration by the end of the simulation.

decreased significantly, showing that the optimization process
worked well and that the remaining uncovered spaces were
mainly due to numerical errors that can be controlled.

It is also important to point out that for many cases where
the reduction of δSun did not eliminated the uncovered sky
region, a single manual changing of the resulting final best
solution sufficed to provide a full sky coverage with single
point of failure fault tolerance.

V. CONCLUSION

This paper treated the satellite sun sensor placement prob-
lem as a multi-objective optimization problem that is possible

to be solved by genetic algorithms in an automatic or almost
automatic fashion.

The proposed methodology is well suited to be applied
during the AOCS detailed design phase, when the designer
looks for some sun sensor set configuration in a way to
ensure the sun vector direction determination. Therefore, it
becomes easy to map functional requirements (e.g. full sky
attitude determination) and design constraints (e.g. single point
of failure fault tolerance) to some specific design choice
through an automatic optimization process. For any specific
satellite design, the shape of multi-objective fitness function
(e.g. maximum value for solutions containing between 6 to 8
sensors) and other design parameters that serve as inputs to the
shadow analysis (e.g. sensors with a smaller FOV) completely
drive the behavior of the automatic optimization. Moreover,
this approach is quite effective in reducing the time required
by such an analysis and also the spacecraft total costs related
to the number of sensors, electrical interfaces, and so on.

The application of this methodology in a more complex
simulation scenario (3D problem with an increased num-
ber of obstacles) and comparisons with other optimization
approaches, such as particle swarm optimization [12], are
currently under work.
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