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Abstract: A comparison between the extended Kalman filt&FjEand the nonlinear sigma point
Kalman filter (SPKF) for a real time satellite otbidetermination problem, using GPS
measurements is presented. Such comparison is baskedting the filters robustness for degraded
initial conditions. The main subjects for the comgan between the estimators are convergence
speed and computational implementation compleiased on the analysis of such criteria, the
advantages and drawbacks of each estimator areepted. In this work, the orbit of an artificial
satellite is determined using real data from a spdmorne Global Positioning System (GPS)
receiver. This is a fully nonlinear problem, witespect to both the dynamics and measurements
equations, in which the disturbing forces are nasily modeled. The problem of orbit
determination consists essentially of estimatingesthat completely specify the body trajectory in
the space, processing a set of measurements retatedis body. In this orbit determination
problem the focus is to analyze each filter congrog behavior in situations where the initial
conditions are inaccurate, introducing since smafi to larger errors in the initial accurate
position conditions. Concomitantly another aim & Know how such inaccuracies affect the
estimators performance.

Keywords: Sigma Point Kalman Filter, Extended Kalman Filt&pbustness Assessment, Orbit
Determination.

1 Introduction

In this work, the extended Kalman filter (EKF) snepared with the nonlinear sigma point Kalman
filter (SPKF) for a real time satellite orbit det@nation problem, using GPS measurements. The
comparison is based on the assessing the robustheke filters for purposely degraded initial
conditions. The main subjects for the comparisonwvéeen the estimators are convergence speed,
divergence occurrence, flaws and statistical sbariogs. Based on the analysis of such criteria, the
advantages and drawbacks of each estimator arenpeels

Here, the orbit of an artificial satellite is detened using real data from the Global Positioning
System (GPS) receivers. In orbit determinationrtfiaal satellites, both the dynamic system and
the measurements equations are of nonlinear nathezefore one deals here with a fully nonlinear
problem in which the acting forces as well as measents are not easily modeled. The orbit
determination problem consists of estimating vdesbhat completely specify the body trajectory in
the space, processing a set of information (pseadge measurements) related to this body. As far
as this work is concerned, the more accurate GRSepmeasurements are not used here, because
the aim is not the search for accuracy, but a coisgra of performance under different error levels
of initial conditions. Besides using carrier phaseasurements, the ambiguity resolution algorithm
or any other artifacts to overcome such hindramegdceventually mask the results, misleading the
conclusions.



A spaceborne GPS receiver is a powerful meansterrdae orbits of artificial Earth satellites by
providing many redundant measurements which uleitgaields high degree of the observability to
the problem. The Topex/Poseidon (T/P) satelliteaisiice example of using GPS for space
positioning. Through an onboard GPS receiver, theugo-ranges (error corrupted distance from
satellite to each of the tracked GPS satellites)lmmeasured and can be used to estimate the full
orbital state.

The EKF is probably the most widely used real tesmation algorithm for nonlinear systems [1].
It is a nonlinear version of the Kalman filter tlggnerates reference trajectories which are updated
at each measurement processing, at the corresgpiditant. However, the experience from the
estimation community has shown that the EKF isidift to implement, requires some skill to get
tuned, depends very much on the closeness of itie tonditions to the truth values, and is only
reliable for systems that are nearly linear ontiine scale of the filter working updates. Many of
these difficulties arise from the linearizationgded by the EKF method. Specifically for the orbit
estimation problem, under inaccurate initial coiodié and scattered measurements, the EKF
implementation can lead to unstable or divergingtsms. Therefore, there is a strong need for a
method that is probably more accurate than linetiam, but that does not be liable to neither the
implementation nor additional computational costsother higher order filtering schemes. To
overcome this limitation, the unscented transforomatvas developed as a technique to propagate
mean and covariance information through nonlinesrsformations. The SPKF is a new estimator
that claims to yield equivalent or better perforemrthan the EKF and elegantly extends to
nonlinear systems, without the linearization stghs3, 4]. This algorithm is a new approach to
generalize the Kalman filter for nonlinear procasd observation models.

In this orbit determination problem the focus isawalyze each filter convergence behavior in
situations where the initial conditions are purppskegraded, introducing since small up to larger
errors in the known initial orbit elements. Anothem is to characterize how such inaccuracies
affect the performance of the estimators. Therefthe EKF (the most widely used estimation
algorithm) as well as the SPKF (supposedly the rapptopriate estimation algorithm for nonlinear
problems) performance evaluation in the real timpgt@etermination problem is due and justified.

