
Dynamic Generated Adapters from Adaptive Object
Models to Static APIs

Eduardo Martins Guerra, INPE, Brazil
Jean Novaes Santos, INPE , Brazil
Ademar Aguiar, FEUP, Portugal
Luiz Gustavo Veras, INPE , Brazil

Abstract: By using Adaptive Object Models (AOM) it is possible to have a more flexible domain
structure in an application, allowing its adaptation at runtime. Patterns for AOMs create a class
structure completely different from the static structure that applications and frameworks are
used to handling. As a result, AOM applications cannot be integrated with existing frameworks,
even the industry standards, which are meant for a static class-based domain model. The
Adapter pattern could be used to adapt the AOM structure for the one expected by the
framework, however this adapter would need to be manually modified for every change in the
AOM structure. This paper proposes a solution to this problem by creating a dynamically
generated adapter for the current AOM structure. To exemplify the use of this approach, an
implementation was created to adapt the AOM structure from the framework Esfinge AOM to
the Java Beans API. Additionally, a framework for instance comparison based on the Java
Beans specification was used to compare the adapted AOM entities.

1. Introduction

The Adaptive Object Model (AOM) [Yoder at. al, 2001; Yoder and Johnson, 2002] is an
architectural style, where types are represented by instances and described by metadata.
Based on this model, the types can be changed at runtime, allowing the application to be
adapted quickly to user needs. This kind of architecture is recommended when the application
domain is naturally dynamic, and changing it is part of routine business.

A problem faced in the implementation of AOM applications is that since domain objects are
implemented using an AOM-specific structure, it is not possible to easily integrate these objects
with existing components or frameworks that rely on implementation conventions. For instance,
in the Java language, a static domain model usually follows the Java Bean standard
[JavaBeans 2010], that defines a standard way for creating such classes, such as the use of
getter and setter methods for accessing properties. A framework that is created to dynamically
find the properties of a bean class based on this standard will not be able to process an entity
for an AOM because the AOM object has a different implementation structure. Because of that,
most of the components for handling an AOM structure need to be created from scratch,
increasing the time needed to implement the application, and consequently its cost.

The Adapter pattern [Gamma et al. 1994] could be applied in this context to map calls to a class
that fallows the JavaBean standard to the AOM entity, allowing it to be handled by a framework.
In this case, for each entity property on the AOM, there would be a respective getter and setter

method that would encapsulate the access to it on the AOM entity, like presented in Fig. 1.
However, the code of this adapter would need to change every time that the entity type
changes, which would take away the flexibility that motivates the use of an AOM. This scenario
is illustrated in Fig. 2.

Fig 1 – Example of a Static Java Bean Adapter for an AOM Entity

Fig 2 – New properties needs static addition on the static adapter

This paper proposes a solution to this problem, which generates dynamically an adapter class
based on the entity type current structure. Since this adapter is generated at runtime, a new one
can be easily created based on changes to the AOM entity type. An implementation was
created to adapt the AOM structure from the framework Esfinge AOM Role Mapper to classes
with getters and setters following the Java Beans standard. This implementation was validated
by using these adapters in a framework based on Java beans that finds differences between
instances from the same class.

2. Adaptive Object Model Patterns

The AOM architecture style is composed of several patterns, but three patterns can be
considered the main ones: Type Object, Property and Type Square. The next subsections
describe each one individually.

2.1. Type Object

There are situations in software development cycle where the number of classes may grow too
large. This scenario typically happens when there’s a necessity to represent many classes that
only have minor differences between then. Consider an example of a system where different
products need to be registered. One approach for implementing this system would be as shown
in Fig. 3. In this implementation several subclasses would inherit a main class but with just a few
differences between them.

Fig 3 - First Approach to implement a system’s products

Introducing a new product using this approach would require creating a new subclass,
recompiling the code and updating the system to reflect the addition. The Type Object pattern
proposes to represent types as instances that compose the main class, as shown in Fig 4. This
solution allows the addition of new types of products dynamically, because the representation is
made at the instance level.

