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Abstract. The Roofline model gives insights about the performance behavior
of applications bounded by either memory or processor limits, providing useful
guidelines for performance improvements. This work uses the Roofline model on
the analysis of the MGB model that simulates hydrological processes in large-
scale watersheds. Real-world input data are used to characterize the performance
on two multicore architectures, one with only CPUs and one with CPUs/GPU.
The MGB model performance is improved with optimizations for better memory
use, and also with shared-memory (OpenMP) and GPU (OpenACC) parallelism.
CPU performance achieves 42.51 % and 50.17 % of each system’s peak, whereas
GPU performance is low due to overheads caused by the MGB model structure.

1. Introduction
Most hardware architectures of current computers comprise hierarchical memory sets, fused
multiply-add (FMA) and vector instructions, separate functional units, and more diverse
features that can be exploited for performance improvements in software applications
[Hennessy and Patterson 2007, Dolbeau 2015]. Besides these characteristics, computer
systems are now multicore commonly consisting of independent CPUs, each with several
cores (some multithreaded) that perform concurrent computations [Hill and Marty 2008].
Thus, building efficient and portable software that benefit from the hardware potentials
requires tools that reveal the behavior of applications under such systems.

The Roofline model [Williams et al. 2009] is a bound and bottleneck-based tool for
a visual representation of the memory and processor capabilities of a computer system that
identifies the factors limiting the performance of an application, and offers guidelines for
choosing which memory/compute optimizations are necessary to improve the performance.
The model relates the flops per byte transferred or arithmetic intensity (AI) to floating-point
performance (flops/s). Generally, memory optimizations are first recommended to increase
the AI before trying compute optimizations.

The contribution of this work is the performance analysis with the Roofline model
of the MGB hydrological model [Collischonn 2001] that is widely employed for the
understanding of hydrological processes in large-scale watersheds. Performance is first
improved with optimizations on the implementation for better memory use, and then with



shared-memory and GPU parallelism using OpenMP and OpenACC, respectively, for
productivity and portability purposes. The parallel executions on CPU were conducted
with different numbers of threads for a selected thread binding since affinity affects
performance.

1.1. Structure of the Work
The structure of this paper is as follows. The MGB model is described in Section 2. Section
3 gives the characteristics of the computer systems used as testbed. Section 4 presents the
Roofline analysis of the MGB model, and the details of the memory/compute optimizations
performed. Results of the performance evaluation, and optimization analysis are in Section
5. Related works that are based on Roofline model analysis are included in Section 6.
Conclusions are summarized in Section 7.

2. MGB Hydrological Model
The “Modelo de Grandes Bacias” (MGB) [Collischonn 2001] is a hydrological model
developed at the IPH-UFRGS in Brazil focusing on hydrological processes in large-scale
watersheds, particularly in the South America region. The model simulates 1D propagation
of water flows on rivers and watersheds [Fan et al. 2014] for the analysis of extreme events
(floods and droughts), forecast of river discharge, estimation of the effects of climate
change due to vegetation and soil cover etc [Paiva et al. 2011].

Numerical solutions are computed from the inertial simplification of the Saint-
Venant equations, i.e., continuity (1) and momentum (2) equations, where h is water height,
q is discharge, y=h+z is water level relative to elevation z, g is the acceleration of gravity,
n is the Manning coefficient, t is time, and x is longitudinal distance.
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These equations are solved from initial and boundary conditions with forward in time and
centered in space finite difference approximations that define an explicit numerical scheme
(3)-(7), where N is the number of catchments of the watershed, and i and k are spatial and
temporal indexes, respectively.
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The scheme is divided into three routines called successively for each MGB model iteration
while the inertial model time step ∆t satisfies stability, looping through catchments to
compute stable time steps for α=0.70 (3), water height and discharge at i+1/2 (4)-(5),
and water height and level at i (6)-(7).

The spatial discretization of the MGB model consists of three hydrological units:
catchments, subbasins, and hydrological response units (HRUs). Catchments and subbasins
are regions that contribute water to drainage network segments and to outlet points,
respectively, whereas HRUs are regions of similar hydrological behavior. Figure 1
illustrates the discretization of the river length according to (3)-(7).

Figure 1. River length discretization for the inertial model [Fan et al. 2014].