2. The Extended Kalman Filter EKF

The EKF is a nonlinear version of the Kalman filteat generates reference trajectories which are
updated at each measurement processing times. [Rub]to the complexity of accurately modeling
the nonlinear satellite orbit, the EKF is generalged in works of such nature. The algorithm
always provides up to date reference trajectoryrastdhe most current available estimate.

Exploiting the assumption that all transformati@me quasi-linear, the EKF simply linearizes all
nonlinear transformations and to the first ordeplaees the Kalman filter matrices by their
counterpart Jacobian partial derivatives matricEBe EKF consists of cycles of time and
measurement updates. Firstly, state and covariare@ropagated from one previous instant to a
later one, meaning that they are propagated betdiserete instants of the system dynamics model.
In the sequel, state and covariance are correatedthie later instant corresponding to the
measurement time, through the observations modiés. Method has recursive nature and does not
need storage of the measurements previously ie lavgtrices, being therefore well suited for real
time processing.

The EKF time update cycle is given by
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wheref is a nonlinear vector function modeling the orbittion, X, and P, are respectively the
propagated state and the covariancefog tis the state transition matrix betwegn aind §; Qx is

the dynamics noise matrix. It is required the Jaobmatrix (0f /0x) for the transition matrix
computation which can either be simplified or canviry difficult to obtain.

The equations for the EKF measurement update eyele
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wherehy is a nonlinear vector function modeling the measwentsH is the corresponding partial

L . (dh . A N ,
derivative matrlx(a—kj; K is the Kalman gain;P and X are the state vector and the covariance
X

updated for the instark.

There are some limitations for the EKF. For inseatie linearized transformations are reliable only
if the error propagation can be matched with ggmor@ximation by a linear function; linearization
can be applied only if the Jacobian matrix exiatg] obtaining the analytical Jacobian matrices can
be a very difficult and error-prone process. Sunintay, linearization, as applied in the EKF, is
widely recognized to be inadequate, however otlterratives incur substantial costs in terms of
derivation and computational complexity. The sigoaént algorithms via unscented transformation
were developed in an attempt to overcome thesesfawl offer a feasible and reliable alternative.

3. The Sigma Point Kalman Filter SPKF

If the system dynamics and the observation modgliaear, the conventional Kalman filter (KF) is
the optimal solution and must be used fearlesshyvéVver because, not rarely, the system dynamics
and/or the measurement models are nonlinear, canteextensions of the KF like the EKF have
been used.

The SPKF is a new estimator that allows similafgrerance than the KF for linear systems and
elegantly extends to nonlinear systems, withoutiradeghe linearization procedures. This algorithm
family is a new approach to generalize the KF fonlmear process and observation models [3, 4,
6]. A set of weighted samples, the sigma pointsjsied for computing mean and covariance of a
probability distribution. Such algorithms includeetunscented Kalman filter (UKF), which is based
on the unscented transformation (UT), a nonlinearsformation for mean and covariance.

The SPKF is a technique claimed to lead to a mocarate and easier to implement filter than the
EKF or a second order Gaussian filter. The SPKFaggh is described, as follows [2]

1. A set of weighted samples is deterministically akdted, based on mean and covariance
decomposition of a random variable.



2. The sigma points are propagated through the radingar function, using only functional
estimation, that is, analytical derivatives are ns¢d to generate a posteriori set of sigma
points.

3. The later statistics are calculated using propagaitgma points functions and weights. In
general, they assume the form of a simple weigatedage of the mean and the covariance.

Herein, the UT and the SPKF, i.e., the filter steang from this transformation, will be described.
3.1 The Unscented Transformation UT

Essentially this is a way of calculating the staiss of a random variable that passes through a
nonlinear transformation. The UT approach selecssiitable set of points (sigma points) so that
their mean and covariance axeandPxx [3, 4]. The nonlinear function is applied to egdint of

the set, in turn, to yield a cloud of transformeahps. The statistics of the transformed pointsgme

y and covariancé®,,) can then be calculated to form an estimate ofnthe linearly transformed

mean and covariance.

