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Abstract: This paper presents a performance analysis of an autonomous orbit control procedure 
using a simplified GPS navigator [1], where the ground track drift of the satellite is estimated on-
board with help of a recently developed approach [2] that directly calculates the acceleration of the 
orbit ground track as a function of the solar and geomagnetic activity. The simplified navigation 
procedure improves the coarse geometric navigation solution provided by GPS receivers. This is 
done by using the GPS solutions as inputs (observations) for a real time Kalman filtering process. 
The orbital state vector is extended and includes the systematic error imposed to the GPS geometric 
solution by the changes in the set of satellites which are visible to the receiver. The simplified 
navigator has reduced computational cost, allowing it to be carried and executed on-board of 
spacecrafts. The improved outputs of this process are used in the computational implementation of 
an autonomous control system for the ground track drift of the spacecraft orbit. The behavior of the 
system is evaluated by means of orbit simulations using a CBERS-like phased remote sensing 
satellite. The aim of the paper is to verify if the coupled system is able to correctly calculate and 
perform variable size semi-major axis orbit increment maneuvers in order to keep the satellite 
ground track within its allowed limits (±4km). 
 
Keywords: autonomous orbit control, GPS, autonomous navigator, Kalman Filter. 
 
1 Introduction 
 
In a former study [3] the performance of an autonomous orbit control procedure was analyzed 
considering the direct use, in the feedback loop, of the coarse GPS navigation solution. That work 
considered a hypothetical satellite, equipped with a GPS navigator receiver, placed in a phased 
helio-synchronous orbit. Under worst case conditions in terms of solar activity, considered in that 
investigation, the autonomous control successfully maintained the Equator longitude phase drift (D) 
restricted to an excursion range of about -1000m and 1700m. In a posterior study [1], an 
autonomous orbit control procedure applied to a CBERS-like simulated satellite was proposed and 
had its performance assessed. In that work, a simplified GPS navigator was used in the feedback 
control loop, in order to supply the needed autonomous orbit observations. The results of a long-
term computer simulation (one year) indicated the feasibility of the application of the simplified 
GPS navigator to the autonomous orbit control system. Essentially, the simplified navigator consists 
of a Kalman filtering process which incorporates a procedure for automatic treatment of observation 
biases. The idea behind using a simplified navigator is to allow the computation of improved orbit 
estimates from the GPS (geometric) navigation solution, without adding a significant computational 
burden to the autonomous orbit control procedure. The introduction of the simplified navigator to 
the autonomous control procedure successfully improved the control results, significantly reducing 
the variation range of D. Both realistic and worst case conditions in terms of solar activity were 
considered in the simulation.  
 
The second study [1] was done considering a version of the autonomous orbit control procedure 
which considered only the application of semi-major axis corrections with a constant, previously 
chosen amplitude, while the first one [3] considered variable amplitude semi-major axis corrections. 
It is also worth mentioning that in [3] the raw observations of both D and its first time derivative, 



,Dɺ  were computed from each simulated set of GPS orbit estimates, whereas in [1] only the D 

observations were computed from the orbit estimates while the Dɺ and Dɺɺ observations were directly 
computed, in a numerical way, from the last computed observations of D. This last approach 
increased the accuracy of the Dɺ  observations and, as a consequence, the performance of the 
autonomous control process. 
 
It is well known that the acceleration of the orbit ground track driftDɺɺ  depends on the solar activity 
conditions. In [2], a novel approach for predicting the effects of solar activity on the evolution of 
ground track drift of phased satellites was presented. It requires independent runs of a very realistic 
orbit simulator for the satellite considered, for several values of the geomagnetic activity index, Kp, 
and for several values of the solar flux, F10.7. It was noticed that a third to forth degree polynomials 
almost perfectly adjusted the drift acceleration Dɺɺ  as a function of F10.7 data, for all values of Kp. As 
a result of the procedure given in [2], a set of polynomials in function of Kp and F10.7 is obtained 
that make it possible to calculate Dɺɺ  for the satellite as long as values for Kp and F10.7 are provided.  
 
