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Phase detection of chaos
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A technique, first introduced in the context of pseudoperiodic sound waves, is here applied to the problem of
detecting the phase of phase coherent and also phase noncoherent chaotic oscillators. The approach is based on
finding sinusoidal fits to segments of the signal, therefore obtaining, for each segment, an appropriate frequency
from which a phase can be derived. Central to the method is a judicious choice for the size of a sliding window
and for the frequency range, as well as for the window advancing step. The approach is robust against moderate
noise levels and three cases are presented for demonstrating the applicability of the method.
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I. INTRODUCTION

Synchronization is everywhere. From simple devices like
pendulum clocks to more complex processes like Parkinson’s
disease it is not uncommon to find systems oscillating in
unison [1–4]. Understandably, the amount of recent literature
on the subject is enormous, including the various types of
synchronization (complete, incomplete, phase, lag, gener-
alized) [5–11]. Among them, phase synchronization is of
particular interest due to its wide range of applications. This is
the type of synchronization where the synchronized systems
maintain no correlation between their amplitudes, but keep
their phases in step with each other. A number of techniques for
detecting phase synchronism have been developed, including
straightforward angle measurements on the attractor [12],
Hilbert transform [7], Poincaré surface of section [8], curvature
and recurrence plots [13,14], localized sets [15], short-time
Fourier transform [16], and wavelets [17]. All these techniques
are directly applicable to oscillators with coherent attractors
for which the trajectory goes around a fixed center of rotation,
and the phase can be defined as the increasing angle between
the radius of the trajectory and an arbitrary fixed reference
axis. This is not the case for phase noncoherent attractors, for
which detecting phase synchrony poses a more challenging
task since they do not have a well-defined center of rotation.
For this situation, so far there is no general methodology that
can be applied with efficacy, in particular if the data series
came from an experiment [18].

The method we propose here, introduced in the context
of pseudoperiodic sound waves [19], applies to both phase
coherent and phase noncoherent oscillators. It is based on
a least-square spectral analysis to fit sinusoidal functions to
segments of oscillating signals. The technique does not require
following the trajectory on the attractor, works well over a wide
range of adjustable parameters, is of easy implementation, and
is particularly appealing for experimental settings with single
signal outputs since there is no need of attractor reconstruction.
It consists of an algorithm for estimation of a fundamental
frequency for short segments, or windows, along the whole
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extension of the signal, and it operates by minimizing the
square error of fitting a sinusoidal function to the series
segment. The use of this least-square parameter estimation
makes the method intrinsically resilient to the presence of
noise.

II. PHASE ESTIMATION BY MEANS OF FREQUENCY

Consider an oscillating time series y(t) from which we
select a segment with K points y(tk), where time tk , k =
1, . . . ,K , is equally spaced, and write

ŷ(tk) = β1 sin(ω tk) + β2 cos(ω tk) + β3 (1)

as an approximation to y(tk), where ω is the frequency of the
sinusoid and β1, β2, and β3 are parameters to be estimated. In
matrix form we then write

Ŷ =

⎡
⎢⎢⎢⎢⎣

sin(ω t1) cos(ω t1) 1

sin(ω t2) cos(ω t2) 1
...

...
...

sin(ω tK ) cos(ω tK ) 1

⎤
⎥⎥⎥⎥⎦

.

⎡
⎢⎣

β1

β2

β3

⎤
⎥⎦ . (2)

Therefore, Y = Mβ + ε, where ε is the error of this
approximation.

For a given value of ω, the vector parameter β is estimated
using the least-squared error by minimizing

ξ =
N∑

k=1

ε2
k = εT ε = (Y − Mβ)T (Y − Mβ). (3)

This yields

β = [MT M]−1MT Y, (4)

which corresponds to the minimum square error.
In order to find the frequency ω, for the appropriate

sinusoidal component, we need to evaluate the square error (as
a function of ω) that minimizes ξ (ω). The length of the selected
segment plays an important role in this computation and there
is no general rule for finding its proper value. Each case needs
to be analyzed individually taking into account details like
the signal sampling rate and the average number of points per
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FIG. 1. (Color online) Periodogram of Rössler (a) coherent and
(b) noncoherent series. The dotted lines indicate the positions of the
corresponding average cycles.