Fig 4 – Product’s System using the Type Object design pattern

2.2. Property Pattern

The Property Pattern is suitable for scenarios where objects need to have different properties
that can be dynamically added. Considering a system where there is a need to register products
with different types of properties. A large number of properties could be created to describe any
type of product, but the problem is that some properties that are specific to some products. For
instance, a book would have different properties than an electronic device. The property pattern
uses a set of objects to represent the instance properties, as shown in Fig 5.

Fig 5 - Representation of a Product class using the Property Pattern.

2.3. Type Square Pattern

The core of an AOM application is usually based on the Type Square pattern, which is a
particular way of combining the patterns Type Object and Property. Figure 6 has a
representation of this pattern structure. In this model the Type Object pattern is used twice, one
time for representing property types of properties, and one more time for representing entities
and types of entities.

Fig 6 - Type Square Pattern.

3. Esfinge AOM Role Mapper

The framework AOM Role Mapper, one of the components of the Esfinge Project
(http://esfinge.sf.net), was developed with the objective to increase the reuse of AOM systems
[Matsumoto and Guerra, 2014]. The main role of the framework is to map domain-specific AOM
structures to a general AOM structure, creating adapters that can be used by generic
frameworks. With this solution, common third party frameworks can add functionality to AOM
applications, what would be extremely difficult to achieve with components created for domain-
specific AOMs, due to the coupling that the AOM model usually have with application domain.
The mapping can be applied to systems with AOMs that are only partially implemented [Guerra
and Aguiar, 2014].

To integrate AOM domain-specific applications with generic frameworks the Esfinge AOM Role
Mapper framework uses code annotations on the application classes. Listing 1 presents a
simple example of using Esfinge AOM Role Mapper annotations. The following describes some
annotations with their specific meaning:

● @EntityType: (Class) classes that play the Entity Type role in the AOM architecture ;
((Attribute in classes of Entity Type) Identifies an attribute that references the Entity Type
corresponding to an Entity;

● @Entity: (Class) Identifies classes that play the Entity role in the AOM architecture;
● @PropertyType: (Class) Identifies classes that play the Property Type role in the AOM

architecture ; (Attribute in classes of Property Type) Identifies the attribute that refers to
a Property Type corresponding to a Property;

● @EntityProperties: (Class) Identifies classes that play the Property role in the AOM
architecture; (Attribute in classes of Entity Type) Identifies the attribute that refers
Properties of an Entity;

● @FixedEntityProperty: (Attribute in classes of Entity Type) (Optional) Identifies attributes
corresponding to fixed properties in an Entity class;

● @Name: (Attribute in classes of Entity Type or Property Type) Identifies the attribute
containing the name of an Entity Type or a Property Type;

● @PropertyTypeType: (Attribute in classes of Property Type) Identifies the attribute
containing the type of a Property Type;

● @PropertyValue: (Attribute in classes of Property Type) Identifies the attribute
containing the value of a Property;

● @CreateEntityMethod: (Method in classes of Entity Type) Identifies the method of an
Entity Type class that handles with the creation of an Entity with this type. If no method
is annotated, the method createNewEntity from interface IEntityType will throw an
exception when invoked from the object.

@Entity
public	 class	 Product	 {

	 @EntityType
	 private	 ProductType	 type;
	
	 @FixedEntityProperty
	 private	 String	 productName;
	
	 @EntityProperty
	 private	 List<Information>	 informations	 =	 new	 ArrayList<>();

	 	 	 	 	 	 	 //accessor	 methods	 omitted

}

Listing 1 - Example of AOM Role Mapper annotations in an Entity class.

4. Proposed Solution

The solution we propose for adapting an AOM to a static API is to generate dynamically an
adapter with a static structure, which access from its methods the properties of the AOM entity.

4.1. Rationale

An adapter needs to support defined interfaces, however in our case the interface is not an
abstraction but based on a set of code conventions defined in the Java Bean standard
[JavaBeans 2010]. These standards allow the access of a class’ properties by using reflection.
The existence of many frameworks that rely upon the Java Bean standard makes it valuable to
create such an adapter.

Other behavioral AOM patterns, such as Strategy and Rule Object, could be adapted as well,
however that would not be useful if they do not conform to a standard that would allow their
dynamic identification and invocation. That's why this work chose to focus on the accessor
methods based on the Java Bean standard. Section 8 presents how the behavioral part of the
AOM structure could be adapted to an interface based on code annotations, however this is not
part of the present work.

