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Abstract 

A set of non-linear algebraic equations, which must to be solved using a numerical 
procedure, for ball’s motion, sliding friction and internal loading distribution 
computation in a high-speed, single-row, angular-contact ball bearing, subjected to a 
known combined radial, thrust and moment load, which must be applied to the inner 
ring’s centre of mass, is introduced. For each step of the procedure it is required the 
iterative solution of 9Z + 3 simultaneous non-linear equations – where Z is the number 
of the balls – to yield exact solution for contact angles, ball attitude angles, rolling radii, 
normal contact deformations and axial, radial, and angular deflections of the inner ring 
with respect the outer ring. The focus of this work is obtaining the steady state forces 
and moments equilibrium conditions on the balls, under the selected external loading, 
and to describe the numerical aspects of the procedure. The numerical results derived 
from the described procedure shall be published later. 
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Introduction 

Ball and roller bearings, generically called rolling bearings, are commonly used 
machine elements. They are employed to permit rotary motions of, or about, shafts in 
simple commercial devices such as bicycles, roller skates, and electric motors. They are 
also used in complex engineering mechanisms such as aircraft gas turbines, rolling 
mills, dental drills, gyroscopes, and power transmissions. 
 
The standardized forms of ball or roller bearings permit rotary motion between two 
machine elements and always include a complement of ball or rollers that maintain the 
shaft and a usually stationary supporting structure, frequently called housing, in a 
radially or axially spaced-apart relationship. Usually, a bearing may be obtained as a 
unit, which includes two steel rings each of which has a hardened raceway on which 
hardened balls or rollers roll. The balls or rollers, also called rolling elements, are 
usually held in an angularly spaced relationship by a cage, also called a separator or 
retainer. 
 
There are many different kinds of rolling bearings. This work is concerned with single-
row angular-contact ball bearings – see Fig. 1 – which are designed to support 
combined radial and thrust loads or heavy thrust loads depending on the contact angle 
magnitude. The bearings having large contact angle can support heavier thrust loads. 
The figure 1 shows bearings having small and large contact angles. The bearings 
generally have groove curvature radii in the range of 52-53% of the ball diameter. The 
contact angle does not usually exceed 40

o
. 

 
This work is devoted to study of internal load distribution in a high-speed angular-
contact ball bearing. Several researchers have studied the subject of internal load 
distribution in a statically loaded angular-contact ball bearing (see [Stribeck (1907); 
Sjoväll (1933); Jones (1946); Rumbarger (1962); Ricci (2009; 2009a; 2009b; 2009c; 
2009d; 2010)]). The methods developed by them to calculate distribution of load among 
the balls and rollers of rolling bearings can be used in most bearing applications because 
rotational speeds are usually slow to moderate. Under these speed conditions, the effects 
of rolling element centrifugal forces and gyroscopic moments are negligible. At high 
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speeds of rotation these body forces become significant, tending to alter contact angles and 
clearance. Thus, they can affect the static load distribution to a great extension. 
 

 
Figure 1. Angular-contact ball bearing 

 
[Harris (2001)] described methods for internal loading distribution in statically loaded 
bearings addressing pure radial; pure thrust (centric and eccentric loads); combined 
radial and thrust load, which uses radial and thrust integrals introduced by Sjoväll; and 
for ball bearings under combined radial, thrust, and moment load, initially due to Jones. 
 
When an external load is applied to one of the rings of a rolling bearing it is transmitted 
through rolling elements to the other ring. Because the internal load distribution on the 
rolling elements is an important operating characteristic of a bearing a great number of 
authors have addressing the problem. A literature review on the subject can be found in 
[Tomović (2012; 2012a)], in which a mathematical model for necessary radial 
displacement between rings, and a mathematical model for external radial load, so that 
the q-th rolling element passes to participate in the load transfer were presented. 
 
In [Tomović (2013)], a model was developed, which enables a very simple 
determination of the number of active rolling elements participating in an external load 
transfer, depending on the bearing type and internal radial clearance. 
 