Besides the Saint-Venant equations, the MGB model also computes
evapotranspiration from the Penman-Monteith equations [Shuttleworth 1993], and vertical
water balance in soil [Collischonn 2001] to further compute surface, subsurface and
groundwater flows. The overall performance of the model is affected not only by the
numerical method, but also by the spatial and temporal resolutions of the input dataset
because execution times depend predominantly on domain size, which constitutes a key
factor that significantly impacts the utility of the model.

3. Computer Systems and Datasets for Performance Evaluation

3.1. Computer Systems

The computational testbed consists of two computer systems, namely urano and z800,
maintained by the Image Processing Division (DPI) at the National Institute for Space
Research (INPE) in Brazil. Both systems include CPUs based on the Intel Westmere-EP
microarchitecture without FMA instructions, but with 128-bit SSE4 vector instructions,
and hyper-threading. The z800 has an additional GPU. The urano system is a high
performance server with Linux Fedora Core 23, whereas the z800 system is a desktop
workstation with Linux Ubuntu 16.04.1.

Details of the hardware specifications of each system are in Table 1 that includes
the peak double-precision processor performance for all cores, and the peak bandwidth
of caches and DRAM memory. The peak bandwidths were measured with the Intel



Table 1. Computer systems used for performance evaluation

Name urano z800

Processor
2 Intel Xeon

X5670
2 Intel Xeon

E5620
1 NVIDIA GeForce

GTX 760
Cores / Threadsa 6 / 24 4 / 16 1152
Frequency (GHz) 2.93 2.40 1.06

Peak performance (Gflops/s) 70.32 38.40 1221.12
Memory size (GB)b 192 11 2

Peak bandwidth (GB/s)b 12.80 10.66 96.13
Stream bandwidth (GB/s) 11.33 10.52

-

L1
Size (bytes) 32 K 32 K

Peak bandwidth (GB/s) 748.61 555.51

L2
Size (bytes) 256 K 256 K

Peak bandwidth (GB/s) 337.70 326.78

L3
Size (bytes) 12 M 12 M

Peak bandwidth (GB/s) 163.99 135.33
aOnly cores are included for GPU. bCPU values are associated with DRAM memory.

Memory Latency Checker (Intel MLC) [Viswanathan et al. 2013], a tool designed to
measure memory latency and bandwidth [Ruggiero 2008].

The urano and z800 systems have DDR3 DRAM memory of bandwidths
12.80 GB/s (800 MHz, 2 channels) and 10.66 GB/s (1333 MHz, 1 channel). The z800 has
a GDDR5 GPU memory of 3004 MHz and 256 bit. Potential memory bandwidths were
found through the STREAM benchmark [McCalpin 1995].

3.2. Datasets

Different datasets were used as input to the MGB model with hydrometeorogical data from
two regions of the world where the Purus and Niger rivers, respectively, are located. The
Purus river is one of the main tributaries of the Amazon river in Brazil, with drainage area of
370 000 km2, and average discharge of 11 km3/s [Paiva et al. 2011]. The Niger river is the
largest river in West Africa, with drainage area of 657 000 km2 [Fleischmann et al. 2017],
and average discharge of 15 km3/s [Zwarts et al. 2005].

Each dataset includes discretization data of catchments, subbasins, and HRUs
(spatial) for each time step (temporal). The Purus dataset has 1984 catchments, 16
subbasins, and 9 HRUs for 4747 time steps, whereas the Niger dataset has 4307 catchments,
9 subbasins, and 11 HRUs for 5800 time steps. The MGB model was run in simulation
mode with preset calibration parameters.

4. Roofline Analysis and Optimizations

In this section, we present our analysis of the MGB model, based on traditional code
profiling techniques and on the Roofline approach. Possible optimizations for the MGB
model are discussed based on the observations derived from the Roofline analysis.



4.1. Profiling of the MGB Model

Profiling of the MGB model identified three routines of the inertial model as the most time-
consuming routines, namely timestep (STE), discharge (DIS), and continuity
(CON). Table 2 shows the CPU runtime of each routine, and the percentage relative to the
CPU runtime of the MGB model for executions on each system with the Purus and Niger
input datasets. From the two systems, the routines represent on average 80.64 % (Purus)
and 85.23 % (Niger) of the MGB model runtime. The MGB model was compiled with the
ifort 17.0.7 compiler using the -O2 flag for automatic ILP and vectorization.