4.2. Solution Description

To adapt an entity type that implements the Type Square pattern to the Java Bean standard, the
adapter needs to have the following methods:

● A constructor that receives the AOM entity to be adapted. This entity should be internally
stored to be accessed by the other methods.

● A getter access method for each entity property that the entity type has. This method
should receive no parameters and return the target property. Its implementation should
retrieve the value from the entity property and return. The return type is the type of the
AOM property, unless it is another AOM entity. In this case, the return type is Object,
because the entity is also adapted before it is returned.

● A setter access method for each entity property that the entity type has. This method

should have no return (void) and receive a parameter with the type of the target
property. Its implementation should set the parameter on the entity property. A setter is
not generated when the property is another AOM entity.

To create the adapter, our solution proposes the use of an adapter factory. This factory receives
the AOM entity that should be adapted and should return the respective adapter encapsulating
the entity received. It reads the entity metadata present on the entity type and creates at runtime
a new class with the desired API. In Java, for instance, runtime class generation can be done
through bytecode manipulation.

Fig. 7 presents a class diagram with the main participants in our solution. The class named
Application represents an application that has an instance of an AOM entity and needs to have
represented on an API that follows the JavaBean standard. It invokes the AdapterFactory
passing the Entity as a parameter. The AdapterFactory accesses the Entity metadata by
accessing its EntityType and its respective PropertyTypes. Based on that, it dynamically
generates an adapter class and instantiates that class by passing the Entity into the class
initialization. The adapter is returned to the application, which can use it with frameworks based
on a static API.

Figure 7 - Representation of the solution with the dynamic adapter

Figure 8 presents a sequence diagram that illustrates the proposed process for adapter
creation. The application invokes a method on the Adapter Factory to create an adapter for a
given AOM entity. This factory retrieves the entity information, such as its type name and its
properties, and uses them as parameters to create a class on a bytecode generation library,
represented in the diagram by the class ClassVisitor. After that, the adapter retrieves the
generated bytecode and uses a custom class loader to load into the virtual machine the newly
generated class. This class is used to instantiate the adapter using reflection, which is
populated with the AOM entity that it should wrap and return. The generated classes can be
cached and reused for invocations with the same Entity Type.

Figure 8 – Sequence diagram for adapter creation

The solution proposed in our work cannot be considered a pattern because it was used only
once on Esfinge AOM Role Mapper framework. However, it can be considered a more specific
implementation of the Adapter pattern. If this approach is used for other AOM systems in the
future, a pattern for it can be written and integrated in the AOM pattern language.

5. Adapter Factory Implementation

This section presents the implementation of the dynamic factory created as an example of our
proposed solution. It used the AOM structure from the Esfinge AOM Role Mapper framework to
adapt and the ASM framework for bytecode generation. In this initial version, the idea is to
provide a minimum proof of concept of how this adapter could be implemented.

The first step was the creation of a static adapter to be used as a model for the bytecode
generation process. Listing 2 presents the class that was used as model for the bytecode
generation. As presented in the previous section, it has a constructor that receives the entity
instance and examples for the creation of the getter and setter methods, which directly access
the IEntity instance.

public	 class	 ExampleAOMToBeanAdapter	 {

	 	 	 	 private	 IEntity	 entity;

	 	 	 	 public	 TestClassBeanAdapterV2(IEntity	 entity)	 {
	 	 	 	 	 this.entity	 =	 entity;
	 	 	 	 }
	 	 	 	 public	 Integer	 getProperty()	 {
	 	 	 	 	 try	 {
	 	 	 	 	 	 return	 (Integer)entity.getProperty("property").getValue();
	 	 	 	 	 }	 catch	 (EsfingeAOMException	 e)	 {
	 	 	 	 	 	 throw	 new	 RuntimeException(e);
	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 public	 void	 setProperty(Integer	 a)	 {
	 	 	 	 	 try	 {
	 	 	 	 	 	 entity.setProperty("property",	 a);
	 	 	 	 	 }	 catch	 (EsfingeAOMException	 e)	 {
	 	 	 	 	 	 throw	 new	 RuntimeException(e);
	 	 	 	 	 }
	 	 	 	 }
}

Listing 2 - Adapter used as example for bytecode generation

The code of the class in Listing 1 was submitted to the ASMifier tool that generates the source
code using ASM to generate the target class. This code was parameterized to perform the
bytecode generation based on the information of the entity type. The information needed is the
class name, the property name and the property types.