In [Tudose et al. (2013)], the theoretical analysis of a single-row radial bearing with 
radial clearance under constant external radial load was presented. The analysis was 
focused on finding the rolling element deflection that allows determining the number of 
active rolling elements that participate in the load transfer. Taking into account the 
bearing internal geometry, a mathematical model to calculate the rolling elements 
deflections during the bearing rotation has been derived. 
 
In [Rasolofondraibe et. al. (2012; 2013); Murer et al. (2015)], capacitive probes were 
inserted into the fixed ring of the bearing such that forms with the raceway a capacitor 
with variable gap that depends on the transmitted load by the rolling element. A 
numerical model of this capacitor’s capacitance as a function of transmitted load by the 
rolling element has been established. An experimental prototype has been established in 
order to precisely measure the probe’s capacitance. Finally, this technique has been 
generalized with a capacitive probe in front of each rolling element. Thus, knowing the 
load transmitted by each of the rolling elements, the external load on the bearing of the 
rotating machine can be easily reconstructed. 
 
The evaluation of change in contact angle due to applied load is vital in order to study 
the load carrying capacity of large diameter bearings. Analytical and numerical 
procedures have been developed to calculate various design factors such as contact 
angle, contact stress and deformation. In [Starvin et al. (2011)] the change in contact 
angle of balls was determined by using FEA. The change in contact angle was 
compared with analytical, FEA and the Newton-Raphson method. The results show a 
good agreement with the values calculated using Hertz’s relations for deformation. The 
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FEA method was used to get the nodal solution of contact angle, contact Stress and 
deflection for various loading conditions. 
 
In [Rajasekhar et al. (2013)] the dynamic modeling of a centrally supported symmetrical 
disk-shaft bearing system has been analyzed using Timoshenko beam elements. 
Intermittent ball bearing contact forces and Muszynska’s force [Muszynska (1986)] at 
seal-disk interface were considered in the model to simulate a real-time system. Results 
show that there was a marked effect of each type of nonlinear excitation on the overall 
system response. 
 
In [Seong et al. (2014)] a wheel bearing life prediction method, which considers the 
bearing dynamics characteristics, was proposed. The results were compared with 
existing formulas and static analyses results from structural dynamics commercial 
software. 
 
In [Zhenguo et al. (2011)] a unidirectional compression spring was used to model the 
contact between a rolling element and the raceway of a heavy-duty slewing bearing 
accounting for the supporting structure flexibility and the plastic deformation of the 
bearing. The spring constant was determined by the load against elastic-plastic 
deformation relationship of a single rolling element, which was obtained by finite 
element contact method. The difference between the traditional Hertz contact results 
and the FEM results is very obvious for the slewing bearings with plastic deformation, 
such as contact deflection of the rolling elements and the raceway, load distribution on 
the rolling elements, stress in the raceway and contact pressure between the rolling 
elements and the raceway. Therefore, the method based on the Hertz contact mechanics 
theory is not applicable for the performance analysis of the heavy-duty slewing bearing. 
 
The first great contribution to the study of ball motion, sliding friction and internal load 
distribution in a high-speed angular-contact ball bearing must be credited to A. B. Jones 
[Jones (1959; 1960)]. Harris describes the orbital, pivotal and spinning ball’s motions 
and load distribution in ball bearings, in general reproducing the Jones’s developments. 
In this work the Jones’s works is revisited and differences are introduced under the yoke 
of critical analysis, which will be detailed. Then, particularly, in this work, a set of non-
linear algebraic equations, which must to be solved using a numerical procedure, for 
ball’s motion, sliding friction and internal loading distribution computation in a high-
speed, single-row, angular-contact ball bearing, subjected to a known combined radial, 
thrust and moment load, which must be applied to the inner ring center of mass, is 
introduced. For each step of the procedure it is required the iterative solution of 9Z + 3 
simultaneous non-linear equations – where Z is the number of the balls – to yield exact 
solution for contact angles, ball attitude angles, rolling radii, normal contact 
deformations and axial, radial, and angular deflections of the inner ring with respect the 
outer ring. The focus of this work is obtaining the steady state forces and moments 
equilibrium conditions on the balls, under the selected external loading, and to describe 
the numerical aspects of the procedure. The numerical results derived from the 
described procedure shall be published later. 