In the present study, it is analyzed a version of the autonomous orbit control procedure that makes 
use of improved orbit estimates as provided by the simplified navigator proposed in [1] and makes 
use of variable amplitude semi-major axis corrections during the maneuvers, similar to what was 
done in [2]. Moreover, the approach presented in this paper uses the polynomial method proposed in 
[2] in order to calculateDɺɺ . For that aim, it is considered that the onboard autonomous control 
system of the satellite allows receiving the required values of Kp and F10.7 as inputs provided by 
internal sensors or by telecommand from soil. As a consequence of such approach, it is eliminated 
one of the greatest sources of uncertainty, namely, the value of .Dɺɺ  The new approach also calculates 
the semi-major axis maneuver amplitude in order to maximize the time between consecutive 
maneuvers and minimizing, this way, the maneuver application number.  
 
2. Autonomous Control Procedure 
 
A block diagram of the autonomous control system considered in [1] and also in the present work is 
given in Figure 1. It gives an overview of the full simulation loop. 
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Figure 1. Block Diagram of the Autonomous Control System 

 
Starting the diagram description in the block GPS Navigation Solution, the respective GPS 
estimates are computed with help of a realistic orbit simulation process. Typical root mean square 
errors of the coarse GPS geometric estimates were of 100m in position and 1m/s in velocity, before 
Selective Availability was turned off. Added to such random errors these estimates presented 
systematic variations with values of the order of 100m and duration of about 1 to 15 minutes. Both 
the random and systematic errors are considered in the simulation of GPS coarse navigation solution 
estimates used in this work and in the levels mentioned, since the idea is to compare its performance 
with previous studies. The GPS Simplified Navigator takes the position components of these 
estimates as inputs. Next, Raw Observations of D are computed from each set of improved orbit 



estimates supplied by the simplified navigator. These raw observations are preprocessed in real time 
in the block Observations Smoothing and Compression, in order to achieve data smoothing by curve 
fitting, validation and redundancy reduction. Also in this block, observations of Dɺ are numerically 
calculated from the smoothed values of D. Finally, the computed observations of D and Dɺ are used 
within the Maneuver Determination process, where the instants of orbit correction applications are 
defined and their respective amplitudes calculated. In the case of the present control approach, 
information about Kp and F10.7 are furnished to this block together with the control ranges. Once 
defined the need of a maneuver, its execution occurs within the block Maneuver Application, where 
its amplitude and the corresponding changes in the orbital parameters of the satellite are calculated 
and imposed. Closing the simulation loop, the block Orbit Simulation performs realistic orbit 
propagation, incorporating the orbit maneuvers to the propagation whenever the Maneuver 
Determination process determines its execution. 
 
The first task of the autonomous orbit control process is the computation of raw observations of D 
from the orbit estimates issued by the simplified navigator. The following equation is used: 
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where ae is the mean Equator radius, ∆Ω  is the right ascension of the ascending node deviation 
from the reference value; ∆α  is argument of latitude deviation from the reference value; N is the 
integer number of orbit revolutions per day; P and Q are two integers whose ratio determines the 
additional fraction of orbit completed by the satellite in one day. The argument of latitude itself is 
given by Mωα += , the sum of the perigee argument and the mean anomaly of the satellite, 
respectively.  
 