Listing 3 presents the base code used on the class AdapterFactory to create the adapter. This
class uses a Map called storedClasses to store the class generated based on the entity type
name. This class is reused if another adapter for the same entity type is requested from the
factory. There is a method, not shown on the listing that removes the existing adapter from the
cache and forces the creation of another one. This method is important to force a change to the
existing adapter if the entity type changes.

public	 Object	 generate(IEntity	 entity)	 throws	 Exception	 {

	 	 	 	 Class	 clazz	 =	 null;
	 	 	 	 	 	 	
	 	 	 	 if	 (storedClasses.containsKey(entity.getEntityType().getName()))	 {
	 	 	 	 	 	 	 	 clazz	 =	 storedClasses.get(entity.getEntityType().getName());
	 	 	 	 }	 else	 {
	 	 	 	 	 	 	 	 ClassWriter	 cw	 =	 new	 ClassWriter(ClassWriter.COMPUTE_FRAMES);
	 	 	 	 	 	 	 	 String	 name	 =	 entity.getEntityType().getName()	 +	 "AOMBeanAdapter";
	 	 	 	 	 	 	 	 createPrivateAttribute(null,	 cw);
	 	 	 	 	 	 	 	 createClassAndConstructor(name,	 cw);

	 	 	 	 	 	 	 	 for	 (IProperty	 p	 :	 entity.getProperties())	 {
	 	 	 	 	 	 	 	 	 	 	 	 Class<?>	 type	 =	 Object.class;
	 	 	 	 	 	 	 	 	 	 	 	 if	 (p.getPropertyType()	 !=	 null)	 {
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 type	 =	 (Class<?>)	 p.getPropertyType().getType();	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 	 	 	 	 	 createGetter(name,	 cw,	 p.getName(),	 type);
	 	 	 	 	 	 	 	 	 	 	 	 createSetter(name,	 cw,	 p.getName(),	 type);
	 	 	 	 	 	 	 	 }

	 	 	 	 	 	 	 	 DynamicClassLoader	 cl	 =	 new	 DynamicClassLoader();
	 	 	 	 	 	 	 	 clazz	 =	 cl.defineClass(name,	 cw.toByteArray());
	 	 	 	 	 	 	 	 storedClasses.put(entity.getEntityType().getName(),	 clazz);
	 	 	 	 }

	 	 	 	 Object	 obj	 =	 clazz.getConstructor(IEntity.class).newInstance(entity);
	 	 	 	 return	 obj;
}

Listing 3 - Base method for generating the adapter

If the respective adapter class is not found in the cache, the method creates it. This method
delegates to other helper methods the creation of other parts of the class, such as the attribute
and the constructor. It iterates through the properties of the entity, creating respective getters
and setters for their access.

After the adapter class is created by using bytecode manipulation, it is loaded by using a
custom classloader. After that, the adapter is instantiated using reflection, passing the entity as
a parameter to the constructor. The resulting instance is returned by the method generate().

To exemplify the creation by using the adapter factory and the use of the adapter, List. 4
presents a method that creates the adapter for an entity and prints the methods, attributes and
the respective return values for getter methods. The code creates an entity type with three
properties and an entity of the defined type, defining values for the three properties. After that,
an adapter of this entity is created, and a method to print the class metadata in the console is
invoked.

public	 static	 void	 main(String[]	 args)	 throws	 Exception	 {
	 	 	 	 IEntityType	 entityType	 =	 new	 GenericEntityType("Person");
	 	 	 	 entityType.addPropertyType(new	 GenericPropertyType("number",	 Integer.class));
	 	 	 	 entityType.addPropertyType(new	 GenericPropertyType("height",Double.class));
	 	 	 	 entityType.addPropertyType(new	 GenericPropertyType("name",	 String.class));