Mathematical model 

Having defined in other works analytical expressions for bearing geometry and the contact 
stress and deformations for a given ball or roller-raceway contact (point or line loading) 
in terms of load (see, e.g., [Harris (2001)]) it is possible to consider how the bearing 
load is distributed among the rolling elements. In this section a specific internal loading 
distribution resulting from a combined radial, thrust, and moment external load, which 
must be applied to the center of mass of the inner ring of a high speed ball bearing, is 
considered. 
 
The Fig. 2 shows the displacements of an inner ring related to the outer ring due to a 
generalized loading system including radial, axial, and moment loads. The Fig. 3 shows 
the relative angular position of each ball in the bearing. 
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Let a ball bearing with Z balls, each with diameter D, symmetrically distributed about a 
pitch circle according to Fig. 3, to be subjected to a combined radial, thrust, and 
moment load applied to the inner ring’s center of mass. Then, a relative axial 
displacement, δa, a relative angular displacement, θ, and a relative radial displacement, 
δr, between the inner and outer ring raceways may be expected according Fig. 2. Let ψ = 
0 to be the angular position of the maximum loaded ball. 
 

 

 

 

Figure 2. Displacements of an 

inner ring (outer ring fixed) 

due to a combined radial, axial, 

and moment external loading 

 Figure 3. Ball angular positions in the radial 

plane that is perpendicular to the bearing’s 

axis of rotation, ∆ψ = 2π/Z, ψj = 2π(j−1)/Z, j = 

1…Z, in which Z is the number of balls 
 
Under zero load the centers of raceway groove curvature radii are separated by a 
distance A given by � � ��� � �� � 1
�,      (1) 
 
in which fo, fi are the conformities for outer and inner raceways, respectively. 
 
Under an applied static load, the distance s between centers will increase from A to A 
plus the amount of the contact deformation δi plus δo, as show by Fig. 4. The line of 
action between centers is collinear with A. If, however, a centrifugal force acts on the 
ball, then because the inner and outer raceway contact angles are dissimilar, the line of 
action between raceway groove curvature radii centers is not collinear with A, but is 
discontinuous as indicated by Fig. 5. It is assumed in Fig. 5 that the outer raceway 
groove curvature center is fixed in space and the inner raceway groove curvature center 
moves relative to that fixed center. Moreover, the ball center shifts by virtue of the 
dissimilar contact angles. 
 
The Fig. 5 when compared with similar figures in [Harris (2001)] and [Jones (1960)] 
shows minor differences. The inner contact angle must be βij + θcosψj rather than βij, to 
take into account the tilting of the rigid inner ring with respect the rigid outer ring, 
during the external loading application. Furthermore, since the problem is to be solved 
numerically, no makes sense to linearize the distances between the final and initial inner 
raceway groove curvature center positions, as done in previous works. 
 
In accordance with Fig. 5 the distance between the fixed outer raceway groove 
curvature center and the final position of the ball center at any ball location j is 
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 ∆�� �� � �� � ��.      (2) 

Since ro = foD, ∆�� ��� � 0.5
� � �� .     (3) 

 

Figure 4. (a) Ball-raceway contact 

before loading; (b) Ball-raceway 

contact under load. 

 Figure 5. Positions of ball center and 

raceway groove curvature centers at 

angular position ψj with and without 

applied load. 
 
Similarly, the distance between the moving inner raceway groove curvature center and 
the final position of the ball center at any ball location j is 
 ∆�� ��� � 0.5
� � ��,     (4) 

 
in which δoj and δij are the normal contact deformations at the outer and inner raceway 
contacts, respectively. 
 
In accordance with the relative axial displacement between inner and outer rings mass 
centers, δa, and the relative angular displacement θ, the axial distance between inner and 
outer raceway groove curvature centers at ball position j is 
 

sxj = Asinβf + δa + Risinθcosψj,     (5) 
in which 

Ri = ½de + (fi – ½)Dcosβf      (6) 
 
is the radius to locus of inner raceway groove curvature centers, de is the unloaded pitch 
diameter, and βf is the unloaded contact angle. Further, in accordance with the relative 
radial displacement between inner and outer rings mass centers, δr, and the relative 
angular displacement θ, the radial distance between inner and outer groove curvature 
centers at each ball location j is 
 

szj = Acosβf + δrcosψj – Ri(1 – cosθ)√cos
2ψj.    (7) 