Next, the raw values of D are preprocessed in real time in the block Observations Smoothing and 
Compression, using a version of a weighted moving average procedure developed in [4], with the 
aim of filtering cyclic perturbations and data redundancy reduction. Mathematically: 
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where )(tD k is the smoothed value for D at instant tk; D(tk) is the raw value of D at tk; w(tk) is the 
weight factor of D(tk), and N is a previously defined constant that represents the maximum number 
of observations to take part in the smoothing process. Equation 2 is used in the beginning of the 
process, when there are less than N observations and Equation 3 is used from there on. It is 
important to notice that, from one instant (tk-1) to another (tk), only the values of S1 and S2 or S3 and 
S4 need to be stored. The weight factor can be taken as w(tk) = 1/(σ(tk)

2), where σ(tk) is the 
uncertainty associated to the observation D(tk). In this work, the value of N is always calculated by 
N= INT(∆tSMT/∆tC), where INT(.) means rounding to the nearest integer, ∆tS is the “time window” 
of the observations considered in the smoothing process and ∆tC is the time interval between two 
consecutive observations of D. Considering ∆tS as a parameter instead of N has the advantage of 
turning the smoothing process less dependent from ∆tC, since the same N implies different time 
windows for different ∆tC. Considering that most perturbations one wishes to filter by the 
smoothing process are cyclic ones, using ∆tS avoid having to recalculate N manually when 
employing different ∆tC’s and facilitating, this way, the parameter setting for the autonomous 



control system. Whenever one orbit correction is applied to the satellite, the smoothing procedure 
just described is reinitiated by imposing S1 = S2 = S3 = S4 = 0. 
 
Values of Dɺ are also numerically calculated in the same block, using: 
 
 ( ) ( )1-kk1-kkk t-t)(tD-)(tD)(tD =ɺ  (4) 

 
These values are smoothed further by using the same procedure just described for D (Eq. 2 and 3), 

generating ).(tD k
ɺ  If one assumes constant solar flux during the time interval between the 

application of two successive orbit correction maneuvers, which implies in having constant aɺ  (a 
being the orbit semi-major axis), the time evolution curve of D is almost parabolic, and Equation 5 
next can be used by the maneuver computation process, to foresee the time evolution of the Equator 
longitude phase drift.  
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where ∆t = t-tk is the elapsed time since tk. The value of )(tD k
ɺ is known from Eq. 4 and the value of  

)(tD k
ɺɺ  is calculated using the polynomial method proposed in [2]. The estimates )(tD k , )(tD k

ɺ  and 

)(tD k
ɺɺ  are used by the block Maneuver Determination to determine the need of maneuvers and to 

compute the required correction amplitudes. One maneuver is considered needed when any of the 
following two conditions is verified: 
 
 )(tD k  > Dmax - n.σ(tk) (6) 

 )(tD 1k+  > Dmax - n.σ(tk) (7) 
 
where Dmax is a previously chosen control limit; σ(tk) is the standard deviation of );(tD k  tk is the 
time instant of the last (k-th) observation sample known and n is a real number. The future estimate 
for )(tD 1k+  is calculated using Eq. 5. The idea behind Eq. 7 is to anticipate a maneuver if it is 
foreseen that in the next maneuver verification moment, i.e., tk+1, the value estimated for the ground 
track drift is greater than the allowed limit. If that happens, Eq. 7 allows the maneuver to occur at 
instant tk. 
 
Only the application of positive corrections to the orbit semi-major axis is considered for the 
maintenance of D inside the control ranges. Each semi-major axis increment orbit is computed in 
order to change the value of Dɺ  such that the minimal value to occur for D after the maneuver 
equals a previously chosen inferior limit, Dmin. The maximization of the time interval between the 
executions of two successive maneuvers is implicit in this strategy.  
 
Assuming that Dmin occurs at t=tmin after a maneuver occurred at t=tM and taking this to Eq. 5 at 

,t t M
+=  a time instant right after the maneuver, one arrives at: 
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Mt  is the unknown. The solution of Eq. 8 for ∆t is: 
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Realizing that D=Dmin must occur just once, it means that there is only one root for Eq. 9 what 
implies that the square root in Eq. 9 must be equal to zero. Mathematically: 
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In Eq. 8, the values of )(tD M
+  and )(tD M

