
A Methodology for Generating Time-Varying

Complex Networks with Community Structure

Sandy Porto1 and Marcos G. Quiles2

1 National Institute for Space Research (INPE), São José dos Campos, Brazil
sandyporto@gmail.com

2 Institute of Science and Technology, Federal University of São Paulo (UNIFESP),
São José dos Campos, Brazil

quiles@unifesp.br

Abstract. There is a demand of benchmark networks for testing com-
munity detection algorithms in dynamic scenarios. For generating these
benchmarks is necessary to have a methodology able to create controlled
networks that simulate the natural behavior of communities over time.
This work aims to fill this gap by presenting a methodology for generating
dynamic complex networks with community structure. Computer exper-
iments show that our methodology can, starting from an initial network,
evolve its communities over time while the overall modular structure of
the network is preserved.

Keywords: Dynamic networks, time-varying networks, community de-
tection, benchmark networks.

1 Introduction

A network can be seen as a collection of points connected in parts by lines [1],
in which points are called nodes or vertices, and lines named edges or links.
Although the study of networks can be traced back to Euler’s solution of the
Königsberg bridges problem in the XVIII century [2], only recently research in
complex networks became a focus of attention giving rise to a new research field
named Network Science [3,4].

In contrast to the former studies in graph theory, which mainly considered
static graphs with regular topologies, the new network science field is more
concerned with real networks and their dynamics. Due to their flexibility and
unlimited capacity for representing connectivity in real systems, these networks
have been used as common framework to model real problems ranging from
sociology to physics [5].

Among several topological features that can be extracted from a network,
the community structure is a very important one. There is a great effort ap-
plied to detect and analyze its community structure. Communities, or modules,
can be defined as groups of nodes which are more densely connected with each
other, when compared to the rest of the network [6,7]. Detecting such modular

B. Murgante et al. (Eds.): ICCSA 2014, Part I, LNCS 8579, pp. 344–359, 2014.
c© Springer International Publishing Switzerland 2014



A Methodology for Generating Time-Varying Complex Networks 345

structure, as well as their evolution over time, is essential to understanding the
network dynamics and also the complex system it represents [8,9].

Due to its importance, several community detection algorithms have been
proposed albeit most of them take only static network into account (for a review
see [10]). However, real-world networks are not static, but they constantly change
their structure over time, thus, those community detection algorithms cannot be
straightly applied to these networks [8].

Recently, some community detection models have been proposed to address
this limitation (See [11] and Sec. XIII in [10]). However, a new problem has
emerged: How to test the accuracy and performance of dynamic algorithms?
There are well defined benchmarks, such as the GN [6] and LFR [12] networks,
to the static scenario, but there is no published benchmark to evaluate dynamic
community detection algorithms.

To fill this gap, here we propose a methodology for generating time-varying
networks with community structure. By using our methodology one can build
a network in which its structure evolves over time, it means, new communities
can rise, several communities can be merged, or even the extinction of a former
community. It is worth noting that the process does not occurs instantly, but,
according to the parameters setup, the changes are carried out step-by-step dy-
namically, which is similar to the natural evolution of real networks. In summary,
these networks can be used to create a benchmark to test dynamic community
detection algorithms in a well controlled scenario. Moreover, these networks can
also be used to evaluate general graph-based machine learning algorithms in
dynamic situations.

This paper is organized as follows. Section 2 presents our methodology for
generating time-varying complex networks with community structure. Computer
experiments are shown in Section 3. Finally, Section 4 draws some conclusions
about this work.

2 The Methodology

A simple form to evaluate an algorithm regarding to its performance is by using
a benchmark. A benchmark can be defined as reference problem in which the
expected solution is known a priori. Thus, by benchmarking the algorithm one
can straightly compare the algorithm’s outcome with the expected result.

In community detection, a benchmark is a graph with a clear community
structure that should be recovered by the algorithm being evaluated [10].

In 2008, a methodology for generating static networks with communities of
different sizes and with degree distributions that follows a power law was pro-
posed [12]. This methodology, named LFR benchmark, provides a realist scenario
to evaluate community detection algorithm using static networks. Thus, here we
assume a LFR network as the initial model in which the evolution defined in our
methodology takes place.