 
Since the iterative techniques of the Newton-Raphson method will be used to solve the 
associated nonlinear equations, the angles βoj and βij are best stated in terms of the co-
ordinates V and W, in Fig. 5. Then 
 sin�� � �������.�
� !��,       (8) 
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cos�� � $������.�
� !��,      (9) 

sin%�� � &cos'( � )*������+��.�
� !+�,     (10) 

cos%�� � &cos'( � ),��$���+��.�
� !+�.     (11) 

 
Similarly, the ball angular speed about its own center pitch and yaw angles, αj and α’j, 
are best stated in terms of the ball angular velocity components: ωx’j, ωy’j, and ωz’j; in 
which x’, y’, and z’ are the axes of the coordinate frame whose origin is at the ball 
center; x' is parallel to the longitudinal axis of the bearing around which the balls 
circulate in its orbital motion, and z’ is the radial axis. Then 
 sin- � .,/�

0.*/�1  .2/�1  .,/�1 ,     (12) 

cos- � 0.*/�1  .2/�1
0.*/�1  .2/�1  .,/�1 ,     (13) 

sin-3 � .2/�
0.*/�1  .2/�1 ,      (14) 

cos-3 � .*/�
0.*/�1  .2/�1 .      (15) 

 
Using the Pythagorean Theorem, it can be seen from figure 5 that 
 %45 � 6(� � %47 � 8(� � 9��� � 0.5
� � ��:� � 0 � ;,  (16) 6� � 8� � 9��� � 0.5
� � ��:� � 0 � ; <.   (17) 

 
From (12)-(15) =7/� � =>/� � =5/� � =?� � 0 � ; �<, =? � 0=7/� � =>/� � =5/� .   (18) 

 
For steady state operation of a ball bearing at high speed, the forces and moments acting 
on each ball are as shown by figure 6. 
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Figure 6. Ball loading at angular 

position ψj 

 Figure 7. Forces and moments about the 

inner ring center of mass 
 
The normal ball loads are related to normal contact deformations by 
 @� � A���B.�,  @� � A���B.�,    (19) 

 
in which Koj and Kij are functions of contact angles [Harris (2001)]. 
 
From Fig. 6 considering the three axes equilibrium forces, yields 
 @� sin%�� � &cos'( � @� sin �� � C7�cos%�� � &cos'( � C7�cos�� � 0, (20) @� cos%�� � &cos'( � @� cos �� � C7�sin%�� � &cos'( � C7�sin�� � C5′ � 0,  (21) C>� � C>� � 0 � ; �<,     (22) 
 
Substituting (8)-(11) and (19) into (20)-(21) yields 
 D*��$��E��!��F.G�������.�
� !�� � E+�!+�F.G%)*����(�D*+�%),��$�(��+��.�
� !+� � 0 � ; H<,   (23) 

E��!��F.G$� D*���������.�
� !�� � E+�!+�F.G%),��$�( D*+�%)*����(��+��.�
� !+� � C5/ � 0 � ; I<.  (24) 

 
From Fig. 6 considering the three axes equilibrium moments, yields 
 �J)� sin%�� � &cos'( � J)� sin �� � J?�cos%�� � &cos'( � J?�cos�� � 0,  (25) �J)� cos%�� � &cos'( � J)� cos �� � J?�sin%�� � &cos'( � J?�sin�� � J5′ � 0, (26) J>/ � J>� � J>� � 0 � ; K<.     (27) 

 
Substituting (8)-(11) into (25)-(26) yields 
 LM��$� LN���������.�
� !�� � LN+�%)*����( LM+�%),��$�(��+��.�
� !+� � 0 � ; O<,   (28) 
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LN��$��LM���������.�
� !�� � LN+�%),��$�(�LM+�%)*����(��+��.�
� !+� � J5/ � 0 � ; P<.  (29) 

 
The centrifugal force acting on the ball at angular position ψj is given by [Harris (2001)] 
 C5/ � B� QRS=S� ,      (30) 

 
in which m is the mass of ball, 
 RS � RT � 296 � ��� � ½
�cos��:    (31) 
 
is the operational ball’s pitch diameter at position j, and ωmj is the absolute orbital speed 
of the ball about of the bearing axis. 
 