The sigma points are carefully and deterministycalhosen so that they exhibit certain specific
properties, that is, they are not drawn at rand@dommon Monte Carlo methods. Besides, they
can be weighted in ways that are inconsistent wigéhdistribution interpretation of sample points

like in a particle filter [2, 3].

The n-dimensional random variable with X mean andP,, covariance, is approximated bg 2 1
weighted points, the so known sigma points, giwen b

x
1
I
+
—_
~~
>
+
X
~—
I
X
f—

3)

in which «00, (1/(n+/()PXX )i is either the i-th row or column of the squaretramatrix of
(n+k)P,, . The transformation occurs as follows

1. Transform each point through the nonlinear functioryield the set of transformed sigma
points

y, =f [X|] (4)

2. The observations mean is given by the weightedagecof the transformed points
Y= WY, (5)
3. The covariance is the weighted outer product otittaesformed points
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W is the weight associated to the i-th point givgn b
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3.2 The Unscented Sigma Point Kalman Filter

Using UT, the following steps are processed inkaknan filter

Predict the new state system and its associateatiance, taking into account the effects of

the gaussian white noise process.
Predict the expected observation and its residunvation matrix considering the effects of

the observation noise.
3. Predict the cross correlation matrix.

1.

2.

Figure 1 shows these 3 steps of the UT, changiad=tiF, in order to lead to the new filter: the
SPKF. These steps are put in order in the EKF thighre-structuring of dynamics, state vector and

observations models.
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Figure 1. UT introduced in the EKF, leading to SPKF



4. The Orbit Deter mination

The instantaneous orbit determination using GP8&8lIgas is basically a geometric method. In this
method, the observer knows the set of GPS satefidsition in a reference frame, obtaining its own
position in the same reference frame. Figure 2gmtssthe basic parameters for user position
determination. In Fig. 2Rpg Is the position of-th GPS satellite in the reference system,; is

the pseudorange; ang is the user position in the reference system.

User satellite

s

o H:ff:; - e

Figure 2. The Geometric M ethod

However sequential orbit determination makes ustheforbit motion model to predict between
measurement times and measurement model to updi@teorbit by processing of GPS
measurements. This gives rise to recursive and tnee Kalman filter estimator for the orbit
determination [5].

4.1 The Filter Dynamic Model

In the case of orbit determination via GPS, thenany differential equations that represent the
dynamic model are in its simplest form given traxctially as follows

F=v

v=-urr—3+a+wv ®)

with variables given in the inertial reference feanin the equations abowe,is the vector of the
position components vector (X, y, 2);is velocity vector;a represents the modeled perturbing
accelerations; andy, is the white noise vector with covarianQe The GPS receiver clock offset
was not taken into account, so as not to obscugectinclusions drawn in this paper due to
introduction of clock offset models in the filtelsdeed, the receiver clock offset was beforehand



obtained and used to correct the GPS measurensantbat the measurements are free from the
receiver clock offset error.

4.2 The Force Mod€

The main disturbing forces of gravitational nattivat affect the orbit of an Earth’s artificial déite

are: the non uniform distribution of Earth’s massean and terrestrial tides; and the gravitational
attraction of the Sun and the Moon. There are #igonon gravitational effects, such as: Earth
atmospheric drag; direct and reflected solar ramhapressure; electric drag; emissivity effects;
relativistic effects; and meteorites impacts.

The disturbing effects are in general included ediog to the physical situation presented and to
the accuracy that is intended for the orbit deteation. Here we include only a minimum set of
perturbations which enable us to assess the pexfarenof both filters, namely geopotential and
third body point mass effect of Sun and Moon.

The Earth is not a perfect sphere with homogenemass distribution, and cannot be considered as
a material point. Such irregularities disturb thebitbof an artificial satellite and the keplerian
elements that describe the orbit do not behavélyddde geopotential function can be given by [8]
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wherey is Earth gravitational constariRy is mean Earth radius; r is the spacecraft radstadce;p

is the geocentric latitudet is the longitude on Earth fixed coordinates syst€m, and S, are the
harmonic spherical coefficients of degreand ordem; P, are the associated Legendre functions.
The constantg;, Ry, and the coefficient€,, andS,, determine a particular gravitational potential
model.