The original parameters of the LFR benchmark is also used in the proposed
methodology: the initial size of the network n, the average degree of the net-
work 〈k〉, the maximum degree kmax, the mixing parameter μ ∈ [0, 1], which



346 S. Porto and M.G. Quiles

Fig. 1. Possible changes that a community can suffer in a complex dynamic network

controls the fraction of links that a node shares with nodes belonging to other
communities. The minimum and maximum size of the communities, smin and
smax, respectively. Finally, the exponents τ1 and τ2 which controls the degree
distribution and size of the communities in the network.

Our methodology aims to create a structure that simulates the behavior of a
dynamic network. For this simulation to be successful one must keep in mind the
features that we want to explore. For instance, we expect to simulate behaviors
commonly observed in real networks, such as social networks.

Studies in social networks have investigated the behavior of communities in
dynamic networks. In [13], blogs and bloggers were tracked and the evolution
of formed communities were analyzed. In [14], community evolution was in-
vestigated in a music application. Networks of scientific publications and links
between mobile phones were analyzed in [15].

These three studies have observed the formation of new communities, as well
as changes in existing communities. Moreover, their results also seem to form of
a consensus on the possible transformations that communities can suffer.

Basically there are three types of transformations, which are illustrated in Fig.
1: (a) one-to-one, which involves the growth or contraction of the community;
(b) one-to-many or many-to-one, that are related to the splitting or merging
phenomena, i.e. one community can give rise to several or several communities
can merge into a single one; (c) one-to-zero or zero-to-one, represented by the
birth or termination of a community.

Once identified the possible changes a community can undergo during its
evolution in a dynamic network, we propose a methodology composed of six
algorithms that simulate these behaviors, named: born, growth, extinction, con-
traction, merge, and split.

Here, the born function deals with the rising of a new community. The extinc-
tion function treats the termination of an existing community in the
network. The growth function triggers the growth of an existing community.



A Methodology for Generating Time-Varying Complex Networks 347

Fig. 2. (Color online) Born Function

The contraction function causes the contraction of a community. Finally, the
merge function handles the union of two or more communities in one while the
split function does the opposite by dividing of a community into two or more
other communities.

From an initial network generated by using the LFR benchmark algorithm,
the transformations can be applied sequentially with no overlap, forming a list
of graphs representing the evolution of the network over time. At every action
of the functions, a copy of the current state of the graph is stored in a list
that serves as a timeline of the transformation within the network and will be
the output parameter of all functions. Thus, in order to simulate real scenarios,
one can define the sequence of actions that will be performed into the network.
Moreover, by selecting a single function, an algorithm can be tested over specific
situations, i.e. the behavior of the algorithm when the communities start growing
or when new communities arises.

All the functions are briefly explained in the following sections. The complete
algorithms implemented in R are freely available by request.

2.1 Born Function

The first parameter of the born function is the definition of the new community
size. The community size can be explicitly set or automatically defined by the
algorithm according to original network characteristics. After that, for each new
vertex added to the graph, new edges are formed according to the degree set
to this vertex. There are two options while adding new edges: in or out, in
for inside edges, or edges linking vertices from the same community; and out
for outside edges, or edges connecting vertices from distinct communities. The
switching between the in and out modes are controlled by the parameter μ.
Finally, after all vertices have been added, additional links are added internally



348 S. Porto and M.G. Quiles

to the community with the purpose of increasing its connection density until
it reaches the average connection density of the network. The Born function is
summarized in Algorithm 1 depicted in Fig. 4. The Density(x) function, in the
algorithm, represents the average density connection in the community or graph
x.

Figure 2 shows some steps of the function acting on a network. The original
network is shown in (a). In (b) it is possible to observe the initial steps (in
purple), when the vertices are not well connected and the new community is still
not formed. In (c) and (d) one can notice the early stages of the new community.
Finally, Figure (f) depicts the completely rising of the new community.

2.2 Growth Function

The first action is to define which community will undergo the transformation.
It can be explicitly informed or randomly defined by the algorithm. Next, a new
community size is chosen and new vertices are added to the community until
the new size is reached. At each new vertex, edges are also added according to
the chosen vertex degree. The edges are added following the same methodology
described in the born function by using the in-out procedures controlled by the
parameter μ. Finally, after all vertices have been created, additional edges are
added internally to the community with the purpose of increasing the community
connection density. This function is summarized in Algorithm 2 shown in Fig.
4. The Size(x) functions returns the number of vertices in x.

Figure 3 shows some snapshots of the transformation acting on the network
shown in (a). In (b)-(d) early stages of new vertices on the community in blue
color can be observed. In Figures (e)-(f), extra edges are added albeit hardly
observed in the figures.