Substituting the identity =S�  = (ωmj/ω)
2ω2

 in (30) gives 

 C5/ � B� Q=�RS W.X�. Y�
,     (32) 

 
in which ω is the absolute angular velocity of the rotating ring. 
 
For the outer race to be stationary ωmj = –ωoj, ω = ωij + ωmj, 
 .X�. � B

B Z+�′ [\X�1 ]�^�_`.G
abc��dbZ��′ e�f]g*′�WN,�_e�Ybg,′�WN*�_h�Yd
Z��′ [\X�1 ]%^+_`.G(abc+�d_Z+�′ WN,�_e�Yfig*/�e�bg,/�h�j

,      (33) 

and 

.M�. � �0.*/�1  .2/�1  .,/�1
Z��′ ig*/�e�bg,/�h�j\X�1 ]�^�_`.G
abc��dbZ��′ e� Z+�′ ]g*′�WN,�_e�Ybg,′�WN*�_h�Yd\X�1 ]%^+_`.G(abc+�d_Z+�′ WN,�_e�Y

,   (34) 

 
in which ωij, ωoj are the angular velocities about the bearing axis of the inner and outer 
rings with respect to the ball at position j, and r’ij, r’oj are the inner and outer rolling 
radii [Harris (2001)]. 
 
Likewise, for the inner race to be stationary ωmj = –ωij, ω = ωoj + ωmj, 
 .X�. � B

B Z��′ [\X�1 ]%^+_`.G(abc+�d_Z+�′ WN,�_e�Yfig*/�e�bg,/�h�j
Z+�′ [\X�1 ]�^�_`.G
abc��dbZ��′ e�fkg*/�WN,�_e�Ybg,/�WN*�_h�Yl

         (35) 

 
and ωRj/ω is given by (34) with opposite sign. 
 
Similarly, the gyroscopic moments acting on the ball at angular position ψj are given by 
[Harris (2001)] 
 J>/ � m=� W.M�. Y W.X�. Y .,/�

0.*/�1  .2/�1  .,/�1 ,    (36) 

and 
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J5/ � �m=� W.M�. Y W.X�. Y .2/�
0.*/�1  .2/�1  .,/�1 ,    (37) 

 
in which J is the ball’s mass moment of inertia. 
 
The friction forces due to sliding in the x and y-directions of inner and outer ball-
raceway elliptical contact areas are given by [Harris (2001)] 
 

C7� � HnE+�!+�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 sint�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (38) 

C7� � HnE��!��F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 sint�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� ,  (39) 

C>� � HnE+�!+�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 cost�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (40) 

C>� � HnE��!��F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 cost�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� , (41) 

 
in which µ is the friction coefficient; aij, bij, aoj, and boj are semimajor and semiminor-
axes of inner and outer pressure ellipses; xij, yij, xoj, yoj are the co-ordinates of an element 
of area, dydx, inside the contact ellipse, which has a resultant velocity of slip V of the 
race on the ball acting at the angle γ with respect to the y-direction, which are given by 
 

t� � tan�B >+��e*+�gN+�7+� e2+�gN+�
,    t� � tan�B >���e*��gN��7�� e2��gN��

.   (42) 

 
Vxij, Vxoj, Vyij, Vyoj, ωsij, and ωsoj are the relative linear and angular slip velocities of inner 
and outer races with respect to the ball located at position j. The terms involving these 
velocities for use in (42) are given by [Harris (2001)] 
 

$*+�.N+� � z0?+1�7+�1 �0?+1�p+�1  0Wa1 Y1� p+�1 |}��+��.�
� !+�� Z+�′\X�1
%),��$�(~.2/�

.*/�%)*����(�.,/�}),��$��%^+_`.G(abc+�\X�1
�+�′ ~ ,  (43) 

$2+�.N+� � z0?+1�7+�1 �0?+1�p+�1  0Wa1 Y1� p+�1 ��+�′ |].*′�%),��$�( .,′�%)*����(d
.*′�%)*����(�.,′�}),��$��%^+_`.G(abc+�\X�1

