
Exploiting client logs to support the construction of
adaptive e-commerce applications

Leandro G. Vasconcelos
National Institute for Space Research

1758 Av. dos Astronautas
Sao Jose dos Campos, Brazil
Email: le.guarino@gmail.com

Rafael D. C. Santos
National Institute for Space Research

1758 Av. dos Astronautas
Sao Jose dos Campos, Brazil
Email: rafael.santos@inpe.br

Laercio A. Baldochi
Federal University of Itajuba

1303 Av. BPS
Itajuba, Brazil

Email: baldochi@unifei.edu.br

Abstract—An essential feature of successful e-commerce ap-
plications is the ability to provide the right content at the
right time for the user. Therefore, personalization techniques
have been exploited to build adaptive applications in which
the user interfaces change according to the user needs and
preferences. In this work, we advocate that it is possible to
achieve personalization by analyzing the behavior of the user
when browsing an e-commerce application. In order to prove our
hypothesis, we built a toolkit that allows the automatic gathering
and analysis of client logs in real-time. Moreover, our solution
provides a web service that exposes the analysis outcome also in
real-time, thus allowing the client application to adapt on-the-
fly according to the results provided by the toolkit. This paper
presents a case study that demonstrate the effectiveness of our
approach to support the construction of adaptive e-commerce
applications.

I. INTRODUCTION

An important feature of today’s e-commerce applications is
the fact that they must satisfy the requirements of thousands
of customers, which present different needs, attitudes and
idiosyncrasies. Underestimating the importance of satisfying
the customer may affect the success of the application, leading
to the loss of revenues.

Therefore, the success or failure of an e-commerce appli-
cation is due to its potential to attract and retain visitors.
Thus, studies to understand and predict user’s behavior in
Web applications has become increasingly important for e-
commerce [5].

An essential feature of successful websites is the ability to
provide the right content at the right time for the user [12]. In
this sense, research on adaptive web applications have also
become increasingly frequent. According to Velasquez and
Palade [12], adaptive web applications are the next generation
of web development.

Adaptive web applications usually analyzes the user behav-
ior in order to identify her needs and interests and, based on
this analysis, provide customized content. An efficient way
to perform this analysis is using Web Usage Mining (WUM)
techniques, as patterns extracted by analyzing logs usually
provide useful information about the application usage [7].

The analysis of the user behavior when interacting with
a web application provides insights that may lead to the
customization and personalization of the user’s experience.

Therefore, e-marketing and e-commerce professionals have
great interest in WUM [2]. For instance, clustering techniques
have been used to group customers who behave similarly
during navigation, making it possible to extract browsing
patterns [3], [6].

The literature reports on several works in WUM that
exploits logs collected on the server. Server logs present
information regarding the resources accessed by the user such
as pages, images and other files. Client logs, on the other
hand, are collected on the user’s browser, and provide more
detailed information about the user interaction such as mouse
movements, use the scroll bar and keyboard.

The volume of the client logs data is significantly larger than
the volume of server logs, which discourages the analysis of
client logs in the work reported in the literature. However, we
advocate that client logs may be exploited to identify the user
behavior, allowing applications to adapt in real-time.

In this work, we present an approach to identify the user
behavior in real-time using client logs. Our approach focuses
on the paths that a user navigates when executing tasks on e-
commerce applications. We compare these paths to “optimal
paths” recorded by applications experts. Therefore, we are
able, for instance, to identify in real-time if a user is having
trouble to perform a task. This way, adaptive applications may
be built to support the user according to her personal needs
and preferences.

Our approach relies on a web service in order to pro-
vide real-time information which e-commerce applications can
consume in order to understand the behavior of the current
user. Therefore, the application developer may exploit our
services in order to write specific code that allows the desired
adaptation. In order to support the construction of adaptive
web applications based on our approach, we developed a
toolkit called RUB – Real-time User Behavior.