Fig. 3. (Color online) Growth Function



A Methodology for Generating Time-Varying Complex Networks 349

Algorithm 1. Born
Input : Initial graph g, smin, smax, & µ
Output: Graph list: Glist

begin
scom = value between smin and
smax;
idc = new community index;
Glist = {};
for i ← 1 to scom do

if i == 1 then
Add v1 to g;
Assign v1 to community idc;
Glist = Glist + g;
Select v2 from g and add
(v1, v2);
Glist = Glist + g;

else
Add v1 to g;
Assign v1 to community idc;
Glist = Glist + g;
k = value between 2 and i;
for j ← 1 to k do

link = in or out
according to µ;
if link == out then

Select v2 /∈ idc

else
if link == in
then

Select
v2 ∈ idc;

end

end
Add (v1, v2) to g;
Glist = Glist + g;

end

end

end
while Density(idc) < Density(g)
do

Select v1 and v2 ∈ idc;
Add (v1, v2) to g;
Glist = Glist + g;

end
return (Glist);

end

Algorithm 2. Growth
Input : Initial graph g, smax, µ, & idc

Output: Graph list: Glist

begin

Glist = {};
if idc == 0 then

idc = select a random
community from g;

end

sstart = Size(idc);
send = value between sstart and
smax;

for i ← 1 to send − sstart do
Add a new v1 to g;
Assign v1 to idc;
Glist = Glist + g;
k = value between 2 and
sstart + i;
for j ← 1 to k do

link = in or out according
to µ;
if link == out then

Select v2 /∈ idc

else
if link == in then

Select v2 ∈ idc;
end

end
Add (v1, v2) to g;
Glist = Glist + g;

end

end

while Density(idc) < Density(g)
do

Select v1 and v2 ∈ idc;
Add (v1, v2) to g;
Glist = Glist + g;

end
return (Glist);

end

Fig. 4. Functions Born and Growth

2.3 Extinction Function

In the extinction function, the first action is to choose the community that will
undergo the transformation. After that, each vertex of the community is deleted
in a random order along with their edges, until all vertices belonging to the
community no longer exits. The process is conducted step-by-step in order to
simulate a real scenario. Algorithm 3 in Figure 7 summarize this function.

In Fig. 5 is possible to observe the behavior of the network during the trans-
formation. (a) shows the original network. In (b)-(d), it is already possible
to perceive a lower density of vertices in the green community, which is the



350 S. Porto and M.G. Quiles

Fig. 5. (Color online) Extinction Function

Fig. 6. (Color online) Contraction Function

community undergoing the action. In (e) there is a division of the community
into parts due to exclusion of edges connecting them, in some cases the vertices
may even become isolated. Finally, in Fig. (f) we can see the complete dissolution
of the green community.

2.4 Contraction Function

In the contraction function, once chosen the community that will undergo the
action, a new community size is defined. Then, step-by-step, vertices are deleted
from the community until the new size is reached. For each deleted vertex
and its respectively edges, new internal edges are added to the community to



A Methodology for Generating Time-Varying Complex Networks 351

Algorithm 3. Extinction
Input : Initial graph g & idc

Output: Graph list: Glist

begin
Glist = {};
if idc == 0 then

idc = select a random
community from g;

end

scom = Size(idc);

while scom > 0 do
Select a vertex v from
community idc;
Delete all links from v;
Delete vertex v;
Glist = Glist + g;
scom = scom − 1;

end

return (Glist);

end

Algorithm 4. Contraction
Input : Initial graph g, smin, & idc

Output: Graph list: Glist

begin
Glist = {};
if idc == 0 then

idc = select a random community
from g;

end
sstart = Size(idc);
send = value between smin and
sstart;
for i ← 1 to sstart-smin do

Select and Delete v ∈ idc

Glist = Glist + g;
while density of idc < g do

Select v1 and v2 ∈ idc;
Add (v1, v2) to g;
Glist = Glist + g;

end

end
return (Glist);

end

Fig. 7. Functions Extinction and Contraction

maintain the original connection density of the network. The Contraction func-
tion is summarized in Algorithm 4 shown in Fig. 7.

In Fig. 6, the transformation steps are displayed. Despite not having any
clear movement, one can observe a slight difference in the density of the blue
community between steps (a) and (f). There is also a slight decrease in the
diameter of community representation, stating that there was indeed a deletion
of vertices of the community.