oscillation. However, a simple analysis of the periodogram of
the signal can provide an empirical guideline for the average
number of points per cycle to be used as reference for the
length of the segment. For example, the periodograms for
the coherent and noncoherent Rössler systems (the equations
are introduced in the next section), as shown in Fig. 1, indicate
cycles with (a) 120 points and (b) 150 points, respectively. Nu-
merically we find it suitable, and it makes good sense, to choose
a segment length larger than the average cycle obtained from
the periodogram. This is illustrated in Fig. 2 where we use three
different segment lengths to compute the error function ξ (ω).
The number of points per segment is 280 for plot (a), 320
for plot (b), and 640 for plot (c), coherent, and likewise for
plots (d), (e), and (f), noncoherent. Notice the flexibility of the
proposed method regarding the choice for the length of the
segment. All the cases in this example show the valley point
(minimum ξ ) at an ω value around 1.0, not atypical for the
Rössler system. The chosen frequency value in each case is

2 4 6
0

1

2
x 10

4

ω

ξ(
ω

)

ω*=0.99658

2 4 6
0

1

2
x 10

4

ω

ω*=1.0146

2 4 6
0

1

2

3

x 10
4

ω

ω*=1.0416

2 4 6
0

1

2
x 10

4

ξ(
ω

)

ω*=1.0116

2 4 6
0

1

2
x 10

4

ω*=1.0296

2 4 6
0

1

2

3

x 10
4

ω*=1.0236

(a) (b) (c)

(f)(e)(d)

FIG. 2. (Color online) Error function ξ (ω) for 1000 values of
ω ∈ [0 : 6]. (a) 280-point, (b) 320-point, and (c) 640-point sample
segment of Rössler coherent trajectory; (d) 280-point, (e) 320-point,
and (f) 640-point sample segment of Rössler noncoherent trajectory.
ω∗ expresses the estimated frequency value.

expressed by ω∗ which is the frequency to be used to obtain
the phase φ for that particular segment, taking into account
that dφ/dt = ω.

The whole extend of the signal needs to be scanned through
with a sliding window allowing for some overlapping as it
advances. The size of the window is the same as that of the
segment, given by y(tk+n.S), n = 0, . . . ,N and k = 1, . . . ,K ,
where N is the total number of points of the series, K is
the length of the selected segment (window size), and S is
the size of the step for the advancing window. A frequency
will be extracted for each advance of the window, and
the corresponding phase will be computed by applying a
cumulative numerical integration using the trapezoidal method
over all estimated frequencies.

The technique we propose here then requires (i) selecting
a segment length containing at least two full signal cycles;
(ii) selecting a small range of frequencies, from an initially
wide range, using the minimum error function analysis; (iii)
the step for consecutive window advances (all examples
presented here use S = 1); and (iv) using the trapezoidal
integration method for obtaining the phases. The sequence
of these four points summarizes the method from here on
referred to as PEMF, an acronym for phase estimation by
means of frequency.

III. PHASE SYNCHRONIZATION DETECTION

We now implement the PEMF method using coupled
chaotic oscillators in order to identify their phase synchronous
regimes. The method obtains the phases φ1 and φ2 of the
oscillators, and then the locking condition �φ(t) ≡ |nφ1(t) −
mφ2(t)| � 2π is tested. Here we consider the n = m = 1 case
and demonstrate the applicability of the proposed method to
four different setups. In the first three setups we compare the
PEMF method with other methods, and in the fourth setup we
apply the method to a forced plasma experimental time series.

Among the other methods mentioned in the Introduction,
the three more closely related to our PEMF method are the
short-time Fourier transform [16], the Hilbert transform [7],
and wavelets [17] (see Ref. [16] for a comparative study
of the three approaches). The wavelets technique has been
applied to noncoherent oscillations [17], but we are not aware
of this being the case for the short-time Fourier and Hilbert
transforms. Therefore we here choose to compare our approach
in both coherent and noncoherent cases first with other more
direct measurements and also with the continuous wavelet
method with the Morlet wavelet as the mother function [20].