Similarly to the RUB Toolkit, Google Analytics provides
an API [8] that allows a web application to consume data in
real time about the active user, the browser, the viewed pages,
etc. Besides providing this same data, our toolkit also allows
the web application to consume information concerning the
usability of the application, such as user’s wrong actions and
the usability index of tasks. Abbar et al. [1] also presented
an approach to real-time analysis, that is directed only for the



content, and it aims to recommend relevant articles to the user
in real-time.

This paper is organized as follows: Section II presents
the research that contributed to the development of the RUB
toolkit; Section III details the toolkit architecture; Section
IV presents a case study that demonstrates how e-commerce
applications can take advantage of the features of our toolkit.
Finally, Section V presents the conclusions and future work.

II. PREVIOUS WORK

The World Wide Web presents a clear structural pattern in
which websites are composed of a collection of pages that,
in turn, are composed of elements such as hyperlinks, tables,
forms, etc, which are usually grouped by special elements such
as DIV and SPAN. By exploiting this pattern, and considering
that interface elements are usually shared among several pages,
we proposed COP [10], an interface model that aims at
facilitating the definition of tasks.

The main concepts in COP are Container, Object and Page.
An object is any page element that the user may interact
with, such as hyperlinks, text fields, images, buttons, etc.
A container is any page element that contains one or more
objects. Finally, a page is an interface that contains one or
more containers.

Besides exploiting the fact that containers and objects may
appear in several pages, the COP model also exploits the
similarities of objects and containers within a single page. In
any given page, an object may be unique (using its id) or
similar to other objects in terms of formatting and/or in terms
of content. The same applies to containers: a container may
be identified in a unique way, or it may be classified as similar
to other containers, but only in terms of formatting.

The COP model was the foundation for the development
of USABILICS [10], a task-oriented remote usability evalu-
ation system. USABILICS evaluates the execution of tasks
by calculating the similarity among the sequence of events
produced by users and those previously captured by evaluators.
By using USABILICS, evaluators may benefit from the COP
model to define generic tasks, thus saving time and effort
to evaluate tasks. The usability evaluation approach provided
by USABILICS is composed by four main activities: task
definition, logging, task analysis, and recommendations.

Task definiton. USABILICS provides a task definition tool
called UsaTasker [11], which allows developers to define tasks
by simply interacting with the application’s GUI. UsaTasker
provides a user-friendly interface for the management of tasks,
where the evaluator can create (record), view, update and
delete tasks. For recording a task, all that is required is to
use the application as it is expected from the end user. While
the evaluator surfs the application interface, she is prompted
with generalization/specialization options, as specified by the
COP model.

Logging. Our solution exploits a Javascript client applica-
tion that recognizes all page elements using the Document
Object Model (DOM) and binds events to these elements,
allowing the gathering of user interactions such as mouse

movements, scrolling, window resizing, among others. Events
generated by the pages of the application, such as load and
unload are also captured. Periodically, the client application
compresses the logs and send them to a server application.

Task analysis. We perform task analysis by comparing the
sequence of events recorded for a given task and the corre-
sponding sequence captured from the end users’ interactions.
The similarity between these sequences provides a metric of
efficiency. The percentage of completeness of a task provides
a metric of effectiveness. Based on these parameters, we
proposed a metric for evaluating the usability of tasks called
the usability index [9].

Recommendations. USABILICS is able to identify wrong
actions performed by end users and the interface components
associated to them. By analyzing a set of different tasks
presenting low usability, we found out that wrong actions are
mainly related to hyperlink clicks, to the opening of pages, to
the scrolling in pages and to the interaction with forms. We
defined 6 recommendations for fixing these issues. An exper-
iment [10] showed that, by following our recommendations,
developers were able to improve the usability of applications
significantly.

A restriction of the USABILICS tool was the inability to
define and analyze tasks on mobile devices, such as smart-
phones and tablets. To fight this limitation, we developed a
tool called MOBILICS [4], which extends the main modules
of USABILICS in order to support the usability evaluation of
mobile web applications.