2.5 Merge Function

The selection of the communities that will take part of the merging process is
the first step of this function. After, edges are added or redirected into the new
community. Two edges that are internal to the former groups of vertices are
selected and are switched; in such a manner that after the switching the edges
will connect the merging groups. Edges can also be added by simply connect-
ing vertices belonging to different communities. These two options are repeated
until the density of the community reaches a threshold consistent with the aver-
age density of the network. Algorithm 5 depicted in Fig 10 presents the Merge
function. There, the Links(x) function, returns the number of links inside the
community or graph x.

Some snapshots of this function are presented in Fig. 8. In Fig. (a) despite the
blue community is considered unique, it is clear to the observer that there are
actually two groups of vertices. In Figures (b)-(d), edges are added or redirected
among those blue groups making the density of connection between them to



352 S. Porto and M.G. Quiles

Fig. 8. (Color online) Merge Function

Fig. 9. (Color online) Split Function

approach their intra-connections density. Finally, in Figs. (e)-(f) one can observe
a unique community.

2.6 Split Function

The split function is responsible for dividing a single community into different
smaller communities. The first step lies in selecting the community that will
undergo the process. Second, we need to define in how many parts the original
community will be divided. These two parameters: which community and the
number of new communities can be defined by the user or automatically set by
the algorithm. The vertices of the former community are randomly distributed



A Methodology for Generating Time-Varying Complex Networks 353

Algorithm 5. Merge
Input : Initial graph g, merging

communities comids, & probR
Output: Graph list: Glist

begin
Glist = {};
if comids is empty then

ncom = rand() between 2 and
max communities;
comids = ncom communities
randomly chosen;

else
ncom = Size(comids);

end
idc = select an index in comids;
Assign idc to all v ∈ {∪comids};
Rt = probR ∗ Links(idc);
Dt = (1 − probR) ∗ Density(g);
r = 0;
d = Density(idc);
stop = (r ≤ Rt)and(d ≤ Dt);
while !stop do

type = add or redirect according
to probR;
if type == add then

Select v1 and v2 ∈ idc;
Add link (v1, v2) to g;
Glist = Glist + g;
d = Density(idc);

else
Select two links (v1, v2) and
(v3, v4) belonging to
distinct former communities
in comids ;
Delete (v1, v2) & (v3, v4);
Add (v1, v3) & (v2, v4);
Glist = Glist + g;
r = r + 1;

end
stop = (r ≤ Rt)and(d ≤ Dt);

end
return (Glist);

end

Algorithm 6. Split
Input : Initial graph g, idc, parts, µ, &

probR
Output: Graph list: Glist

begin
Glist = {};
if idc = 0 then

idc = select a random
community;

end
if parts < 2 then

parts = value between 2
Size(idc)/3;

end
At = Links(idc);
Set new communities indexes
{idcom1, idcom2, · · · , idcomparts};
Assign each v ∈ idc to a new
community randomly;
Ac = number of links connecting
distinct new communities;
stop = Ac/At < µ;

while !stop do
type = delete or redirect
according to probR;
Select two communities idcomx

e idcomy;
if tipo == delete then

Delete a link between
idcomx e idcomy ;

else
Select two links (v1, v2) &
(v3, v4)|v1, v3 ∈ idcomx &
v2, v4 ∈ idcomy;
Delete these links;
Add links (v1, v3) & (v2, v4)
to g;

end
Glist = Glist + g;
Update Ac;
stop = Ac/At < µ;

end
return (Glist);

end

Fig. 10. Functions Merge and Split

among the new communities. Then edges are deleted or redirected until the
distribution of edges is satisfactory according to the parameter μ. Two edges
connecting two different communities are switched in such way that, after the
switching, they connect vertices of the same community. Edges connecting dis-
tinct communities can also be deleted to reach an expected separation according
to μ or to reach the average density observed in the network. This function is
summarized in Alg. 6 presented in Figure 10.

Figure 9 shows some steps of the splitting transformation acting on the net-
work. In Fig. (a) it is possible to see how the vertices in cyan, green, blue, and pink
colors, are distributed in new communities randomly. Those vertices formerly rep-
resent a single community in the original network. In Figs. (b)-(e) it is observed



354 S. Porto and M.G. Quiles

the separation of the new communities. In Figure (e), it is already possible to ob-
serve a separation of the new communities albeit still close to each other due to the
high density of inter-connections. Finally, Figure (f) depicts the final state.