A. Coherent Rössler system

In this first case we use two coupled Rössler oscillators
[12,21],

ẋ1,2 = −ω1,2y1,2 − z1,2 + η(x2,1 − x1,2),

ẏ1,2 = −ω1,2x1,2 + ay1,2, (5)

ż1,2 = 0.1 + z1,2(x1,2 − 8.5),

where a governs the topology of the attractor, η is the coupling
strength, ω1 = 0.98 and ω2 = 1.02 establish the mismatch in
the natural frequencies of the two oscillators, and integration
step h = 0.05. For a = 0.16 the attractor is phase coherent
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FIG. 3. (Color online) Time evolution of the phase difference of
the Rössler oscillators in a phase coherent regime (a = 0.16) for
three different intensities of coupling, as indicated, for (a) the PEMF
method, (b) the arctangent method, (c) the wavelet method with time
scale s = 5.4, and (d) the wavelet method with time scale s = 5.5.

and the results of applying the PEMF method for three
different values of the coupling η are shown in Fig. 3(a). This
figure displays the phase differences between the two coupled
oscillators, indicating clearly the tendency to synchronization
as η increases. The phases are estimated by using a sliding
window of length K = 540 points containing about four
oscillations of the Rössler x component. For the frequencies
ω we use 200 equally spaced values between 0.6 and 1.4.

In order to validate the PEMF method we check our
results against the results obtained using the standard phase
definition φ(t) = arctan(y/x) [7] and applying the continuous
wavelet transform [20]. We compute the phases differences
for the same Rössler equations with the same three coupling
parameter values as those used in the PEMF. Figure 3(b)
shows the results using the arctangent method, and the results
using wavelet analysis, with time scale s = 5.4, are shown
in Fig. 3(c), demonstrating the agreement between the three
methods, except perhaps for smoother lines representing
phases differences in the PEMF method. Basically, the three
approaches show that, for stronger coupling (η = 0.05), the
two Rössler oscillators have their phases in step with each
other, therefore in synchrony, keeping the phase difference �φ

between them small and less than 2π . For a weaker coupling
(η = 0.035), the synchrony breaks with steps of 2π in �φ,
and more so with an even weaker coupling (η = 0.020). As
is the case for the PEMF method, the wavelet method does
not require the finding of a center of rotation for the attractor.
However, as opposed to the PEMF method, the wavelet method
is very sensitive to time scale parameter changes. For example,
using s = 5.5 instead of s = 5.4 yields completely altered
results as illustrated in Fig. 3(d).

B. Noncoherent Rössler system

For the phase noncoherent system (parameter a = 0.2925),
when the Rössler attractor goes into the funnel regime with no
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FIG. 4. (Color online) Time evolution of the phase difference of
Rössler oscillators in a phase noncoherent regime (a = 0.2925) for
three different intensities of coupling, as indicated, for (a) the PEMF
method, (b) the curvature method, (c) the wavelet method with time
scale s = 5.4, and (d) the wavelet method with time scale s = 5.5.

well-defined center of rotation in the attractor [12], the PEMF
method is applicable in the same manner as done in the phase
coherent situation, except that the lack of a well-defined center
of rotation for the attractor makes the PEMF method more
sensitive to the window size. The larger variability of the phase
noncoherent Rössler x component in fact requires a smaller
sliding window (K = 280) for the same range of the frequency
ω used before ([0.6 : 1.4]). The PEMF method results for three
different coupling values are depicted in Fig. 4(a). As the arctan
phase definition used above for coherent systems is rendered
useless for noncoherent signals, we resort to the curvature
approach to define the phase φ = arctan (ẏ/ẋ) [14,22] and
compute the phases differences for the same system. The
results are shown in Fig. 4(b), demonstrating consistency with
the PEMF method. Figures 4(c)–4(d) show the results using
the wavelet transform with s = 5.4 and s = 5.5, respectively.
As in the coherent case, the wavelet transform results are
very sensitive to the time scale parameter s with a small
range of usability, s ∈ [5.1 : 5.4]. However, the PEMF method
possesses a wide range of window length choices as we will
show next.

We now discuss the window size relation to the phase, as
mentioned previously in the case of noncoherent attractors.
In order to demonstrate the effect of different window sizes
in both coherent and noncoherent cases, we plot in Fig. 5
the variance of the phase difference between two phase
synchronized Rössler systems versus the window size. All
phases here are computed using the PEMF method. In the
coherent case [Fig. 5(a)] there is a noticeable wide range of
windows yielding small variances, indicating, in particular,
that a window size in the range [160 : 1000] would be fine.
However, the range for the window size in the noncoherent case
is smaller, as shown in Fig. 5(b). It is now restricted between
180 and 670 points. These numbers are compatible with the
values discussed in Sec. II for the length of the segment.
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FIG. 5. (Color online) Variance of the phase difference as a
function of the sliding window size. (a) Rössler oscillators with
a = 0.16 (coherent) and coupling strength η = 0.05; (b) phase
noncoherent regime (a = 0.2925) and coupling strength η = 0.2.