The RUB toolkit leverages the results of our research
in remote usability evaluation in order to provide real-time
information regarding the user behavior in web applications.

III. THE RUB TOOLKIT

An important challenge for the development of adaptive web
applications is the fact that it is hard, if not impossible, to
understand the interaction requirements of a large amount of
users at design time, as user’s needs and preferences evolve
constantly.

Therefore, the approach of developing adaptive web ap-
plications that tries to foresee the user behavior is not an
adequate approach. Instead, we advocate that a better approach
is to allow the developer to monitor the user, adapting the
application according to her behavior.

In order to support developers monitoring the user behavior,
we propose a system called RUB – Real-time User Behavior.
RUB logs and analysis users interactions in real-time, pro-
viding information concerning the user behavior back to the
application. Therefore, it is possible to adapt the application
to satisfy the requirements of the current user, while she is
interacting with the application.

The RUB system extends USABILICS in order to analyze
logs in real-time. Moreover, it provides a web service that
allows developers to write applications that consume the
resulting log analytics as well as the raw data logs generated by
the current users. Therefore, it is possible to code adaptations
triggered both by the analysis of a set of logs – for instance,



a low usability index for a given task – and by the occurrence
of an specific event, such as the visit to a particular page.

Fig. 1. The RUB Toolkit Architecture

Figure 1 presents RUB’s architecture, which is composed by
three main modules: Logging, Task Analysis and Web Service.
The numbered arrows represent the flow of information among
modules and between the web application and our system.

As it happens in USABILICS, the approach starts with the
gathering of client logs in the web application, which are
sent to the Logging module (flow 1). In order to support the
affordances of real-time processing, the Logging module has
been redesigned to store the logs in a graph database, which
speeds up the log analysis. As soon as the logs are available in
server-side, the recorded interaction events are made available
both to the Web Server (flow 2) and to the Task Analysis
modules (flow 3).

The Web Server module provides services that group the
interaction events by user, by browser, by device screen size,
etc. This way, it is possible to analyze the recorded events
according to different criteria. The Task Analysis module
process the available logs comparing them to the logs of pre-
recorded tasks. When a match is found, i.e., the user data
presents a sequence of logs that resemble the optimal path of a
pre-recorded task, the usability index for that task is calculated
and made available to the Web Service module (flow 4). The
wrong actions found during the execution of tasks are also
made available to the Web Server.

The Web Service module provides methods for programmat-
ically accessing the services provided. Flow 5 illustrates the
communication between the application and the RUB System.
The following subsections detail the three main modules of
our architecture.

A. Logging Module

The logging approach implemented in USABILICS exploits
a Javascript application that collects user logs, compresses
them and sends the compressed data to the server. In the
server-side, this data is uncompressed and stored in a relational
DBMS. This approach presents two drawbacks: (i) the latency

to have the logs available for real time processing is prohibitive
and (ii) a relational database presents scalability issues.

To fight the latency issue, our logging approach has been
completely redesigned, both in client and in server sides. The
client-side application was reimplemented using JQuery and
JSON, making it even lighter than before. In the server-side,
the usage of Node.js has allowed to process the incoming
JSON much faster using its event-driven, non-blocking I/O
model.

Considering the structure of the client logs gathered by the
logging module, we decided to use a NoSQL database for
graphs, called Neo4J. Our approach to fight the scalability
problem consists in using two databases: one for storing data
to be used in real-time and another to store the data generated
by finished sessions. As soon as logs are made available
by the Node.js application, they are kept in the real-time
database. The data regarding a user session is kept in the real-
time database until the end of the user interaction. A process
that acts similarly as a garbage collector filters the old data
periodically, moving them to the offline repository database.
We plan to use log mining algorithms to find usage patterns
in the offline repository.