3 Experiments

As stated in Sec. 2 the outcome of the functions is a list of graphs that form a
timeline of changes occurring in the network. Each item in this list is an instant
representation of the network state, or a snapshot. The size of this list indicates
the number of steps in each transformation.

Then to evaluate the influence of changes in community detection, longitudi-
nal application on successive snapshots was taken into account [15,16,17]. This
approach consists of applying an algorithm to detect communities in each graph
on the timeline. Here, to evaluate our methodology, several networks and their
respective transformations were used as input to four state-of-art community de-
tection algorithms: the Fast Greedy method [18], the Infomap [19,20], the Label
Propagation method [21], and the Walktrap [22]. The Normalized Mutual Infor-
mation (NMI) [7] was used to evaluate the detection accuracy provided by each
algorithm. The purpose of these experiments is twofold: 1) to analyze whether
the community structure is preserved after the transformations; and 2) to test
some state-of-art algorithms using our networks.

In the experiments, the functions of the methodology are applied successively
in the following order: born, extinction, growth, contraction, merge and split.
All the figures follow the same visual pattern: each function is identified by
an specific color: red color represents the function born, yellow indicates the
extinction function, the growth function is depicted in green color, cyan color
symbolizes the contraction function, blue color indicates the merge function, and
finally, magenta color shows the split function.

Four experiments were performed with distinct parameters setup. The fol-
lowing parameters were held constant in all simulations: 〈k〉 = 30, kmax = 60,
τ1 = 2, τ2 = 1, smin = 50 and smax = 100. The size of the network n and the
mixing parameter μ were set for each simulation. Specially in the experiments
conducted with a low mixing parameter μ, we expect to observe a high accuracy
from all the algorithms. Whether a high accuracy is observed it means that the
community structure is well recovered by the technique. Thus, we can conclude
that the transformations performed by the functions preserve the community
structure of the network.

In the first experiment, the following values for the input parameters were
used: n = 300 and μ = 0.05. This configuration was set in order to generate
networks with few and very isolated communities. The NMI calculated from the
outcome of the four community detection algorithms is depicted in Figure 11.
All algorithms capture the changes in the community structure of the network
by providing high NMI values. It can be observed that only the Infomap and
the Label Propagation algorithms reach the maximum value after each transfor-
mation. The functions merge and split (blue and magenta) were the ones, which



A Methodology for Generating Time-Varying Complex Networks 355

Fig. 11. (Color online) Experiment with n = 300 and µ = 0.05

Fig. 12. (Color online) Experiment with n = 300 and µ = 0.2



356 S. Porto and M.G. Quiles

Fig. 13. (Color online) Experiment with n = 500 and µ = 0.05

introduced the strongest changes in the network structure, thus, the hardest to
be recovered by the community detection algorithm. The performance of the four
algorithms was similar, with some slight differences, such as a faster recovery at
the merge function in Fast Greedy, and the higher accuracy achieved by the
Infomap.

The second experiment assumed n = 300 and μ = 0.2 as initial parameters,
with the intention of forming a network with a few communities albeit not well
isolated from each other. Fig. 12 shows the results of this experiment. Due to the
change in the network structure caused by the increase of the mixing parameter
μ, the results were quite different from the previous experiment. It means that
the network and their respective transformation are harder to be recovered by
the algorithms. One can see that the Label Propagation present more unstable
results. Again the merge and the split functions are the ones who cause the
greatest impact, which can be observed by the variations in the NMI values.
The most accurate algorithm in this experiment was the Infomap, which obtained
the maximum NMI values during transformations, except in the split function.

The following experiments was conducted with networks set with n = 500 and
μ = 0.05. Here we evaluate how the community structure is preserved in a larger
network with isolated communities. The results of this experiment are depicted



A Methodology for Generating Time-Varying Complex Networks 357

Table 1. Average NMI values achieved by the algorithms in the four experiments

Alghoritm Fast Greedy Infomap Label Propagation Walktrap
Experiment 1 0.9925355 0.9912771 0.9894647 0.9909344
Experiment 2 0.9069037 0.9484890 0.8853985 0.9366107
Experiment 3 0.9919887 0.9943170 0.9933527 0.9946506
Experiment 4 0.9449553 0.9843080 0.9828750 0.9848928

Fig. 14. (Color online) Experiment with n = 500 and µ = 0.2

in Figure 13. The results are quite similar to those obtained in Experiment
1. Again, only Infomap and Label Propagation algorithms have reached the
maximum value at the end of the transformations.