Table 2. Profiling of the MGB hydrological model

System urano z800

Datasets
Routines

STE DIS CON STE DIS CON

Pu
ru

s Runtimea 19.65 140.85 76.05 24.23 173.27 89.83
% of MGB 6.83 48.93 26.42 6.67 47.69 24.73

MGB runtimea 287.88 363.30

N
ig

er

Runtimea 22.69 163.99 82.76 28.24 201.28 98.10
% of MGB 7.26 52.44 26.46 7.27 51.78 25.24

MGB runtimea 312.73 388.69
aRuntimes are in seconds.

4.2. Roofline Analysis

The Roofline model [Williams et al. 2009] is a valuable tool that provides insights about
the behavior of applications on computer systems with diverse features and capabilities of
memory and processor. The development and optimization of applications can be guided
by the model for better utilization of the hardware potentials, thus resulting in performance
improvements.

As mentioned in Section 1, the Roofline model uses the arithmetic intensity I
(flops/byte) of an algorithm to identify whether its performance on a given system is
bounded by either memory or processor limits. On a computer system with peak memory
bandwidth B (bytes/s) and peak floating-point processor performance F (flops/s), the
maximum attainable performance P for I is P = min {B×I, F}.

The original Roofline model considers the AI computed from off-chip memory
transfers between the caches and DRAM memory, although it is not sufficient to fully
describe the performance of applications on modern hardware architectures. Our work
uses a more precise Roofline model referred to as Cache-Aware Roofline model (CARM)
[Ilic et al. 2013], which also accounts for the on-chip memory traffic with data transfers
between different cache levels for more accurate performance information.

In the present work, performance data were computed from hardware counters
collected with the Performance API (PAPI) 5.6.0 [Terpstra et al. 2010]. The hardware
counters used for the number of bytes are PAPI LD INS and PAPI SR INS that provide
the number of memory instructions of loads and stores for bytes transferred from and
to the L1 cache (write-back mode), respectively. Thus, the total number of bytes is



8*(PAPI LD INS+PAPI SR INS) because computations are in double precision. The
hardware counter used for the number of floating-point operations is PAPI FP OPS.

Figure 2 exhibits the rooflines of the urano and z800 systems, including ceilings for
memory/processor capabilities of a single processor core (derived from Table 1), and marks
for the routines evaluated. The routines discharge and continuity are located under
memory ceilings, whereas the routine timestep is under a compute ceiling.

(a) (b)

Figure 2. Rooflines of (a) urano and (b) z800 systems with MGB routines marks.

Apart from the memory and processor ceilings already explained, the rooflines in
Figure 2 include the memory ceilings for non-uniform memory access (NUMA) affinity
and unit-stride access, and the processor ceilings for ILP and vectorization. These ceilings
were determined with a microbenchmark that performs only load instructions and floating-
point operations on one array, so that instruction/operation latencies affect the values of
the ceilings. The theoretical ceilings (marked with star) do not account for such latencies.

The NUMA affinity ceiling characterizes the bandwidth of using a processor core
that accesses data allocated to its local memory, whereas the unit-stride ceiling considers
data that are accessed contiguously in memory. The ILP and vectorization ceilings are
the performance with loop unrolling and with vector instructions, respectively. From
the unit-stride and vectorization ceilings, the ridge points of the systems (minimum AI
required for maximum performance) are I=0.23 (urano) and I=0.20 (z800).

4.3. MGB Model Optimizations
The routine timestep requires only compute optimizations because the AI is about
0.42 (Table 3), which is located under the compute ceilings, i.e., to the right of the ridge
point. This routine executes few memory instructions (only two array accesses) to compute
the stable time steps of the inertial model, but a minimum reduction operation limits the
performance.

Even though the AI of the routine discharge is 0.13, the performance is very
close to the top compute ceilings because this routine presents a large number of floating-
point operations. Such performance can be improved not only with compute optimizations
but also with memory optimizations, since it remains below the ceilings related to DRAM
memory accesses, so a better cache memory use is beneficial for performance.



The routine continuity presents the lowest AI of approximately 0.06, but both
rooflines indicate that the data used are kept in cache, and it can also be improved with
compute optimizations (urano). However, gains in performance are hindered by a linear
search performed in the routine that selects values from a table required for the interpolation
of water levels and cross-sectional areas.