B. Task Analysis Module

The analysis of end-users logs in USABILICS is based on
tasks. The developer previously define the tasks for a web
application and records the optimal path for their execution.
After the deployment of the application, logs start to be
collected and stored for further analysis.

This approach is effective in order to discover and fix us-
ability problems. However, this is an asynchronous procedure
that usually takes time – logs need to be collected during
several days or even several weeks before a good evaluation
is possible. After the evaluation, a low usability index and
the wrong actions that caused the detected problems help the
developer to fix the application.

We advocate that these inputs are also valuable to support
adaptive web applications. For instance, the usability index
may be used to detect novice users, i.e. users that are not
familiar with the application. These users tend to present an
exploratory behavior, moving the mouse and scrolling the page
more times than it is usual for regular users. Whenever a
novice user is detected, the application may, for instance, adapt
its interfaces in order to provide help.

In order to leverage our task analysis procedure so as
to support the analysis of logs in real-time, we developed
an algorithm that calculates the usability index iteratively,
pointing out wrong actions as soon as they are detected during
the task analysis. Thus, our approach allows applications to
inquire about the usability index at anytime, even before the
end of a task.

Our algorithm exploits the premise that the first event of
an optimal path of any given task is unique, i.e., it does not
belong to the optimal path of other tasks. Therefore, when a
task is being performed and the user executes an event that



Algorithm 1 Real-time task analysis
currentTask is the current task that user is performing
lastAccomplishedEvent is the last event of optimal path
accomplished by the user
T is the list of tasks defined by the webmaster
usabilityIndex is the usability index of each task performed
by the user
listWrongActions is the list of wrong actions detected for
each task performed by the user

Initialization: When a new session is started in the web
application

Input: the events gathered by Logging module
Output: the usability index and the wrong actions of each

task performed by the user
1: usabilityIndex← 0
2: listWrongActions← ∅
3: currentTask ← null
4: lastAccomplishedEvent← null
5: Initialize the event gathering
6: for each event e’ gathered by Logging module do
7: AnalyzeEvent(e’)
8: end for

=0
Procedure AnalyzeEvent(e’)

1: for each t’ in T do
2: if e’ is the initial event of the optimal path of t’ then
3: if currentTask != null then
4: SaveResultsOfTask(currentTask)
5: Abort currentTask
6: end if
7: currentTask ← t′

8: lastAccomplishedEvent← e′

9: break
10: end if
11: end for
12: if currentTask != null then
13: Calculate the similarity measure between e’ and the next

event of optimal path of currentTask
14: Update usabilityIndex with the value of similarity mea-

sure
15: if e’ is the next event of optimal path then
16: lastAccomplishedEvent← e′

17: if e’ is the final event of optimal path then
18: SaveResultsOfTask(currentTask)
19: Finalize currentTask
20: end if
21: else
22: if e’ is a wrong action then
23: Append e’ in listWrongActions
24: end if
25: end if
26: end if

=0

Procedure SaveResultsOfTask(currentTask)
1: Save usabilityIndex of currentTask in the current interac-

tion
2: Save listWrongActions related to task

currentTask in the current interaction
3: usabilityIndex← 0
4: listWrongActions← ∅
5: lastAccomplishedEvent← null
6: currentTask ← null =0

corresponds to the first event of another task, the current task
is terminated and the analysis of a new task begin.

Our algorithm takes as input the events collected by the
Logging Module while the end user surfs the application.
Therefore, the algorithm starts whenever a new session is
initiated.

The algorithm presents three main parts: (i) the main
program, which executes everytime a new session is initiated;
(ii) the procedure AnalyzeEvent, which analyses the events
gathered by the Logging Module; and (iii) the procedure
SaveResultsOfTask, which stores the usability index and the
wrong actions performed during the execution of the task.