	 	 	 	 IEntity	 entity	 =	 entityType.createNewEntity();
	 	 	 	 entity.setProperty("number",	 27);
	 	 	 	 entity.setProperty("height",	 1.8);
	 	 	 	 entity.setProperty("name",	 "John");
	 	 	 	 	
	 	 	 	 AOMAdapterFactory	 adapterFactory	 =	 new	 AOMAdapterFactory();
	 	 	 	 Object	 obj	 =	 gc.generate(entity);

	 	 	 	 printObjectAndClass(obj);
}

private	 static	 void	 printObjectAndClass(Object	 obj)	 {
	 	 	 	 for	 (Method	 m	 :	 obj.getClass().getMethods())	 {
	 	 	 	 	 	 	 	 if	 (m.getName().startsWith("get"))	 {
	 	 	 	 	 	 	 	 	 	 	 	 System.out.print(m	 +	 "	 =>	 ");
	 	 	 	 	 	 	 	 	 	 	 	 try	 {
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 System.out.println(m.invoke(obj));
	 	 	 	 	 	 	 	 	 	 	 	 }	 catch	 (Exception	 e)	 {
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 e.printStackTrace();
	 	 	 	 	 	 	 	 	 	 	 	 }
	 	 	 	 	 	 	 	 }	 else	 {
	 	 	 	 	 	 	 	 	 	 	 	 System.out.println(m);
	 	 	 	 	 	 	 	 }
	 	 	 	 }
	 	 	 	 for	 (Field	 field	 :	 obj.getClass().getDeclaredFields())	 {
	 	 	 	 	 	 	 	 System.out.println(field);	 	 	 	 	
	 	 	 	 }
}

Listing 4 - Example of adapter factory usage

The method printObjectAndClass() in List. 4 uses reflection to access object metadata and print
it on the console. It prints all the public methods, accessed by getMethods(), and all the
attributes declared in the current class independent of its visibility, accessed by
getDeclaredFields(). For methods starting with “get”, it also invokes the method on the adapter
and prints the returned value.

List. 5 presents what was printed on the console by the execution of the method presented on
List. 4. It is possible to see that the class has all the getter and setter methods respective to the
entity properties. These methods also use the type of the entity property type as the parameter
and the return of such methods. The values of the entity encapsulated on the adapter were also
printed correctly on the console. In the end, it is possible to verify that the internal attribute that
stores the encapsulated entity was also printed.

public	 java.lang.String	 PersonAOMBeanAdapter.getName()	 =>	 John
public	 void	 PersonAOMBeanAdapter.setName(java.lang.String)
public	 java.lang.Integer	 PersonAOMBeanAdapter.getNumber()	 =>	 27
public	 void	 PersonAOMBeanAdapter.setNumber(java.lang.Integer)
public	 java.lang.Double	 PersonAOMBeanAdapter.getHeight()	 =>	 1.8
public	 void	 PersonAOMBeanAdapter.setHeight(java.lang.Double)
public	 final	 void	 java.lang.Object.wait()	 throws	 java.lang.InterruptedException
public	 final	 void	 java.lang.Object.wait(long,int)	 throws	
java.lang.InterruptedException
public	 final	 native	 void	 java.lang.Object.wait(long)	 throws	
java.lang.InterruptedException
public	 boolean	 java.lang.Object.equals(java.lang.Object)
public	 java.lang.String	 java.lang.Object.toString()
public	 native	 int	 java.lang.Object.hashCode()

public	 final	 native	 java.lang.Class	 java.lang.Object.getClass()	 =>	 class	
PersonAOMBeanAdapter
public	 final	 native	 void	 java.lang.Object.notify()
public	 final	 native	 void	 java.lang.Object.notifyAll()
private	 org.esfinge.aom.api.model.IEntity	 PersonAOMBeanAdapter.entity

Listing 5 - Output generated by the example

The implementation supports complex AOM properties, where the property value is another
AOM entity. In this scenario, the entity is also adapted to a Java Bean when it is returned as a
property value. For this kind of property, a setter method is not provided, since to change its
properties it is expected that the application retrieves its adapter and changes the values
directly.