Table 3. Performance data of routines for complete runs of MGB model

System urano z800

Datasets
Routines

STE DIS CON STE DIS CON

Pu
ru

s Flopsa 8.22 177.02 69.47 8.23 176.81 69.37
Bytesa 19.71 1352.29 1261.22 19.76 1352.35 1261.28

AI 0.42 0.13 0.06 0.42 0.13 0.05

N
ig

er

Flopsa 9.57 204.94 80.27 9.57 204.75 80.09
Bytesa 22.37 1573.28 1409.27 22.40 1573.31 1409.30

AI 0.43 0.13 0.06 0.43 0.13 0.06
aFlops and bytes are in billions.

The original scheme of the inertial model is exhibited in Figure 3 that includes
the successive calls made to the routines while stable time steps of the inertial model
accumulate to one time step of the MGB model. Each routine has a loop that iterates
through the catchments to perform the required computations.

Figure 3. Scheme of the inertial model.

Before applying optimizations with CPU/GPU parallelism, as the routines are called
successively for each inertial model iteration, the algorithms of the routines were joined
together as one routine. This modification ensures better memory use by maintaining most
variables in cache, particularly for the routine discharge, and also reduces overheads
associated with routine calls, thus improving the overall performance of the MGB model.

Figure 4(a) shows a simplified view of the algorithm of routine continuity with
an OpenMP directive for parallelization on multiple CPUs [Dagum and Menon 1998], and
the static schedule for an even workload distribution (loop iterations are load balanced).
Similar OpenACC directives were used for parallelization on GPU [Wienke et al. 2012]
(!$ACC parallel loop private(...)) with explicit transfer of data between
host (CPU) and device (GPU) memories (Figure 4(b)), but the MGB model was compiled
with the pgf90 18.10-1 compiler that supports OpenACC.
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Figure 4. (a) OpenMP in routine continuity, (b) MGB model scheme with
OpenACC parallelization and CPU/GPU data transfers.

5. Experimental Results
This section presents the experimental results obtained from applying the optimizations
previously mentioned based on the Roofline analysis. The modification of joining the three
routines of the inertial model into one routine for better cache use reduced the runtimes of
the MGB model, thus characterizing the first performance improvement.

Figure 5 shows sequential runtimes of the separate routines stacked on top of each
other (STE/DIS/CON) compared to the joined routine (JOIN), and runtimes of the original
(MGB.ORIG) and joined (MGB.JOIN) MGB model versions. On average, JOIN runtimes
were 3.39 % (Purus) and 4.45 % (Niger) lower than STE/DIS/CON runtimes.

Figure 5. MGB model sequential CPU runtimes for separate/joined routines.

Meanwhile, MGB.JOIN runtimes were on average 17.68 % (Purus) and 11.79 %
(Niger) lower than MGB.ORIG. This runtime reduction results from a decrease by a factor
of three on the overheads of the number of routine calls, which approximately changed
from 3.54 M to 1.18 M for Purus, and from 1.90 M to 0.63 M for Niger.

Cache use is another factor that contributes to the runtimes reduction of JOIN. On
both systems, the L3 cache is shared between all the cores of a NUMA node, and the
latency of a core to access the L3 cache is higher than the latency to access the L1/L2
private caches. Table 4 includes the L3 cache misses collected with PAPI for the separate
and joined routines, where the latter presents fewer misses.



Table 4. L3 cache misses of the separate and joined routines

System urano z800

Datasets Routines
SEPa JOIN SEPa JOIN

Purus 567267 463625 302278 248703
Niger 3356726 2949643 3241516 1204063

aSEP refers to the separate routines STE, DIS, and CON.

5.1. CPU Parallelism
Besides the performance improvements by joining the routines, the use of parallelism also
reduced the runtimes of the MGB model. Since the computer systems have two processors,
each processor on a separate NUMA node, and as the processors support hyper-threading,
the numbers of threads chosen for conducting the parallel executions were the number of
cores on a single processor, and the number of cores/threads on two processors.

Resource contention between threads is avoided by binding each thread to a single
physical core for the cases where the number of OpenMP threads is not equal to the number
of physical threads. This configuration is possible by setting two OpenMP environment
variables, namely OMP PLACES = cores, and OMP PROC BIND = close. Results of the
shared-memory parallelization with OpenMP are exhibited in Figure 6.