Another gravitational perturbation source is tha¢ do the Sun and Moon attraction. They are more
meaningful at farther distance from Earth. As thaital variations are of the same type, be the Sun
or the Moon the attractive body, they are normatlydied without distinguishing the third body.
The luni-solar gravitational attraction mainly acts node and perigee causing precession of the
orbit and on the orbital plane. The general thregybproblem model is here simplified to the
circular restricted three-body problem, where thigital motion of a third body (satellite), which
mass can be neglected, around two other massiviesd@ studied. The motion equations that
provide the third body accelerations can be expreas [9]

.. r r
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wherer,; =r;-r;, r,3 =rg—r,, andr;j, i= 123correspond to theth body distance vector to the

system center of mass.



4.3 The Observations M odél

The nonlinear equation of the observation model is
Vi =hi (X, 1) + vy (11)

where, at timey yi is the vector ofm observationshy(x) is the nonlinear function of statg with
dimensionm; and v is the observation errors vector, with dimensieand covarianc®y. For the
present application, one only uses the ion-freeugseange measurements from the
Topex/Poseidon GPS receiver. Also, the receivetkcluffset was computed before and used to
correct the pseudo-range measurements. Additigriaynonlinear pseudo-range measurement was
modeled according to [7].

5. Reaults

The tests and the analysis for the extended EKRlandigma point SPKF algorithms are presented.
To validate and to analyze the methods, real GR& fdam the T/P (Topex/Poseidon) satellite are
used. The filter estimated position and velocitg abompared with T/P precise orbit ephemeris
(POE) from JPL/NASA. The test conditions considcealion-free pseudo-range data, collected by
the GPS receiver onboard T/P, on Novembd&} 1993, at 60s sampling rate, presenting on average
between 5 to 6 GPS satellites tracked. The GPSwdata previously preprocessed to remove the
outliers so they can not mislead the filters or kndigferent data rejection policies of each filter.
The tests have covered a long (almost a day) pefiodbit determination.

The force model includes perturbations due to geptial up to order and degree (30x30), with
harmonic coefficients from JGM-2 model, and the -84oon gravitational attraction [10, 11]. The
pseudo-range measurements were corrected to sherfiter with respect to ionosphere.

The obtained results are evaluated through errgoosition components, which represents the
difference between the POE reference and the dsfiimposition components, and are after
translated to radial, normal, and along-track (REdmponents of T/P orbit fixed system.

As already pointed, this work is not a search fBufts accuracy. It aims at the comparison of
performance between SPKF and EKF estimators undfasresht degradation levels of initial
conditions. There are peculiar interest for spemt/ergence, and divergence occurrence. In order to
analyze these subjects, the approach consistsrotiuting increasing levels of uncertainties in the
accurately known (from POE) initial position.

The errors are introduced ranging from small ufatger values, varying from 0.1 km to 1,000 km,
in power of 10, and convergence and divergence ii@han both algorithms results are
investigated. First one generates for each fills(K or SPKF) a tunned filter run with precise
known initial conditions and use the results agnerice solutions. In this case both have similar
performance and agree very well, i.e., error initms and pseudo-range residuals statistics are
equivalent, which means that if the initial conulits are accurate, SPKF and EKF show similar
convergence patterns as soon as the estimatioegestarts, and either one could be used.

Thus the analysis is based on comparing with suchference solution the errors in position
(translated to the orbital RNT components) anddifference in predicted pseudo-range residuals
obtained from SPKF and EKF algorithms.



Table 1 shows the analysis for the predicted pseange residuals convergence, which is measured
in terms of time span of data processed. The cgewnee is assumed when the residuals achieve the
same statistics of the reference solution residudleen a small 0.1 km error is introduced,
convergence occurs instantaneously after the esbimarocess starts, for both SPKF and EKF
algorithms. For 1 and 10 km errors in initial cdrahs, SPKF converges again immediately, and
long before EKF for the two cases: 2 and 2.5 hdors]l and 10 km errors, respectively. For a 100
km error, SPKF needs 2 hours of estimation to reéhehconvergence zone, and EKF, 12 hours.

And, when the largest error of 1,000 km is addd€l- ks not able to converge at all, while SPKF
still converges after 8 hours.