6. Using Java Bean Framework

Since the goal to create an adapter to a static API is to enable the use of frameworks based on
it, this section presents the results of an experiment that used the adapters with a framework.
The framework used in our experiment is Esfinge Comparison [Guerra et al. 2013], which
compares each properties of two Java beans of the same class and return the differences in
their properties.

Listing 6 presents the source code that used the adapter to perform the comparison of two
entities from the same entity type. An entity type with three property types was created, followed
by the creation of two entities with values for all the properties. In order to use the comparison
framework, the adapter factory was used to create adapters for the two entities.

public	 static	 void	 main(String[]	 args)	 throws	 Exception	 {
	 	 	 	 IEntityType	 entityType	 =	 new	 GenericEntityType("Car");
	 	 	 	 entityType.addPropertyType(new	 GenericPropertyType("plateNumber",	
String.class));
	 	 	 	 entityType.addPropertyType(
	 	 	 	 	 	 	 	 new	 GenericPropertyType("yearOfManufacturing",	 Integer.class));
	 	 	 	 entityType.addPropertyType(new	 GenericPropertyType("color",	 String.class));

	 	 	 	 IEntity	 entityA	 =	 entityType.createNewEntity();
	 	 	 	 entityA.setProperty("plateNumber",	 "AKZ-‐3421");
	 	 	 	 entityA.setProperty("yearOfManufacturing",	 1980);
	 	 	 	 entityA.setProperty("color",	 "yellow");

	 	 	 	 IEntity	 entityB	 =	 entityTypeB.createNewEntity();
	 	 	 	 entityB.setProperty("plateNumber",	 "DZZ-‐3421");
	 	 	 	 entityB.setProperty("yearOfManufacturing",	 1982);
	 	 	 	 entityB.setProperty("color",	 "yellow");

	 	 	 	 AOMAdapterFactory	 adapterFactory	 =	 new	 AOMAdapterFactory();
	 	 	 	 Object	 objA	 =	 adapterFactory.generate(entityA);
	 	 	 	 Object	 objB	 =	 adapterFactory.generate(entityB);

	 	 	 	 	 	 	
	 	 	 	 ComparisonComponent	 c	 =	 new	 ComparisonComponent();
	 	 	 	 List<Difference>	 difs	 =	 c.compare(objA,	 objB);
	 	 	 	 System.out.println("***	 Differences:	 ***");
	 	 	 	 for(Difference	 d	 :	 difs)	 {
	 	 	 	 	 	 	 	 System.out.println(d.toString());
	 	 	 	 }
}

Listing 6 - Example of code that uses the framework for comparing instances

After the creation of the adapters, the main class of the framework named
ComparisonComponent was invoked passing both adapters as parameters. A list with
differences was received and printed in the console. Based on the result of the execution, it was
possible to verify that the adapters were working as expected.

7. Limitations

The proposed solution can be considered a first step in the direction of defining an AOM adapter
that allows the usage of AOM entities by frameworks that need to access objects based on the
reflective access to a static API based on the JavaBeans standard. This section presents some
limitations that will be targeted by the next steps of our research.

Several frameworks based on the Java bean standard are based on metadata [Guerra et. al
2013], using code annotations to configure constraints on the classes. To use those frameworks
full potential, the AOM adapter factory should be able to create code annotations on the
generated class based on entity type properties and on property type properties. For instance, a
property of a property type that defines the significant decimal digits of its number could be
turned into the annotation @Tolerance for the Esfinge Comparison to configure the precision for
each number that is compared.

A limitation of our current solution is that despite the fact that new adapters can be created
when there are changes to an AOM entity type, this will not change any existing AOM adapters
that have already been created. That can be a problem if this adapter is referenced and stored
by other classes, and needs to be migrated to a new version.

Problems related to evolution, versioning and migration of an AOM type is addressed by the
patterns documented by [Ferreira 2008] and [Hen-Tov et. al 2010]. However these patterns
consider that the AOM type can be changed at runtime. However the adapter that represents an
AOM entity cannot. Because of this, some of these proposed solutions for AOM evolution
cannot be applied to migrate AOM adapters. Since this is still an open issue, our solution is not
appropriate for systems where the adapters referenced by other classes need to be migrated
due to changes to the AOM entity type.

