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ORBITAL EVOLUTION OF PLANET AROUND A BINARY STAR

Vilhena de Moraes, R., Carvalho, J. P. S. ∗, Prado, A. F. B. A. †, Winter, O. C.
and Mourão D. C.‡

We study the secular dynamics of hierarchical (if there is a clearly defined binary
and a third body which stays separate from the binary) triple systems composed
by a Sun-like central star and a Jupiter-like planet, which are under the gravita-
tional influence of a further perturbing star (brown dwarf). The main goal is to
study the orbital evolution of the planet. In special, we investigate the orientation
(inclination) and the shape (eccentricity) of its orbit. One key feature explored is
the time needed for the first flip in its orientation (prograde to retrograde). The
gravitational potential is developed in closed form up to the third order. We have
compared the secular evolution of systems with and without the third order term of
the disturbing potential. The R2 (quadrupole) and R3 (octupole) terms of the dis-
turbing potential are developed without using the elimination of nodes. Numerical
simulations were also performed to compare with the analytical model using the
N-body simulations with the Mercury code. The results show that the analytical
model are in agreement with the numeric simulations.

INTRODUCTION

We study the secular dynamics of hierarchical (if there is a clearly defined binary and a third body
which stays separate from the binary1) of a triple system composed by a Sun-like central star and
a Jupiter-like planet, which are under the gravitational influence of a further perturbing star (brown
dwarf). Reference2 presented a study where the authors took into account the octupole term in the
disturbing potential. They showed that the inclination of the inner planet varies from prograde to
retrograde for a specific problem, where i is the mutual inclination between the two orbits. The
authors showed that, considering only the quadrupole term in the potential, the inclination varies
according to the Kozai-Lidov mechanism (see References 2, 3, 4, 5), i.e., the inclination oscillates with
large amplitude when the initial inclination has a value larger than the critical inclination and small
amplitudes when the initial inclination has a value smaller than the critical inclination. However,
the orbit always remains prograde. When they considered the octupole term in the potential, the
inclination grows a lot and can flip from prograde to retrograde trajectories. The authors did not use
the elimination of nodes directly in the Hamiltonian which is generally used in the literature. They
eliminate the longitude of the ascending node after deriving the equations of motion. For the third
order the authors mention that it is possible do that even before deriving the equations of motion,
namely the level of the Hamiltonian. Then, for the R3 term, they use the standard elimination of
the nodes. In this work we develop the disturbing potential in closed form up to the third order in a
small parameter (α = a1/a2), where a1 is the semi-major axis of the planet and a2 is the semi-major
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axis of the disturbing star, to analyze the effects caused by the terms: quadrupole and octupole on
the orbital elements of the planet. The equations of motion are developed in closed form to avoid
expansions in power series of the eccentricity and inclination. We compared the models mentioned
here in different orders and we also compared with the results obtained by References .2, 3 We
investigate what happens in the dynamics when the elimination of nodes is not used, even after
deriving the equations of motion for both the terms R2 and R3.

EQUATIONS OF MOTION

The triple system under study is characterized by a planet m1 in an elliptical inner orbit around
the center of mass of the system m0-m1, orbiting a central star m0, also moving around the center
of mass of the system m0-m1 and a further perturbing star (brown dwarf-m2) moving in an outer
elliptical orbit around the center of mass of the system, but with a very distant trajectory that also
has large eccentricity. The vector r1 represents the position of m1 with respect to the center of mass
of the system and the vector r2 is the position of the body m2 to the center of mass of the inner
orbit. Φ is the angle between r1 and r2.

The Hamiltonian of the triple system can be written as follows6, 7, 8

F = Gm0m1
2a1

+ G(m0+m1)m2

2a2
+ G

a2

∑∞
j=2 α

jMj(
r1
a1
)j(a2r2 )

j+1Pj(cosΦ) (1)

where G is the gravitational constant, Pj are the Legendre polynomials and

Mj = m0m1m2
mj−1

0 −(−m1)j−1

(m0+m1)j
(2)

We shall deal with the expansion up to the third-order in α.