The influence of noise on the performance of the PEMF
method is now investigated. Adding noise to the components
of the coherent Rössler system studied previously, the signals
become x̃1,2(t) = x1,2(t) + ασ1,2ϑ1,2(t), where ϑ1,2(t) is an
independent uniformly distributed noise with zero mean and
standard deviation equal to 1. σ1,2 are the standard deviations of
components x1 and x2, respectively, and α is the noise level. We
pick the coupling strength η = 0.05 with noise level α = 0.8.
The results obtained with the PEMF method using the same
window size and frequency range as before are shown in Fig.
6(a) without noise and Fig. 6(b) with noise. Notice the modest
increase in the phase difference between the noisy signals
compared with the clean signals, clearly indicating that the
method is robust against moderate noise levels. This is because
our method is based on a least-square parameter estimation,
which per se is very resilient to the presence of noise.
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FIG. 6. (Color online) Phase difference of two coupled Rössler
oscillators in the phase synchronization state (η = 0.05). (a) Without
noise; (b) with 80% Gaussian observational noise.
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FIG. 7. (Color online) Time evolution of the phase difference
of two coupled Lorenz systems for three different coupling values:
(a) PEMF method, (b) arctangent on the projection of the attractor,
(c) wavelet method with s = 1.0, and (d) wavelet method with
s = 2.0.

C. Lorenz system

The well-known Lorenz attractor [23] is another case of a
noncoherent attractor for which finding the right definition
of phase can be challenging. The double scroll nature of
its attractor in fact precludes coupled Lorenz systems from
experiencing phase synchronization [24,25]. Nevertheless, the
PEMF method still produces good results, as shown in Fig. 7,
obtained from the two coupled Lorenz systems,

ẋ1,2 = 10(y1,2 − x1,2) + η(x2,1 − x1,2),

ẏ1,2 = 28x1,2z1,2 − x1,2 − y1,2, (6)

ż1,2 = ω1,2
(
x1,2y1,2 − 8

3z1,2
)
,

where ω1 = 0.9831 and ω2 = 1.018 introduce a small mis-
match between the two oscillators, η is the coupling strength,
and integration step h = 0.01. The adequate window length in
this case is K = 130 and for the frequency range we use 800
equally spaced values between 6 and 12.

For the sake of comparison, we take advantage of the
evident symmetry (x,y) to (-x,-y) in the Lorenz equations,
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FIG. 8. (Color online) Projection of the plasma attractor in
Cartesian coordinates.
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FIG. 9. (Color online) Time evolution of the phase difference of
the experimental data for three different forcing amplitudes: E = 0.2
V, E = 0.34 V, and E = 0.4 V.

make a projection of the attractor on the (u,z) plane, where
u =

√
x2 + y2 [8], and define the phase using the angle

φ = arctan
(

z(t)−z0
u(t)−u0

)
. In this equation u0 = 12 and z0 = 27 are

introduced for translating the axes of reference to the center
of the attractor. In Fig. 7 we show the phase differences for
the two coupled systems for three different coupling values
using the (a) PEMF method on the z component, using the
(b) arctangent method on the projection of the attractor,
and using the wavelet approach on the z component with
(c) s = 1 and with (d) s = 2. Notice the consistency of the
results obtained using the three methods. The PEMF method
uses the time series straightforwardly as it comes and does not
require initial data manipulation.

D. Plasma experimental data

In order to illustrate the applicability of the PEMF method
to experimental data we use the data of phase synchronization
of a chaotic plasma discharge tube subject to the action of
a periodic wave generator. The experimental setup and other
details can be found in Ref. [26]. We use a signal output from a
plasma discharge tube subject to a voltage of 850 V. The power
spectrum of the signal is broad with a predominant frequency
of 6960 Hz and with the largest Lyapunov exponent positive,
indicating the plasma’s chaotic character. Figure 8 shows the
reconstructed attractor obtained from the acquired time series.