+ɺɺ  can be taken for t=tM instead of ,t t M
+=  what means they 

are known. For )(tD M
+ɺ  Eq. 10 can be rearranged such that: 
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The minus sign in Eq. 12 instead of  ± comes from the fact that, after the maneuver, one desires Dɺ < 
0 in order to revert the natural increasing tendency of D (natural Eastward longitude ground track 
drift). Considering some approximations which can be assumed for phased helio-synchronous orbits 
like those of CBERS satellites, the maneuver size in terms of semi-major axis variation, ∆a, is 
calculated by [5]: 
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where )(tD M
+ɺ is calculated by Eq. 12; )(tD MC

−ɺ  is the last preprocessed value of Dɺ  (at t=tM); aR is the 
semi-major axis of the reference orbit and ae is the mean Equator radius. The corresponding 
tangential velocity increment, ∆VT, is calculated by: 
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where V is the magnitude of the velocity vector of the satellite. 
 
3. Autonomous Control Test Results 
 
The performance of the autonomous orbit control procedure just proposed was verified through the 
execution of a realistic simulation of its application to a CBERS-like satellite. In the same way it 
was done in [1], the simulation covered a period of about one-year and considering two scenarios in 
terms of solar activity. Realistic (moderate) and critical solar activity conditions were considered in 
the analysis. In the moderate solar flux profile, a maximum of 165 sfu, in the beginning, and a 
minimum of 115 sfu, in the end, with 27-day cycle oscillations of about 25 sfu was used for the 
solar activity simulation in [1] and here. In the critical solar flux profile, the 11-year cycle is 
compressed to one-year, with a very high maximum of about 300 solar flux units (sfu) and the 27-
day cycle oscillations due to solar rotation with amplitudes of 80 sfu. In [1], a maximum of 360 sfu 
was used. Due to the fact that the polynomial approach presented in [2] has 300 as the maximum 
possible value for the solar flux, in the present study, one changed the critical solar flux profile to 
match this restriction. This was done lowering the corresponding profile used in [1] by a value of 60 



sfu. A maximal application rate of about one maneuver per orbit period (~100 min) was considered. 
It was also considered a GPS observation rate (and consequently the navigator output rate) of 1 
estimate each 9 seconds. Only one among 20 orbit estimates sets successively issued by the 
navigator is used by the control system (meaning a rate of one data each three minutes, e.g., ∆tC = 
3min). For all cases tested, the weight factors w(tk) used by Eq.s 2 and 3 were all set to 1. After each 
maneuver the smoothing of D and Dɺ  was restarted (by imposing k=0 in Eq.s 2 and 3) and a time 
interval without maneuvers of 24h was observed. This last measure was implemented in order to 
allow the effects on D from a maneuver just applied to become measurable and avoiding, this way, 
the premature application of a second maneuver. 
 
The results of the current work, considering moderate solar activity condition, are shown in Fig.s 2 
and 3 for the ground track drift time evolution and the semi-major axis maneuvers, respectively. The 
same observation rate (∆tC=3min) and the same maximal allowable maneuver application rate used 
in [1] were considered. The values Dmax=3,900m and n=0 were used in Eq.s 6 and 7, and Dmin=-
3,900m in Eq. 12. For ∆tS, the values 3h and 6h were used for smoothing D and ,Dɺ  respectively. 

The number of maneuvers was 17 with an accumulated ∆a for the period of 2,092.4m. The major 
maneuver had ∆a=175.9m and the minor ∆a=45.0m. From Fig. 2, it is possible to see that, for the 
moderate solar activity profile, the new autonomous control version was able to make full use of the 
±4km allowed range for D in order to reduce the amount of applied maneuvers. 
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        Figure 2. Ground Track Drift  Figure 3. Semi-major Axis Maneuvers  

 
In order to assess the performance of the new control approach proposed here in terms of its ability 
to keep D under very stringent requirements, the values Dmax=100m and Dmin=-100m were used to 
generate the results shown in Fig. 4. For ∆tS, the values used were 8h and 20h for smoothing D and 