In References3, 9 the authors show that, in the three-body problem, when the three planets (or
stars) have mass, is incorrect to use the elimination of the nodes10 for the triple system. According
to the authors, the h1 − h2 = π term (often used in the literature) can not be replaced at the
Hamiltonian level. It is possible to use it only after deriving the equations of motion. With this, they
show that the mutual inclination can flip from prograde to retrograde trajectories when it is taken
into account only the quadrupole term. Here we present a different approach, the nodes will not be
eliminated before or after deriving the equations of motion. To verify this fact we developed the
disturbing potential taking into account the expression for cosΦ written in the form11

cos(Φ) = 1/4 (−1 + c2)(−1 + c1) cos(f1 + g1 − h1 − f2 − g2 + h2)+

1/4 (1 + c1)(1 + c2) cos(f1 + g1 + h1 − f2 − g2 − h2)−

1/4 (1 + c2)(−1 + c1) cos(f1 + g1 − h1 + f2 + g2 + h2)−

1/4 (−1 + c2)(1 + c1) cos(f1 + g1 + h1 + f2 + g2 − h2)+

1/2 s1 s2 (cos(f1 + g1 − f2 − g2)− cos(f1 + g1 + f2 + g2))

(3)

where we will use the shortcut s1 = sin i1, c1 = cos i1, s2 = sin i2, and c2 = cos i2. Here i1, g1,
h1 and f1 are the inclination, argument of the periastron, longitude of the ascending node and true
anomaly of the inner orbit, respectively, and i2, g2, h2 and f2 are the inclination, argument of the
periastron, longitude of the ascending node and true anomaly of the outer orbit, respectively. Those
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equations are written in a inertial reference system that has the equator of the main body in the x−y
plane.

In Reference12 the disturbing potential was developed up to the fourth order, where was used the
equation g2 = π−h1 given by Reference13 and the Kozai classical expression4 for the cos(Φ) term.

For the model considered in the present paper, it is necessary to calculate the terms R2 and R3 of
the disturbing function due to P2 and P3 terms, respectively. We get,

R2 =
G
a2
α2M2(

r1
a1
)2(a2r2 )

3P2(cosΦ) (4)

R3 =
G
a2
α3M3(

r1
a1
)3(a2r2 )

4P3(cosΦ) (5)

The disturbing potential given by Eq. (1) can be written as

F = R0 +R2 +R3 (6)

where R0 =
Gm0m1

2a1
+ G(m0+m1)m2

2a2
.

To eliminate the short-period terms of the potential given by Eq. (8), the double-averaged method
is applied with respect to the eccentric anomaly and of the true anomaly. We make the average over
the eccentric anomaly of the planet and the true anomaly of the perturbing body. This is done by
using known equations from the celestial mechanics which are:

sin(f) = (
√
1− e2 sin(E))/(1− e cos(E)); (7)

cos(f) = (cos(E)− e)/(1− e cos(E)) (8)

r/a = 1− e cos(E) (9)

a/r = (1 + e cos(f))/(1− e2) (10)

dl = (1− e cos(E))dE (11)

We also used the area integral, in the form14

dl = 1√
1−e2

r2

a2
df (12)

Using the expressions given by Eqs. (1)-(5), and taking into account the known relationships
from the celestial mechanics mentioned above, we integrate the equations with respect to the true
and eccentric anomalies to eliminate short-period terms. Thus, we obtain the disturbing potential
expanded up to the third order in a small parameter. The long-period disturbing potential (R2) can
be written as
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R2C = −45
2

β3L1
4

L2
6(1−e22)3/2

×

(1/6 e1
2(c2 − 1)(c2 + 1)(c1 + 1)2 cos(2 g1 − 2h2 + 2h1)+

1/6 e1
2(c2 − 1)(c2 + 1)(c1 − 1)2 cos(2 g1 + 2h2 − 2h1)+

2/3 c2 s1 s2 e1
2(c1 − 1) cos(2 g1 − h1 + h2)+

2/3 c2 s1 s2 e1
2(c1 + 1) cos(2 g1 + h1 − h2)−

1/5 (c2 + 1)(c1 − 1)(c1 + 1)(c2 − 1)(2/3 + e1
2)×

cos(−2h2 + 2h1)− 4/5 c1 s2 s1 (2/3 + e1
2)c2×

cos(h1 − h2) + (−1/3 + c2
2)((c1

2 − 1)e1
2 cos(2 g1)−

3/5 (c1
2 − 1/3)(2/3 + e1

2)))

(13)

where

L1 =
m0 m1

√
G(m0+m1 )a1

m0+m1
(14)

L2 =
m2 (m0+m1 )

√
G(m0+m1+m2 )a2

m0+m1+m2
(15)

β3 =
1
16

G2(m0+m1 )
7m2

7

(m0+m1+m2 )
3m0

3m1
3

(16)

β4 =
1
4

G2(m0+m1 )
9m2

9(m0−m1 )

(m0+m1+m2 )
4m0

5m1
5

(17)

Note that the potential (three degrees of freedom) depends on the longitude of the ascending node
of the inner (h1) and the outer (h2) orbits. Note also that the argument of periastron of the outer
orbit does not appear in the second order of the potential, it is usually removed during the process
of double-averaged. With this we get de2/dt = 0.