When a new session is initiated, the variables are adjusted
to default values (lines 1 to 4). The gathering of events is
then initiated by the Logging Module (line 5). The procedure
AnalyzeEvent is called whenever a new event e’ is logged
(lines 6 and 7). This procedure checks whether the new event
belongs to the task under evaluation, or is the first event of
a new task. In the first case, the procedure calculates the
similarity between this event and the expected event in the
optimal path of the task (line 13 in AnalyzeEvent).

In the AnalyzeEvent procedure, if the event e’ corresponds
to the first event of a task and there is a current task under
evaluation (currentTask != null on line 3), then it is necessary
to finish the current task, as it was aborted by the user (line
5). In this case, it is important to save the user behavior
while she was trying to perform the task, so the procedure
SaveResultsOfTask is called on line 4 before aborting the task
on line 5.

On line 13, the event e’ is compared to the next event in the
optimal path of the task. This comparison results in a similarity
measure between 0 and 1. The usability index is then update
with this measure in line 14. If e’ corresponds to the expected
event in the optimal path, it means that the user acomplished
a step of the task, so we make lastAccomplishedEvent = e’
(line 16). Otherwise, it may the case that e’ is a wrong action
(line 22). In this case, it must be added to the list of wrong
actions (line 23). If e’ is the last event of the task, then the
procedure SaveResultsOfTask is called to store the usability
index and the detected wrong actions (line 18).

C. Web Service Module

The Web Service Module provides endpoints to support the
construction of adaptive web applications using RUB. As can



be noticed in Figure 1, this module is fed by the Logging
Module (flow 3) and by the Task Analysis Module (flow 4).
The Logging Module provides information regarding recent
events and interactions performed by online users, while the
Task Analysis Module supplies the analysis about the tasks
performed by those users.

In order to reduce the number of requests to the web service,
we implemented a library called JUsabilics which encapsu-
lates the calls to the service endpoints. By using this library,
non-volatile data may be stored in local objects, avoiding
unnecessary remote calls. To benefit from JUsabilics, all the
developer needs to do is to include calls to the library methods
inside her code. When a method call is made requesting data
that is not available locally, an asynchronous request is made
to the web service, which responds sending data in the JSON
format. Following, we present examples of the usage of our
library.

1) Recommending links that have not been visited: Con-
sider a website that sells online courses where each course
is presented in a different page. To promote a specific Java
course, it may be interesting to present a link to its page in
the heading of the current page. However, it only makes sense
to present this link if the current user has not already visited
this page. The following script exploits the isVisitedPageLike
method to provide this functionality.
jUsabilics.isVisitedPageLike(’courses/soccer’,

function(data){
if (data.visited == false){

(’#divRecommend’).show();
}

})

2) Checking the usability index of a task: The method
getCurrentUsabilityIndexByTask provides the usability index
for a task under execution. The following script executes an
arbitrary procedure to deal with the problem that the usability
for the current task is low. The number 123 is the ID of a task
predefined by the evaluator.
jUsabilics.getCurrentUsabilityIndexByTask(123,
function(data){

if (data.usabilityIndex < 0.5){
//do something to improve the usability

}
})

IV. CASE STUDY

In order to demonstrate the effectiveness of our approach,
we used the RUB Toolkit to improve the functionality of
an e-commerce application that sells sports training courses.
Our aim was to investigate if the toolkit was able to provide
relevant information so that the website could be adapted in
real-time, i.e., while the end user is performing a task.

Thus, we analyzed the main task of the application: buying
an online course. This task consists of the following steps:

1) Select a course from the main menu to see its details.
2) Click the button Buy.
3) Select the payment method.
4) Fill a form containing the fields: name, address, e-mail,

phone number, date of birth and additional information.

After filling out the form, a confirmation page is displayed
to the user indicating the procedure for payment (PayPal or
bank deposit). Payment is done outside of the website.

By analyzing this task, specifically the interface layout, we
identified two possible usability problems:
• Problem 1: the position of the Buy button on the course

details page is located at the bottom of the page and, thus,
may be hard to find in order to perform the step 2 of the
taks; and

• Problem 2: the lack of guidance in filling the form in
step 4.