�+�′ ~
,  (44) 



 

 

 
 
 

10 

 

$*��.N�� � �z0?�1�7��1 �0?�1�p��1  0Wa1Y1� p��1 |}�����.�
� !�� Z��′\X�1
$�~.2/�

.*/����.,/�}$� �^�_`.G
abc��\X�1
���′ ~ ,  (45) 

$2��.N�� � z0?�1�7��1 �0?�1�p��1  0Wa1Y1� p��1 ����′ |W.*/�$� .,/���Y
.*/����.,/�}$� �^�_`.G
abc��\X�1

���′ ~ ,    (46) 

 
in which Ri and Ro are the curvature radii of deformed surfaces, given by 
 �� � ��+���+ B,   �� � ������� B.     (47) 

 
The total frictional moments of the friction forces about the normal at the center of the 
contact ellipse are [Harris (2001)] 
 

J)� � HnE+�!+�F.G
�op+�q+� r r 0w�� � u�� s1 � 7+�1p+�1 � >+�1q+�1 cos it� � tan�B >+�7+�j Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� , (48) 

J)� � HnE��!��F.G
�op��q�� r r 0w�� � u�� s1 � 7��1

p��1 � >��1
q��1 cos it� � tan�B >��7��j Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� . (49) 

 
The moments of the friction forces about the y’-axis are [Harris (2001)] 
 

J>� � HnE+�!+�F.G
�op+�q+� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7+�1p+�1 � >+�1q+�1 sint�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (50) 

J>� � HnE��!��F.G
�op��q�� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7��1

p��1 � >��1
q��1 sint�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� . (51) 

 
The frictional moments about an axis through the ball center perpendicular to the line 
defining the contact angle, which line lies in the x’z’-plane, are [Harris (2001)] 
 

J?� � HnE+�!+�F.G
�op+�q+� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7+�1p+�1 � >+�1q+�1 cost�Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� ,  (52) 

J?� � HnE��!��F.G
�op��q�� r r z0��� � w�� � 0��� � ��� � 0W��Y� �  ��� | s1 � 7��1

p��1 � >��1
q��1 cost�Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� . (53) 

 
Equations (16)-(18), (22)-(24) and (27)-(29) may be solved simultaneously for Vj, Wj, 
δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and ωz’j at each ball angular location once values for δa, δr, and 
θ are assumed. 
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An iterative procedure is to be used to solve the equations simultaneously. Since Koj and 
Kij are functions of contact angle, equations (8)-(11) may be used to establish Koj and Kij 
values iteratively. 
 
To find the values of δa, δr, and θ, it remains to establish the equilibrium conditions of 
forces and moments about the inner ring center of mass, as shown by Fig. 7, which are 
 Cp � ∑ kE+�!+�F.G%)*����(�D*+�%),��$�(��+��.�
� !+� l<�B � 0 � ;�< B,   (54) 

C� � ∑ kE+�!+�F.G%),��$�( D*+�%)*����(��+��.�
� !+� l cos'<�B � 0 � ;�< �,   (55) 

       J � ∑�B< {Ri�A���B.�sin�� � C7��cos�� � ��/Ri
�cos' � %C>���sin�� � J)�cos��(sin'} = 0 � ;�< H,    (56) 
 
in which Fa, Fr, and M are external forces and moment applied to the inner ring center 
of mass. 
 
Having computed values for Vj, Wj, δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and ωz’j at each angular 
position and knowing Fa, Fr, and M as input conditions the values of δa, δr, and θ may 
be computed by equations (54)-(56). After obtaining the primary unknown quantities δa, 
δr, and θ, it is necessary to repeat the calculation of Vj, Wj, δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and 
ωz’j, until compatible values of primary unknown quantities δa, δr, and θ are obtained. 