The last experiment was conducted with networks of n = 500 vertices and
the mixing parameter set to μ = 0.2. With this setup, networks with several
communities not well separated were generated. Figure 14 shows the principal
results obtained in this final experiment. One can observe that after the applica-
tions of the marge and split functions, all algorithms we taken into account were
not able to achieve the maximum NMI. Moreover, in contrast to the previous
experiments, here, the Label Propagation and the Walktrap methods were the
ones that achieved the highest accuracy.

Finally, in Table 1, the average normalized mutual information of each al-
gorithm in each experiment is shown. In the first experiment, the Fast Greedy



358 S. Porto and M.G. Quiles

algorithm achieved the best average performance. In the second experiment, the
best performance was reached by the Infomap algorithm. In the third and fourth
experiments the best results were provided by the Walktrap algorithm.

4 Conclusion

In this paper we have introduced a methodology for generating time-varying
complex networks. Our methodology, starting from an initial LFR network, can
evolve the network structure by simulating the natural evolution of communities
observed in real networks. Specifically, our methodology is composed of six func-
tions responsible for evolving the network, they are: the born, the extinction,
the growth, the contraction, the merge, and the split functions.

The main motivation behind this work was the absence of a well-defined
benchmark for testing dynamic community detection algorithms. Thus, by us-
ing our methodology, one can define a specific set of networks to evaluate and
compare, in a controlled scenario, those algorithms.

The experiments performed with four state-of-art algorithms have shown that
our methodology, besides evolving the network over time, also kept its commu-
nity structure. Thus, this work presented a further contribution to the problem
of how to evaluate dynamic community detection algorithms.

As a future work we intend to use a set of networks generated with our
methodology to test several dynamic community detection algorithms.

Acknowledgments. This research was supported by the São Paulo Research
Foundation (FAPESP) and by the Brazilian National Research Council (CNPq).

References

1. Newman, M.E.J.: Communities, modules and large-scale structure in networks.
Nature Physics 8(1), 25–31 (2011)

2. Barabási, A.L.: Linked: The New Science of Networks. Perseus Publishing (2002)
3. Newman, M.: Networks: An Introduction. Oxford University Press, USA (2010)
4. Barabási, A.L.: Network Science. Barabasi Lab: on-line (2014)
5. Costa, L.F., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Villas Boas,

P.R., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-
world phenomena with complex networks: a survey of applications. Advances in
Physics 60(3), 329–412 (2011)

6. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. PNAS 99(12), 7821–7826 (2002)

7. Danon, L., Duch, J., Arenas, A., Dı́az-guilera, A.: Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment 9008, 9008
(2005)

8. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic com-
plex networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds.)
Complex Networks. CCIS, vol. 116, pp. 196–207. Springer, Heidelberg (2011)



A Methodology for Generating Time-Varying Complex Networks 359

9. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(026113), 1–15 (2004)

10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
11. Quiles, M.G., Zorzal, E.R., Macau, E.E.N.: A dynamic model for community de-

tection in complex networks. In: The International Joint Conference on Neural
Networks (IJCNN), pp. 1–8 (2013)

12. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

13. Lin, Y.R., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.L.: Blog community
discovery and evolution based on mutual awareness expansion. In: Web Intelligence,
pp. 48–56. IEEE Computer Society (2007)

14. Schlitter, N., Falkowski, T.: Mining the dynamics of music preferences from a social
networking site. In: Proceedings of the International Conference on Advances in
Social Network Analysis and Mining (2009)

15. Palla, G., Barabási, A.L., Vicsek, T., Hungary, B.: Quantifying social group evo-
lution. Nature 446 (2007)

16. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing
the evolutionary behavior of interaction graphs. TKDD 3(4) (2009)

17. Kim, M.S., Han, J.: A particle-and-density based evolutionary clustering method
for dynamic networks. Proc. VLDB Endow. 2(1), 622–633 (2009)

18. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

19. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. The European
Physical Journal Special Topics 178, 13–23 (2009)

20. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences 105(4),
1118–1123 (2008)

21. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect com-
munity structures in large-scale networks. Phys. Rev. E 76(036106), 1–11 (2007)

22. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)


	A Methodology for Generating Time-Varying Complex Networks with Community Structure
	Introduction
	The Methodology
	Born Function
	Growth Function
	Extinction Function
	Contraction Function
	Merge Function
	Split Function

	Experiments
	Conclusion