Therefore, we implemented interface adaptation rules that
consume information in real-time in order to detect each of
the presented usability problems.

For Problem 1, the implemented rule checks the usage of
the scroll bar alternating the vertical direction (up/down). If
so, the Buy button is repositioned in order to become easier to
find. This was done exploiting the method getEventsByPage
of jUsabilics Library, which was invoked programmatically at
intervals of 500 ms. The script below illustrates this method
call, which requires as a parameter the URL where the user
is browsing and the type of event that should appear in the
logs of the current user interaction. In the example, scrolling
events were selected in order to identify the position of the
bar in the various events.
jUsabilics.getEventsByPage(

window.location.href, "scroll",
jUsabilics.interaction.id, function(data){

if (data.length > 0){
//if the user is changing the scroll direction

}
})

For Problem 2, the implemented adaptation rule checks the
usage of the scroll bar while the user is filling up the form.
If the user goes to the bottom of the page and then returns to
the top, a help message is presented, guiding the user in the
filling of the form.

A. Recruitment of users

For this experiment, we recruited 10 inexperienced users on
the evaluated e-commerce application, i.e., users who have not
ever used the application. The age of the users are between
24-39 years and they have different levels of education, from
high school to the graduate level.

All users received the same instruction: use the website
in order to buy a specific course. The choice of a specific
course was made so that users have a target in performing the
task. Users were not seen presentially and they performed the
tasks on their personal computers. Using the RUB Toolkit, we
collected the logs of user interactions for later analysis.

B. Discussion

During the the execution of the ten tasks by the recruited
users, the usability index was calculated in real-time and the
wrong actions were identified. The hypothesis of Problem 2
was not found in any of the ten executions, i.e., no user
had difficulty to fill out the form. However, the Problem



1 was identified in six task executions and, consequently,
the adaptation rule was triggered in real-time, displaying the
Buy button more properly. In four tasks, users completed the
purchase without the need of interface adaptation.

The aim of adapting the interface in real-time is to assist the
user during the execution of the task. Therefore, the adaptation
of the interface occurs after the identification of any difficulty
in interaction. Thus, the adaptation must improve the usability
of the interface for the current user.

In order to verify the effectiveness of the adaptation rules
for improving the usability of the application, it is worth
comparing the amount of wrong actions and the value of the
usability index in the tasks in which the adaptation rule was
triggered and in those in which no adaptation occurred. In our
experiment, six of the ten users found difficulties in executing
the task, thus triggering the adaptation.

Table II shows the average amount of mouseover and
scroll events detected on user interactions. These events are
commonly performed by users when looking for an element
in the interface. The table also shows the usability index of
the recorded task. For the task executions without interface
adaptation (four cases), the usability index was 76%, and the
average number of scroll events was 20,7. For the six task
executions with interface adaptation, the average amount of
mouseover events and the average amount of scroll events were
higher, however, due to the adaptation, the usability index was
75% – only 1% less than the executions without adaptation.

These results show that the adaptation rule implemented for
the first problem identified the wrong actions (mouseover and
scroll events) in sufficient time to trigger a relevant adaptation
in real-time. Task executions with adaptation presented about
45% more mouseover and scroll events. However, as soon as
the usability problem was identified and the adaptation was
performed, the number of wrong actions declines significantly.
More importantly, the value of the usability index is almost
equal in the two cases, showing that the adaption is able
to improve the usability when the user is having trouble to
perform a task.

TABLE I
COMPARISON OF INTERACTIONS

Without adaptation With adaptation
MouseOver Scroll Index MouseOver Scroll Index

79,2 20,7 76% 114,6 30,3 75%

V. CONCLUSION

This paper presents the RUB Toolkit, which gathers web
client logs, analyzes them in real-time and provides informa-
tion about the current user behavior in order to support the
construction of adaptive Web applications.