The potential due to the R3 term will not be presented here because it is too long, it depends on
the g1, g2, h1 and h2 terms (four degrees of freedom). Our disturbing potential is put in the form

R = R2C +R3C (18)

APPROACH WITH RESPECT TO THE ELIMINATION OF NODES

Here we replaced Eq. (18) in the Lagrange planetary equations15 and numerically integrated the
set of nonlinear differential equations using the software Maple to analyze the orbital behavior of
the planet for some particular cases. To investigate the effects of R2 and R3 we use the following
initial conditions. The star has mass 1M⊙, the planet has mass 1MJ and the outer brown dwarf
has mass 40MJ . The inner orbit has a1 = 6 AU, e1 = 0.001 and the initial value for the relative
inclination is i = 65◦. These initial conditions were obtained from.2

Figure 1 shows a comparison between the disturbing potential models taking into account only
the R2 term. The red curve represents the potential when the elimination of the nodes is used in
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the Hamiltonian.4 The blue curve show the results when the nodes have not been eliminated. For
the chosen values of the longitude of the ascending nodes h1 and h2, the inclination oscillates in a
prograde orbit. We verified that, for this dynamical system, the inclination inversion phenomenon
does not occur considering only the R2 term. When the development is done without the elimination
of nodes, the system thus defined is more accurate because it avoids some simplifications. Note that,
taking into account the potential given by Reference 4 the inclination remains in a prograde orbit
with constant amplitude (Figure 1 red line) and, when considering the potential given by Eq. (18),
the inclination also remains in a prograde orbit but with variable amplitude (Figure 1 blue line).
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Figure 1. Temporal evolution of the inclination. Initial conditions: a1 = 6 AU,
a2 = 100 AU, e1 = 0.001, e2 = 0.6, i1 = 64.7◦, i2 = 0.3◦, g1 = 45◦, g2 = 0◦.

Where R2 term (red line) is the long-period disturbing potential (quadrupole) given by Kozai.4

Figures 2(b) and 2(a) show the effect of the eccentricity with respect to the inclination. Figure 2(b)
was plotted using the potential given by Eq. (13) and Figure 2(a) was plotted using the long-period
disturbing potential (quadrupole) given by Kozai.4 Note that the figures have the same characteris-
tics, but with a slight difference. Figure 2(b) shows a thicker line than Figure 2(a). This fact happens
because the amplitude of the inclination that is varying in Figure 1 (blue line) is different from the
red line (Figure 1), that is constant. This variation of the inclination amplitude is due to the nodes.

Figure 3 shows the behavior of the inclination with respect to time. Note that the curves repre-
sented in Figure 3 shows different behaviors due to the initial conditions considered for the nodes.
The phenomenon needs more time (1.5× 107) to make the first inversion (h1 = 0◦ and h2 = 90◦),
when other initial conditions are considered for the nodes. On the other hand, when it is taken into
account the initial conditions h1 = 43◦ and h2 = 0◦ the first inversion occurs at ∼ 6× 106.

For the numerical simulations (Figures 4 and 5), we adapted the Mercury integrator package16 for
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Figure 2. Temporal evolution of the inclination. Initial conditions: a1 = 6 AU,
a2 = 100 AU, e1 = 0.001, e2 = 0.6, i1 = 64.7◦, i2 = 0.3◦, g1 = 45◦, g2 = 0◦. (a) R2
given by Kozai. (b) R2C .
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Figure 3. Temporal evolution of the inclination. Initial conditions: a1 = 6 AU,
a2 = 100 AU, e1 = 0.001, e2 = 0.6, i1 = 64.7◦, i2 = 0.3◦, g1 = 45◦, g2 = 0◦.
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Figure 4. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.001, e2 = 0.6, i1 =
64.7◦, i2 = 0.3◦, g1 = 45◦, g2 = 0◦. (a) i1 × t numerical simulation of three-body
problem. (b) 1− e1 × t numerical simulation of three-body problem.
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Figure 5. Initial conditions: a1 = 6 AU, a2 = 100 AU, e1 = 0.001, e2 = 0.6, i1 =
64.7◦, i2 = 0.3◦, g1 = 45◦, g2 = 0◦. (a) i1 × t numerical simulation of three-body
problem. (b) 1− e1 × t numerical simulation of three-body problem.
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the stellar system. We used the built-Stoer Burlish package and all the objects were considered mas-
sive bodies. Figures 4 and 5 were generated from the direct numerical integration of the three-body
problem. Figure 4 shows the behavior of the inclination of the planet (m1) considering the initial
conditions of Figure 3. Note that the result from the direct numerical integration is in agreement
with Figure 3. The longitude of the ascending node of the planet m1 and the disturbing star (m2)
should be taken into account because they interfere directly in the phenomenon. The potential given
by R2C has three degrees of freedom, and the potential R3C has four degrees of freedom. Figure 5
shows that the eccentricity can reach very high values and their inclination can become higher than
90 degrees.