Numerical procedure 

Equations (16)-(18), (22)-(24), (27)-(29), and (54)-(56) may be written as 
 ;����
 � 0,  g, h = 1, …, 9Z + 3,     (57) 
 
in which δ1 = V1, …, δZ = VZ, δZ+1 = W1, …, δ2Z = WZ, δ2Z+1 = δo1, …, δ3Z = δoZ, δ3Z+1 = 
δi1, …, δ4Z = δiZ, δ4Z+1 = r’o1, …, δ5Z = r’oZ, δ5Z+1 = r’i1, …, δ6Z = r’iZ, δ6Z+1 = ωx’1, …, δ7Z 
= ωx’Z, δ7Z+1 = ωy’1, …, δ8Z = ωy’Z, δ8Z+1 = ωz’1, …, δ9Z = ωz’Z, δ9Z+1 = δa, δ9Z+2 = δr, δ9Z+3 
= θ. 
 
The first 9Z equations from (57) must be solved simultaneously for δ1, …, δ9Z once 

values for δ9Z+1, …, δ9Z+3 are assumed. If ���, h = 1, …, 9Z, is a 9Z-dimensional vector 

with the initial estimates of the variables δ1, …, δ9Z, improved values are given by 
 ��3 � ��� � 9���:�B�;��,      (58) 
 

in which �;��, g = 1, …, 9Z, is the 9Z-dimensional vector with the first 9Z errors 

functions from (1). The elements of the square 9Z×9Z-matrix 9���: are 
 �� � �2%45 � �( �!��!� � 2%47 � �< ( �!�b��!� � 29��� � 0.5
� � �H< : �!��b��!� , (59) 

�� <
� � 2� �!��!� � 2�<  �!�b��!� � 29��� � 0.5
� � ��< : �!1�b��!� ,   (60) 

�� �<
� � 2�O<  �!��b��!� � 2�P<  �!��b��!� � 2�K<  �!��b��!� ,    (61) 

(62) 
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(63) �� �<
� � �D2���!� � �D2+��!� ,        (64) 

(65) 

(66) �� K<
� � �L2/��!� � �L2+��!� � �L2���!� .       (67) 

 
The forces Fz’j, Fxij and Fxoj to be used in (62) and (63) are given by (32), (38) and (39) 
and their differentiation with respect to δh, h = 1, …, 9Z, yields 
 �D,/��!� � Q=� �W.X�. Y� �!��!� � RS W.X�. Y �WgX�g Y�!� �,    (68) 

�D*+��!� � HnE+�!��b�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 cost� ��+��!� Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� � H� D*+�!��b�
�!��b��!� ,  (69) 

�D*���!� � HnE��!1�b�F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 cost� �����!� Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� � H� D*��!1�b�
�!1�b��!� . (70) 

 
The forces Fyij and Fyoj to be used in (64) are given by (40) and (41) and their 
differentiation with respect to δh, h = 1, …, 9Z, yields 
 

�D2+��!� � � HnE+�!��b�F.G
�op+�q+� r r s1 � 7+�1p+�1 � >+�1q+�1 sint� ��+��!� Ru�

q+�sB�*+�1
v+�1

�q+�sB�*+�1
v+�1

Rw�p+��p+� � H� D2+�!��b�
�!��b��!� ,   (71) 

�D2���!� � � HnE��!1�b�F.G
�op��q�� r r s1 � 7��1

p��1 � >��1
q��1 sint� �����!� Ru�

q��sB�*��1
v��1

�q��sB�*��1
v��1

Rw�p���p�� � H� D2��!1�b�
�!1�b��!� . (72) 

 
The moments Msij, Msoj, MRij, MRoj and Mz’j to be used in (65) and (66) are given by (48), 
(49), (52), (53) and (37) and their differentiation with respect to δh, h = 1, …, 9Z, yields 
 

(73) 
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(74) 

(75) 

(76) 

(77) 
 
The moments Myij, Myoj and My’j to be used in (67) are given by (50), (51) and (36) and 
their differentiation with respect to δh, h = 1, …, 9Z, yields 
 

(78) 

(79) 

(80) 

 
As in (38)-(41) and (48)-(53), also in (69)-(76), (78) e (79) γij, γoj are given by (42). The 
derivatives of γij, γoj with respect δh, h = 1, …, 9Z, to be used in (69)-(76), (78) e (79) are 
given by 
 

