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Abstract: The analysis of rapid environment changes requires orbital sensors with high 
frequency of data acquisition to minimize cloud interference in the study of dynamic 
processes such as Amazon tropical deforestation. Moreover, a medium to high spatial 
resolution data is required due to the nature and complexity of variables involved in 
the process. In this paper we describe a multiresolution multitemporal technique to 
simulate Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image using Terra 
Moderate Resolution Imaging Spectroradiometer (MODIS). The proposed method 
preserves the spectral resolution and increases the spatial resolution for mapping Amazon 
Rainfores deforestation using low computational resources. To evaluate this technique, 
sample images were acquired in the Amazon rainforest border (MODIS tile H12-V10 
and ETM+/Landsat 7 path 227 row 68) for 17 July 2002 and 05 October 2002. The 
MODIS-based simulated ETM+ and the corresponding original ETM+ images were 
compared through a linear regression method. Additionally, the bootstrap technique was 
used to calculate the confidence interval for the model to estimate and to perform a 
sensibility analysis. Moreover, a Linear Spectral Mixing Model, which is the technique 
used for deforestation mapping in Program for Deforestation Assessment in the Brazilian 
Legal Amazonia (PRODES) developed by National Institute for Space Research (INPE), 
was applied to analyze the differences in deforestation estimates. The results showed high 
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correlations, with values between 0.70 and 0.94 (p < 0.05, student’s t test) for all ETM+ 
bands, indicating a good assessment between simulated and observed data (p < 0.05,  
Z-test). Moreover, simulated image showed a good agreement with a reference image, 
originating commission errors of 1% of total area estimated as deforestation in a sample 
area test. Furthermore, approximately 6% or 70 km² of deforestation areas were missing in 
simulated image classification. Therefore, the use of Landsat simulated image provides 
better deforestation estimation than MODIS alone. 

Keywords: image simulation; deforestation; MODIS; Landsat 7 
 

1. Introduction 

Remote Sensing images have been used in studies and research in several areas, such as monitoring, 
mapping and management of vegetation resources [1–3], in the studies of the effects of floods [4,5], 
droughts [6,7], biomass burning [8–10], desertification [11,12], urban planning [13] and oceans 
characterization [14]. 

Recently, the number of environmental satellite sensors acquiring images of the earth’s surface has 
been significantly increasing. However, the availability of these images is restricted due to limitations 
imposed by the satellites and characteristics of the sensors, such as spatial, spectral and temporal 
resolutions. Also, an important factor to be considered when using satellite images of optical remote 
sensing is the presence of clouds that reduces the number of images available for environmental 
analysis. An example of cloud-free derived data limitation can be observed in the Program for 
Deforestation Assessment in the Brazilian Legal Amazonia (PRODES) developed by the National 
Institute for Space Research (INPE). During the rainy season, the lack of images of medium and high 
spatial resolution is evident due to persistent cloud cover that reduces the fraction of usable data per 
image.  

Since the results are annual, the mapping of deforestation carried out by PRODES is insufficient to 
provide an inventory for government mitigation. To solve this problem, the Government program for 
Deforestation Detection in Real Time (DETER) was created using MODIS images, allowing near  
real-time tracking of deforestation, to act as a warning system. However, limitations in using MODIS 
images are related to its spatial resolution (only polygons with more than 25 hectares are detected) 
which underestimate the total deforestation area. 

In the literature, several techniques of image processing have been widely proposed to improve the 
spatial resolution of remote sensing images, such as image fusion and super-resolution techniques [15–22]. 
However, image fusion techniques, such as Brovey Transform, Intensity-Hue-Saturation (IHS) and 
Principal Component Analysis (PCA), spectrally deform the images, altering the radiometric values 
and histograms. Also, some methods restrict the number of images involved in the process [23] and 
restrict the size of images, such as wavelets transform [24]. Moreover, super-resolution techniques 
need a sequence of images over the same location without significant alterations [25], which is not 
recommended for deforestation estimates. 
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Frequently, a fusion of remote sensing image methods can be employed to merge high spatial 
panchromatic with low spatial multispectral images. These techniques are not appropriate for dynamic 
studies as they require high temporal resolution images [26] and, under persistent cloud cover, 
preclude the acquisition of data. Optical remote sensing images with medium/high spatial resolution 
used in deforestation estimates, such as the Brazilian PRODES project (www.obt.inpe.br/prodes), 
which utilizes images from Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 
sensors onboard the Landsat satellites series [2], have limitations during the rainy season due to the 
non-availability of cloud-free images because of their low temporal resolution [27,28]. However, high 
temporal resolution imagery is required for an alarm system to inform federal agencies to take timely 
action against illegal clearing. 