We detailed the RUB Toolkit architecture and also presented
the algorithm that executes the analysis of user interaction logs
in real-time, which makes it possible to perform remote and
automatic usability evaluation based on task analysis.

In order to provide web applications with real-time data con-
cerning the user behavior, RUB provides a JavaScript library

called jUsabilics. This library contains predefined functions
that send requests to a web service, making it possible for
applications to consume (i) the wrong actions identified during
the task executions; (ii) the usability index of a particular task
performed by the user, and (iii) the user actions.

In order to demonstrate the effectiveness of our approach,
we conducted a case study on an e-commerce application. Our
study presents the results of an adaptation triggered in real-
time in order to assist users to perform the task of buying an
online course. The study shows that this adaptation reduces
the number of wrong actions and improves the usability index
when the user is having trouble to perform the task.

The RUB toolkit contributes to the efforts of understanding
the user behavior by analyzing client logs. Therefore, it is a
valuable tool to improve the user experience in e-commerce
applications.

In future work, we intend to incorporate Web Usage Mining
algorithms to the RUB Toolkit in order to detect patterns of
behavior based on the usage history.

REFERENCES

[1] S. Abbar, S. Amer-Yahia, P. Indyk, and S. Mahabadi. Real-time
recommendation of diverse related articles. In Proceedings of the 22Nd
International Conference on World Wide Web, WWW ’13, pages 1–12,
New York, NY, USA, 2013. ACM.

[2] S. R. Aghabozorgi and T. Y. Wah. Recommender systems: Incremental
clustering on web log data. In Proceedings of the 2nd International
Conference on Interaction Sciences: Information Technology, Culture
and Human, ICIS ’09, pages 812–818, New York, NY, USA, 2009.
ACM.

[3] M. Eirinaki and M. Vazirgiannis. Web mining for web personalization.
ACM Trans. Internet Technol., 3(1):1–27, Feb. 2003.

[4] L. F. Gonçalves, L. G. Vasconcelos, E. V. Munson, and L. A. Baldochi.
Supporting adaptation of web applications to the mobile environment
with automated usability evaluation. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, SAC ’16, pages 787–794, New
York, NY, USA, 2016. ACM.

[5] S. Gunduz and M. Ozsu. A poisson model for user accesses to web
pages. In Computer and Information Sciences - ISCIS 2003, volume
2869 of Lecture Notes in Computer Science, pages 332–339. Springer
Berlin Heidelberg, 2003.

[6] A. Joshi, K. Joshi, and R. Krishnapuram. On mining web access logs.
In In ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 63–69, 2000.

[7] D. Pierrakos, G. Paliouras, C. Papatheodorou, and C. D. Spyropoulos.
Web usage mining as a tool for personalization: A survey. User Modeling
and User-Adapted Interaction, 13(4):311–372, Nov. 2003.

[8] G. A. API. Google analytics API. https://developers.google.com/
analytics/devguides/reporting/realtime/dimsmets/?hl=pt-br, 2016.

[9] L. G. Vasconcelos and L. A. Baldochi. USABILICS: remote usability
evaluation and metrics based on task analysis (in portuguese). In
Proceedings of the 10th Brazilian Symposyum on Human Factors
in Computer Systems & 5th Latin American Conference on Human-
Computer Interaction, pages 303–312, 2011.

[10] L. G. Vasconcelos and L. A. Baldochi, Jr. Towards an automatic
evaluation of web applications. In SAC ’12: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pages 709–716, New
York, NY, USA, 2012. ACM.

[11] L. G. Vasconcelos and L. A. Baldochi, Jr. Usatasker: a task definition
tool for supporting the usability evaluation of web applications. In
Proceedings of the IADIS International Conference on WWW/Internet
2012, pages 307–314, Madri, Spain, 2012. IADIS.

[12] J. D. Velasquez and V. Palade. Adaptive Web Sites: A Knowledge
Extraction from Web Data Approach, volume 170. IOS Press, 2008.