In Reference3 the elimination of nodes is used after deriving the equations of motion to simplify
the equations and thus to analyze a system with one degree of freedom for the potential R2N and two
degrees of freedom for the potential R3N . This simplification misses information with respect to
the inclination inversion time and the time of the permanence of the planet in prograde or retrograde
orbits. Here we use Eq. (3), given by Reference ,11 to analyze the influence of the longitude of the
ascending node in the dynamical behavior of the planet m1. We show that the orbits are extensively
modified for different values of the nodes. The nodes must be present in the equations of motion
due to the characteristics that they represent for the dynamics.

CONCLUSION

We investigate the secular dynamics of a planet that moves around a central star disturbed by a
brown dwarf. We developed the disturbing potential in closed form up to the third-order in a small
parameter. We analyzed the effects caused by the potential of the second and third order, where the
dynamics is strongly modified when compared with the Kozai-Lidov classic problem, where only
the potential up to the second-order is considered. We have compared the secular evolution of the
systems with and without the third order part of the disturbing potential. The R2C (quadrupole)
and R3C (octupole) terms of the disturbing potential are developed without using the elimination of
nodes.

Considering the R2 (quadrupole) and R3 (octupole) terms, as a function of the variables g1, g2,
h1 and h2, we found that the inclination of the planet migrates from prograde to retrograde orbits.
We found that the longitude of the ascending node and the argument of periastron of the inner
outer orbit makes a significant change in the time of the first flip between prograde and retrograde
orientation of the orbits, and also in the subsequent ones. Consequently, it also affects the period
of time that the orbit remains in a given orientation. For the numerical simulations we adapted the
Mercury integrator package for the stellar system. The results show that the analytical model is in
agreement with the numerical model.

ACKNOWLEDGMENT

The authors are grateful to FAPESP (Foundation to Support Research in São Paulo State) under
the contracts N◦ 2011/05671-5 and 2012/21023-6, SP-Brazil, CNPq (National Council for Scientific
and Technological Development) - Brazil for contracts 304700/2009-6, 303070/2011-0 and CAPES.

REFERENCES
[1] Valtonen, M., & Karttunen, H., ”The Three-Body Problem, ed. Cambridge University Press”, 2006.
[2] Naoz, S., Farr, W. M., Litheick, Y., Rasio, F. A., Teyssandier, J., Hot Jupiters from secular planet-planet

interactions, Nat, 473 (2011) 187-189.

8



[3] Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., Teyssandier, J., Secular dynamics in hierarchical
three-body systems MNRAS 431, (2013) 2155-2171.

[4] Kozai, Y., Secular Perturbations of Asteroids with High Inclination and Eccentricity. The Astronomical
Journal, 67, No. 9, (1962) 591-598.

[5] Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational
perturbations of external bodies, Planet. Space Sci., 9, (1962) 719-759.

[6] Harrington, R., The Stellar Three-Body Problem, Celestial Mechanics, 1, (1969) 200-209.
[7] Ford, E. B., Kozinsky, B., Rasio, F. A., Secular Evolution of Hierarchical Triple Star Systems, The

Astronomical Journal, 535, (2000) 385-401.
[8] Ford, E. B., Kozinsky, B., Rasio, F. A., Secular Evolution of Hierarchical Triple Star Systems, The

Astronomical Journal, 605, (2004) 966-401.
[9] Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., Teyssandier, J., Secular dynamics in three-body

systems Submitted on 12 Jul 2011, arXiv:1107.2414
[10] Jefferys, W. H., Moser, J., Quasi-Periodic Solutions for the Three-Body Problem, The Astronomical

Journal, 71, No. 7, (1966) 568-578.
[11] Yokoyama, T., Santos, M. T., Gardin, G., Winter, O. C., On the orbits of the outer satellites of Jupiter,

A&A, 401, (2003) 763-772.
[12] Carvalho, J. P. S., Vilhena de Moraes, R., Prado, A. F. B. A., Winter, O. C., Journal of Physics: Confer-

ence Series (Print), 465, (2013) 1-6.
[13] Lithwick, Y., Naoz, S., The Eccentric Kozai Mechanism for a Test Particle, Earth and Planetary Astro-

physics, ApJ, 742, 94 (2011) 1-8.
[14] Brouwer, D., Solution of the Problem of an Artificial Satellite, theory without drag, Astronomical

Journal, 64, No. 9, (1959) 378-397.
[15] Kovalevsky, J., ”Introduction to Celestial Mechanics”, Bureau des Longitudes, Paris, p. 126, 1967.
[16] Chambers, J.E., A hybrid symplectic integrator that permits close encounters between massive bodies,

Mon. Not. R. Astron. Soc., 304, (1999) 793-799.

9