In this context, the alternative to low frequency observations such as those provided by Landsat is to 
use data from MODIS. The high temporal resolution increases the probability of acquiring cloud free 
images and facilitates the deforestation estimation during the rainy season. Furthermore, an alternative 
is to merge high spatial resolution imagery with high temporal resolution imagery to simulate frequent 
high spatial resolution imagery. Thus, the main objective of this work is to simulate ETM+ image 
using MODIS sensor data, improving both temporal and spatial resolutions and at the same time 
preserving the spectral resolution.  

2. Materials 

2.1. Study Site 

The study site for this work is located in the State of Mato Grosso in Brazilian Amazon. This region 
is composed by a plateau and plains in the center, plain land with swamps at west and dips and 
plateaus in the north side. The climate of Mato Grosso could be described as Am, according to the 
Köppen classification, due to the tropical climate with annual temperature average exceeding 26 °C. 
The rainfall is also high, reaching 2,000 mm per year with a rainy summer and a dry winter. Mato 
Grosso State has experienced much deforestation in recent years, as can be observed from the data 
obtained by the PRODES (http://www.obt.inpe.br/prodes/) project from 1995 to 2008 (Figure 1). 

2.2. Remote Sensing Images 

For this work, one scene from the Landsat ETM+ sensor (227/68) acquired on 17 July 2002 and 
daily surface reflectance images from the MODIS sensor from the Terra platform acquired on 17 July 
2002 and 05 October 2002 were used. The difference in image acquisition between Terra (temporal 
resolution of 2 days) and Landsat 7 (temporal resolution of 16 days) platforms is about 30 minutes 
(Landsat 7 and Terra crosses the equator at approximately 10:00 AM and 10:30 AM, respectively). 

The ETM+/Landsat 7 has 8 bands, in which 6 bands are multispectral (referring to blue, green, red, 
near infrared and two short wave infrared), one thermal band and one panchromatic band with 30 m, 
60 m and 15 m, respectively.  

The MOD09 product of MODIS sensor used in this work is an estimate of the spectral 
surface reflectance for each one of the first 7 land spectral bands [29] as described in Table 1. This 
product is obtained through the measured signal by the instrument on the top of the atmosphere  
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3. Methods 

3.1. Pre-Processing 

The ETM+ image was geometrically corrected using manually selected control points to fit and 
apply a first order polynomial and a nearest neighbor resampling. The resulting root mean square error 
was less than 0.5 pixels.  

The ETM+ multispectral bands were converted to surface reflectance using the Second Simulation 
of the Satellite Signal in the Solar Spectrum (6S) transfer model [31]. In the 6S modulation of 
atmosphere interference, the visibility of 70 km, the tropical atmosphere and the continental aerosol 
models were adopted as initial conditions. It was assumed that the main effects of the atmosphere 
would be: absorption by water vapor, carbon dioxide, oxygen and ozone and the atmospheric 
scattering by gases and aerosol molecules.  

3.2. Methodological Approach 

The methodology described here shows the simulation of each ETM+ band image using MODIS 
image, preserving the spectral resolution of 30 m. The ETM+ sensor acquires images every 16 days at 
10:00 A.M. whereas, due to the fact that MODIS acquires images every two days (close to daily) at  
10:30 A.M., the difference in daily simultaneous image acquisition does not have a significant 
influence in merging image processing results because changes in the atmosphere and in land surface 
are not substantial. In order to make the ETM+ data compatible with MOD09 product, the values of 
surface reflectance are derived.  

Multispectral ETM+ images have a spatial resolution of 30m, while MODIS has a spatial resolution 
of 250 m and 500 m, depending on the spectral band analyzed. Thus, a MODIS pixel covers around 69 
and 278 pixels of ETM+, respectively. Assuming that the pixel composition of an image is a mixture 
of the spectral responses of the target that compose the imaged area, it is possible to conclude that the 
spectral signal captured in a MODIS pixel is the combination of the spectral signatures of the ETM+ 
pixels covering the MODIS pixel. In addition, assumptions in fusion methods might introduce several 
sources of errors such as geometrical differences due to registration process [32] and changes in scene 
illumination based on sun azimuth and elevation that alters the orientation and size of shadows [33,34]. 
Furthermore, we assumed that a rectangular Modulation Transfer Function (MTF) interpolating a 
MODIS pixel to a finer spatial scale of Landsat would make one MODIS pixel cover exactly n × n 
Landsat pixels.  