8. Next Steps

This paper presented the proposed solution for the dynamic adapters for AOM entities and the
current status for a minimum proof-of-concept implementation. These results can be considered
the first step in a broader study that is being performed on how to increase reuse opportunities
for applications with an AOM architectural style. This section describes the next steps intended
for continuation of our research.

The first step is to add to the Esfinge AOM model the capability to have properties on every
element of the AOM structure. Based on that, the metadata defined for the entity type and
property type can be translated to code annotations on the generated adapter. The Java Beans
frameworks to handle a property or a class differently can annotations defined on the adapter.
Since the methods of a dynamically generated class can only be invoked by reflection, it is
important to add more information about them on the AOM adapter to allow it to be fully used by
that framework.

After adding the support for generating annotations on the AOM adapters, the model and the
implementation will focus on expanding the scope to include some behavioral patterns, such as
Strategy and Rule Object. The idea is to map the execution of such objects as methods on the
AOM adapter. The metadata added to these methods, as code annotations, should enable their
identification and invocation by frameworks. As an example, this could be used is to map an
AOM behavior as a callback method invoked by a framework as a response to a given event.

9. Conclusions

This paper presented the proposal of a solution to allow the reuse of regular frameworks for
AOM applications. It suggests using a dynamic generated adapter that creates a static class to
adapt a dynamic AOM entity. The approach that generates and inserts code to adapt at runtime
is not new [Reenskaug et al. 1995], but the contribution of this work is to how to use this
approach for AOM architecture. The paper presents the implementation of a proof-of-concept
and shows its use to adapt an entity to a Java Bean to be used by a comparison framework.

Acknowledgements

We acknowledge the support of CNPq (grant 445562/2014-5) and FAPESP (grant 2015/16487-
1). We also thank a lot our shepherd, Rebecca Wirfs-Brock, for given a valuable and detailed
feedback either on the technical ideas and for the paper text.

References

Atzmon Hen-Tov, David H. Lorenz, Lena Nikolaev, Lior Schachter, Rebecca Wirfs-Brock, and
Joseph W. Yoder. 2010. Dynamic model evolution. In Proceedings of the 17th Conference on
Pattern Languages of Programs (PLOP '10). ACM, New York, NY, USA, , Article 16 , 13 pages.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: “Design Patterns: elements of reusable object
oriented software”; Addison-Wesley (1994).

Guerra, E. M. ; Aguiar, A. . Support for Refactoring an Application towards an Adaptive Object
Model. Lecture Notes in Computer Science, v. 8583, p. 73-89, 2014.

Guerra, E., Souza, J. T., Fernandes, C.: “ Pattern Language for the Internal Structure of
Metadata-based Frameworks” in Transactions on Pattern Languages of Programming, 3 (2013)
55-110.

Hugo Sereno Ferreira, Filipe Figueiredo Correia, and Leon Welicki. 2008. Patterns for data and
metadata evolution in adaptive object-models. In Proceedings of the 15th Conference on
Pattern Languages of Programs (PLoP '08). ACM, New York, NY, USA, , Article 5 , 9 pages.

JavaBeans(TM) specification 1.01 Final release, 2010,
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html, accessed on
dez/2010.

Matsumoto, P. ; Guerra, E. M. . An Approach for Mapping Domain-Specific AOM Applications to
a General Model. Journal of Universal Computer Science (Online), v. 20, p. 534-560, 2014.

Reenskaug, Trygve; Per Wold and Odd Arild Lehne.. Working With Objects: The OOram
Software Engineering Method. [S.l.]: Prentice Hall, June 1995.

Yoder, J. W., Balaguer, F., Johnson, R.: “Architecture and design of Adaptive Object-Models”; In
Proceedings of the 16th Object-Oriented Programming, Systems, Languages & Applications
(2001).

Yoder, J. W., Johnson, R.: “The Adaptive Object-Model architectural style”; Proc. of 3rd IEE/IFIP
Conference on Software Architecture: System Design, Development and Maintenance (2002).