The MGB.JOIN parallel runtimes are also lower than the MGB.ORIG runtimes
because less overhead is introduced by routine calls in the inertial model. In both systems,
the lowest runtimes are achieved with the number of threads equal to the number of all
available cores because this configuration uses the largest number of concurrent threads
with the least contention for resources. Overheads with 24 (urano) and 16 (z800) threads
are not amortized by the low number of loop iterations.

(a) (b)

Figure 6. MGB model parallel CPU runtimes on (a) urano and (b) z800 systems,
for a varying number of threads employed.

From the lowest runtimes of the parallel executions on CPU, the average
performance of JOIN computed for the Purus and Niger datasets is 9.08 Gflops/s on
urano and 5.94 Gflops/s on z800. The highest performance achievable (vectorization
ceiling) with all the cores on urano and z800 are 21.36 Gflops/s and 11.84 Gflops/s,
respectively. Therefore, the performance of JOIN is about 42.51 % (urano) and 50.17 %
(z800) of the maximum possible performance on each system.



5.2. GPU Parallelism
The runtimes achieved with parallelization on GPU were higher than the optimal parallel
CPU runtimes. Figure 7 exhibits the GPU runtimes including above each bar how many
times these runtimes were higher than the average optimal CPU runtimes.

Figure 7. GPU runtimes of routines and MGB model.

GPU runtimes are high because too much OpenACC overhead is introduced by the
millions of routine calls, which is not amortized by the thousands of loop iterations (number
of catchments), i.e., computations are not GPU intensive. The routines timestep and
continuity do not show performance gains with GPU because the former has a low
number of computations and performs a reduction operation, whereas the latter includes a
linear search that uses the parallel GPU resources poorly. GPU performance of routine
discharge is slightly better for the larger number of computations (Flops in Table 3).

6. Related Work
Recent works analyzed the performance of computational applications based on Roofline
model. In [Wittmann et al. 2018], more accurate performance limits are computed from
an analytical performance model that captures the sequential and parallel execution phases
of a sparse direct solver with different memory bandwidths for each phase. The phases are
defined from a particular data structure used for efficient data storage in memory.

The methodology presented in [Yang et al. 2019] constructs a hierarchical Roofline
model for GPUs that incorporates L1, L2, device memory and system memory bandwidths.
A NVIDIA utility is used to collect the information necessary to compute the performance
and arithmetic intensity of the applications processed on GPU. Three applications of
different computational characteristics were evaluated.

In our work, the Roofline model consists of more general ceilings described in
[Williams et al. 2009], which helped to identify a relationship between the performance
of different routines of the MGB model. Moreover, we do not investigate performance
analysis with the Roofline model on GPU because the GPU parallelization of the MGB
model indicated that the model must be fully restructured for adequate GPU use, in order to
avoid excessive GPU initialization overhead that limits the MGB model performance. To
the authors' knowledge, no other work presents the Roofline analysis of the performance
of a hydrological model.



7. Conclusion
This work presented the performance evaluation of the MGB hydrological model with
analysis based on the Roofline model that provided the memory and processor capabilities
of two computer systems presenting different hardware and performance characteristics,
both with multiple CPUs and one with an additional GPU.

The Roofline model worked as a guideline for understanding the behavior of the
MGB model executed with two distinct input datasets, and the performance data for the
Roofline analysis were collected from hardware counters accessible through PAPI.

The most time-consuming routines of the MGB model were identified, where
the modification of joining the routines for better memory use resulted in performance
improvements, characterizing a first optimization. Furthermore, parallelization on multiple
CPUs and on GPU was performed with OpenMP and OpenACC standards, respectively.

Parallelization on CPUs showed better performance than on GPU because one
routine has few computations, and other performs a linear search. Moreover, overhead is
introduced into GPU runtimes due to the large number of routine calls, and not so intensive
computations. The best performance achieved on CPU uses the number of threads equal to
the number of all available cores on each system for a particular thread binding.

As future work, NUMA effects will be analyzed with the parallel initialization
of the MGB model variables by placing threads and data on the same NUMA node to
minimize data access latency times for potential runtimes reduction. The use of different
thread bindings will be investigated to identify whether thread placement plays a role on
the MGB model performance. MGB model runs in calibration mode, which is used to
define watersheds parameters, will also be considered for performance analysis because
the calibration method is a computationally intensive task.
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