��+��!� � �z7+� e2+�gN+�|�ze*+�gN+�|
�c� �z>+��e*+�gN+�|�ze2+�gN+�|

�c�
z>+��e*+�gN+�|1 z7+� e2+�gN+�|1 ,    

�����!� � �z7�� e2��gN��|�ze*��gN��|
�c� �z>���e*��gN��|�ze2��gN��|

�c�
z>���e*��gN��|1 z7�� e2��gN��|1 , (81) 

 
in which Vxij/ωsij, Vyij/ωsij, Vxoj/ωsoj, Vyoj/ωsoj are given by (43)-(46). The derivatives of 
Vxij/ωsij, Vyij/ωsij, Vxoj/ωsoj and Vyoj/ωsoj with respect δh, h = 1, …, 9Z, to be used in (81) 
are given by 
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(82) 

(83) 

(84) 

(85) 
 
For the outer race to be stationary ωmj/ω and ωRj/ω are given by (33)-(34). The 
derivatives of (33) and (34) with respect δh, h = 1, …, 9Z, to be used in (68), (77) and 
(80) are given by 
 

(86) 
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(87) 
Likewise, for the inner race to be stationary, 
 

(88) 
and d(ωRj/ω)/dδ is given by (87) with the opposite sign. 
 
The last three equations from (57) must be solved simultaneously for δ9Z+1, …, δ9Z+3 

after obtaining updated values for: βij, βoj, Kij, Koj, sxj, szj, Fxij, Fyij, Fxoj, Fyoj, Msij, Msoj, 

MRij, MRoj, δkZ+j, k = 0, …, 8; j = 1, …, Z. If ���, h = 9Z+1, …, 9Z+3, is a 3-dimensional 

vector with the initial estimates of the variables δ9Z+1, …, δ9Z+3, in that order, improved 

values are given by (58), in which �;��, g = 9Z+1, …, 9Z+3, is the 3-dimensional vector 

with the errors functions, in that order, from (57). The elements of the 3×3-matrix 9���: 
are 

(89) 

(90) 
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(91) 
 
Differentiating (16)-(18), (22)-(24) and (27)-(29) with respect δh, h = 9Z+1, …, 9Z+3, 
27Z simultaneous linear equations in ∂δkZ+j/∂δh, k = 0, …, 8; j = 1, …, Z, results, which 
are 

  (92) � �!��!� � �<  �!�b��!� � 9��� � 0.5
� � ��< : �!1�b��!� � 0,    (93) 

�O<  �!��b��!� � �P<  �!��b��!� � �K<  �!��b��!� � 0,     (94) 

(95) 

(96) �D2���!� � �D2+��!� � 0,             (97) 

(98) 

 (99) �L2/��!� � �L2+��!� � �L2���!� � 0.       (100) 

 
The derivatives of Fz’j, Fxij, Fxoj, Fyij, Fyoj, Msij, Msoj, MRij, MRoj, Mz’j, Myij, Myoj and My’j 
with respect δh, h = 9Z+1, …, 9Z+3, to be used in (89)-(100) are given by (68)-(80). In 
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(69)-(76), (78) and (79) γij, γoj are given by (42). The derivatives of γij, γoj with respect 
δh, h = 9Z+1, …, 9Z+3, to be used in (69)-(76), (78) and (79) are given by (81), with 
Vxij/ωsij, Vyij/ωsij, Vxoj/ωsoj and Vyoj/ωsoj given by (43)-(46). The derivatives of Vxij/ωsij, 
Vyij/ωsij, Vxoj/ωsoj and Vyoj/ωsoj with respect δh, h = 9Z+1, …, 9Z+3, to be used in (81) are 
given by (82)-(85). 
 
For outer race to be stationary ωmj/ω and ωRj/ω are given by (33) and (34), and for 
inner race to be stationary are given by (35) and (34), the last with opposite sign. The 
derivatives of (33) and (34) with respect δh, h = 9Z+1, …, 9Z+3, to be used in (68), (77) 
and (80) are given by (30) and (31); and for (35)-(34), the last with opposite sign, are 
given by (32) and (31), the last with opposite sign. 
 
The linear system’s solutions of the equations (92)-(100) – ∂δkZ+j/∂δh, k = 0, …, 8; j = 1, 
…, Z – are to be used in (89)-(91) for the new estimates of δ9Z+1, δ9Z+2 and δ9Z+3. 
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