,Dɺ  respectively. The number of maneuvers was 146 with an accumulated ∆a for the whole period of 

2,178.7m. The major maneuver had ∆a=23.9m and the minor ∆a=6.1m. As for comparison, the 
result obtained in [1] for the same solar activity and maximal allowable maneuver rate is given in 
Fig. 5. There, the autonomous orbit control procedure considered only the application of semi-major 
axis corrections with constant amplitude equal to 3m. The number of applied maneuvers was 666 
with ∆a=3m each, resulting an accumulated total of 1,998m for the whole period. As can be seen by 
comparing Fig.s 4 and 5, both control versions have similar performances in terms of keeping D 
within a tight range, with a slight advantage for the version presented in this paper. In terms of 
accumulated ∆a, the control version from [1] was about 9% smaller. Finally, in terms of the number 
of applied maneuvers, the control version presented now applied about 22% of the number of 
maneuvers applied in [1].  
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        Figure 4. Ground Track Drift  Figure 5. Ground Track Drift from [1] 
 
The results of the current work, considering critical solar activity condition, are shown in Fig.s 6 
and 7 for the ground track drift time evolution and the semi-major axis maneuvers, respectively. The 
same observation rate (∆tC=3min) and the same maximal allowable maneuver application rate used 
in [1] were considered. The values Dmax=3,900m and n=0 were used in Eq.s 6 and 7, and Dmin=-
3,900m in Eq. 12. For ∆tS, the values 8h and 40h were used for smoothing D and ,Dɺ  respectively. 

The number of maneuvers was 26 with an accumulated ∆a for the period equal to 2,953.0m. The 
major maneuver had ∆a=324.5m and the minor ∆a=21.7m. From Fig. 6, it is possible to see that, for 
the critical solar activity profile, the new autonomous control version was able to make almost full 
use of the ±4km allowed range for D in order to reduce the amount of applied maneuvers.  
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        Figure 6. Ground Track Drift  Figure 7. Semi-major Axis Maneuvers  

 
The results obtained when the values Dmax=100m and Dmin=-100m were used are given in Fig. 8. 
For ∆tS, the values used were 8h and 25h for smoothing D and ,Dɺ  respectively. The number of 

maneuvers was 148 with an accumulated ∆a for the whole period of 2,946.7m. The major maneuver 
had ∆a=64.0m and the minor ∆a=3.6m. As for reference, the result obtained in [1] for similar solar 
activity and the same maximal allowable maneuver rate is given in Fig. 9. There, semi-major axis 
corrections with constant amplitude equal to 4m were used. The number of applied maneuvers was 
1,145 with ∆a=4m each, resulting an accumulated total of 4,580m for the whole period. 
Unfortunately, a direct comparison among the results obtained here with those from [1] is not 
possible, since they have used different levels of critical solar profiles.  
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        Figure 8. Ground Track Drift  Figure 9. Ground Track Drift from [1] 
 
4. Conclusions 
 
In this article, it was analyzed a version of an autonomous orbit control procedure that makes use of 
improved orbit estimates provided by a simplified navigator and uses variable amplitude semi-major 
axis corrections in order to keep the ground track drift at equator of a CBERS-like sun-synchronous 
satellite within its allowed variation range. A polynomial approach recently proposed to calculate 
the second time derivative of the ground track drift was also used. The main conclusion is that the 
objectives were successfully achieved. The new method used to calculate the second derivative of 
the ground track drift helped reducing the uncertainty present in this parameter, allowing more 
precise calculations of the semi-major axis maneuver amplitudes and contributing to reduce the 
number of applied maneuvers, as originally desired. The obtained results can be considered very 
positive. They revealed that the new approach is advantageous, in terms of the number of 
maneuvers applied, even when tight operational limits are considered. In this way, the main 
objective of presenting a method capable of minimizing the number of maneuvers by full use of the 
allowed range for the ground track drift was completely fulfilled.   
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