Table 1. Pseudo-rangeresidual conver gence speed

Errors(km) | SPKF convergence time (h) EKF convergence time (h)
0.1 0 0
1 0 2
10 0 2.5
100 2 12
1000 8 no convergence observed

Table 2 shows the convergence analysis for thetippsSsRNT components error, which is again
measured in terms of data time of processing. Wdiesmall 0.1 km initial position error is
introduced, convergence occurs instantaneously tifeeestimation process starts, for both SPKF
and EKF algorithms, in normal and transverse coraptsj and after 0.5 hours in the radial one. For
the 1,10, and 100 km errors in initial conditiorses, SPKF converges always before EKF for the
three components, as can be checked in Tab.2. hen the largest error of 1,000 km is tried,

EKF does not converge at all, while SPKF still cerges although taking longer time (almost half a
day).

Table 2. Error in position conver gence speed

errors (km) SPKF convergence time (hours) EKF convergence time (hours)
R N T R N T
0.1 0.5 0 0 0.5 0 0
1 1 0 1 2.5 1 2
10 3.5 0 1 4.5 1 2
100 3.5 1.5 2 8 16 14
1000 5 11 7| M Gbserved | observed | observed

Another statistical check is done, in order to aomfthat the algorithms effectively reached
convergence. The reference pseudo-range residatiltiss are available in the first line of Tab. 3
They are used as the reference values for SPKFEHt test cases, which statistics are only
computed after convergence time. From Tab. 3 iblmes evident that the estimators really reached
convergence, since their statistical values remaarly the same the reference ones.



Table 3. Pseudo-rangeresiduals mean and standard deviation

Errors (km) SPKF pseudo-range | EKF pseudo-range mean
meant std dev (m) + std dev (m)
O (reference) -1.248 + 25.638 -1.238 + 25.614
0.1 -1.160+ 25.846 -1.154 28.014
1 -1.037+ 26.870 -1.604 25.721
10 -1.218+ 27.410 -0.98% 25.779
100 -1.318+ 25.616 -0.994 36.403
1000 -1.133+ 29.220 no convergence observed

In order to depict such findings, Fig. 3 illustatbe reference residuals (accurate initial cooiol)
behavior, and the 1,000 km error case behavidodtin the EKF and the SPKF estimators. It clearly
indicates clues of EKF divergence for such a vexy imitial condition.
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Figure 3. Pseudo-range residuals conver gence and diver gence behaviors

Proceeding the investigation, Tab. 4 shows RMStijpwosierror, where the reference values are
again listed in the first row (yellowed). Again, ISP and EKF resulting RMS errors are only
computed after assumed convergence time. For Tabis4also clear that the estimators really
reached convergence, since their RMS values renairly close to the reference ones.



Table4. Total RMSerror in position after conver gence

errors (km) SPKF error (m) EKF error (m)
O (reference) 21.835 21.628
0.1 21.656 21.090
1 21.376 19.520
10 18.941 20.264
100 18.708 20.074
1000 22.279 no convergence observed

Figure 4 shows the errors in the RNT componentshierSPKF and EKF reference cases (accurate
initial conditions, left side) and the larger 1,00® error case results for the EKF and the SPKF
estimators (1,000km initial error, right side).indicates signs of the EKF divergence for such a
very bad initial condition while SPKF reaches tloaeergence zone, although much later than the
left side results.
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Figure4. Errorsin RNT position components conver gence and diver gence behaviors



6. Conclusions

The robustness to erroneous initial conditions wb tnonlinear estimators, namely the EKF
(Extended Kalman Filter) and SPKF (Sigma Point KainFilter) was assessed for a real time
satellite orbit determination problem using real SSheasurements. Almost one day of GPS
receiver measurements of Topex/Poseidon sateltitéOa sampling rate were processed. The
emphasis was to characterize each filter convemydsghavior in situations where the initial
conditions are inaccurate, poor, and degradedntiogducing different levels of errors in the initia
position.

Results showed that when small errors in the irotibit estimates are present, SPKF and EKF yield
similar performance compared to the reference ismlubehavior, with no errors in the initial
conditions. As expected, increasing errors deceetisefilters performance. As larger is the initial
error more difficult is for EKF and SPKF to reacbngergence. When SPKF is compared with
EKF, in all cases of larger initial errors, the SPKlways attains convergence first. The rupture
threshold for this application in particular wasla®00 km error case, where the EKF could not
converge but SPKF still achieved convergence aftehile. Therefore it is to be said that SPKF is
more robust than EKF for degraded initial errangthiis orbit determination application.
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