The phases are estimated by using a sliding window of
length K = 500 containing about four oscillations and the
frequencies used correspond to 500 values between 6660
and 7160 Hz. The results are shown in Fig. 9 for three
different intensities of the forcing. When the plasma system
is paced with a sine wave with a frequency of 6960 Hz and
an amplitude of 0.2 V, we can observe the increase of phase

difference over time showing no phase synchronization, except
for short-lived plateaus. When the plasma system is paced
with a little stronger amplitude of 0.34 V, the evolution of
phase difference presents larger plateaus characterizing time
intervals of phase synchronization. When the amplitude of the
sine wave is increased to 0.4 V we see clearly that the phase
difference stops increasing and oscillates around a constant
value, indicating phase synchronization for the whole length
of the time series.

IV. CONCLUSION

The PEMF method proposed here consists of finding the
phase of oscillating signals by obtaining the best sinusoidal
fit for selected segments of the oscillating time series. There
is no need of attractor projection or reconstruction, which in
fact is a major advantage of the method. It is flexible and in
principle is applicable to any time series suitable for sinusoidal
fittings, as demonstrated through the preceding examples.
Care must be taken with the size of the sliding window as
well as with the range of the frequencies as there are no
standard numbers associated with them. Comparison between
the PEMF method and other approaches for finding the phase
of oscillating signals demonstrates the efficacy of the method.
As shown in Sec. III, the PEMF method yields results that are
consistent with the arctangent and wavelet methods in both
phase coherent and noncoherent cases. However the arctangent
method requires an attractor projection with a well-defined
center of rotation that is not needed for the PEMF method. The
wavelet method does not require attractors with a well-defined
center of rotation, but it is very sensitive to changes in the
time scale parameter. It produces altered results for the phase
difference in the case of s outside the small range between 5.1
and 5.4, in both coherent and noncoherent cases. This is shown
in Figs. 3(d) and 4(d), respectively. The PEMF method, in
addition to not involving derivatives or attractor reconstruction,
works well in a wide range of the sliding window parameter,
which provides a considerable level of flexibility to our
approach. It expands on the fundamental frequency estimation
technique [19] for appropriate applicability to both phase
coherent and especially phase noncoherent systems. The
method is particularly suitable for experimental data, is of
relatively easy implementation, and is robust against moderate
noise levels.
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[21] O. E. Rössler, Phys. Lett. A 57, 397 (1976).
[22] J. Y. Chen, K. W. Wong, and J. W. Shuai, Phys. Lett. A 285, 312

(2001).
[23] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[24] E.-H. Park, M. A. Zaks, and J. Kurths, Phys. Rev. E 60, 6627

(1999).
[25] Z. Liu, Y.-C. Lai, and M. A. Matı́as, Phys. Rev. E 67, 045203

(2003).
[26] C. M. Ticos, E. Rosa, W. P. Pardo, J. A. Walkenstein, and

M. Monti, Phys. Rev. Lett. 85, 2929 (2000).

016209-6

http://dx.doi.org/10.1103/PhysRevLett.79.3885
http://dx.doi.org/10.1103/PhysRevLett.80.1642
http://dx.doi.org/10.1103/PhysRevLett.80.1642
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/0375-9601(92)90841-9
http://dx.doi.org/10.1209/epl/i2005-10095-1
http://dx.doi.org/10.1007/s11071-006-1957-x
http://dx.doi.org/10.1007/s11071-006-1957-x
http://dx.doi.org/10.1103/PhysRevE.75.026216
http://dx.doi.org/10.1103/PhysRevE.75.026216
http://dx.doi.org/10.1016/j.jneumeth.2004.03.002
http://dx.doi.org/10.1016/j.physd.2005.05.008
http://dx.doi.org/10.1016/j.physd.2005.05.008
http://dx.doi.org/10.1016/j.physleta.2009.04.037
http://dx.doi.org/10.1016/j.physleta.2009.04.037
http://dx.doi.org/10.1109/89.554783
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1016/S0375-9601(01)00367-X
http://dx.doi.org/10.1016/S0375-9601(01)00367-X
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevE.60.6627
http://dx.doi.org/10.1103/PhysRevE.60.6627
http://dx.doi.org/10.1103/PhysRevE.67.045203
http://dx.doi.org/10.1103/PhysRevE.67.045203
http://dx.doi.org/10.1103/PhysRevLett.85.2929