Figure 2 shows the procedure, which takes advantage of the temporal resolution of MODIS and 
spatial resolution of ETM+. The methodology developed in this work could be divided into two steps 
(Equations (1) and (2)). The first step consists of estimating the mask of ETM+ percentage 
contribution (weight matrix) through a comparison between MODIS and ETM+ pixels for the same 
acquisition day. In this step, for each band of a Reference Date (RD), ETM+ image, represented as a 
matrix of m rows by n columns (ETMRD(m,n)), is compared with respective MODIS pixel value 
(MODIS_PVRD). Then, a mask of ETM+ percentage contribution is generated by the ratio of 
ETMRD(m,n) and MODIS_PVRD. The second step is related to the merger of MODIS pixel value 
Target Date (MODIS_PVTD) and the calculated ETM+ percentage contribution mask. In this step, 
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where iρ  represents the pixel surface reflectance at band i; a, b and c corresponding to vegetation, soil 

and shade fraction in a pixel, respectively; vegi, soili and shadei are the spectral response of vegetation, 
soil and shade components, respectively; and ei represents the error in band i.  
3.4. Image Classification and Statistical Analysis 

In this work, we used the ISOSEG classifier algorithm available in SPRING [35], a geographic 
information system developed by the Brazilian Institute for Space Research, to separate the regions of 
a segmented image with a similarity of eight and a minimal area of 12 pixels. The ISOSEG classifier is 
a clustering algorithm for unsupervised data, applied to a set of regions, which in turn are characterized 
by their statistical attributes such as mean and covariance matrix, and also by area. 

The ISOSEG algorithm for clustering assumes no prior knowledge of the probability density 
distribution of the subjects. It is a technique that seeks to classify the cluster regions, as a measure of 
similarity between them. The similarity measure used is the Mahalanobis distance between the class 
and the candidate regions of relevance with respect to this class. To obtain the thematic maps, the soil 
fractions generated by Linear Spectral Mixing Model (LSMM) were classified in forest/non-forest by 
the ISOSEG classifier. 

The validation of this methodology compared the simulated and the corresponding original ETM+ 
image using a linear regression method. Also, the Bootstrap technique developed by [36] was used to 
calculate the confidence interval for the model estimate and a Linear Spectral Mixing Model [2,37] 
was applied to analyze the differences in deforestation estimate. The accuracy of thematic maps 
resulting from ISOSEG classifications were statistically tested using the Kappa index [38]. 

The Kappa statistic is a method of assessing the correlation between two or more classifications. 
The advantage of the Kappa statistics is that, in calculating the coefficient, it includes all elements of 
the error matrix and not only the main diagonal elements, as in the global accuracy. Equation 4 is used 
to determine the Kappa value [39,40]: 

^
1 1

2

1

( )

( )

r r

ij i i
i i

r

i i
i

N x x x
K

N x x

+
= =

+
=

− +
=

− +

∑ ∑

∑
     (4) 

where K is the estimator of Kappa coefficient; r is the number of rows of square matrix; xij is the 
number of observations in row i and column j, respectively; and N is the number of observations. 

4. Results and Discussion  

Figure 3(a,b) shows ETM+ and MODIS reference images acquired on 17 July 2002, corresponding 
to the 227/68 Landsat 7 scene, respectively. The mask of ETM+ contribution, derived from these 
images, was applied on the MODIS image of 05 October 2002 (Figure 3(c)) as described in step 2 to 
simulate the ETM+ image of the same date (Figure 3(d)).  

Moreover, while other fusion methods that merge remote sensing images modify the spectral 
resolution, such as IHS, the method proposed in this work shows a good conformance in preserving the 
surface reflectance of ETM+ pixels. Also, the improvement of spatial resolution can be observed on 
the roads and drainage net, as well as the borders of the deforested areas. It is remarkable that this 
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analysis, approximately 13% of the total deforested areas estimated by MODIS image were classified 
as Amazon rainforest in the reference image. Also, 11% of deforestation areas were missing in the 
MODIS estimation. Moreover, the simulated image showed an exceptional assessment with respect to 
the reference image. Commission errors represented only 1% of total area estimated as deforestation, 
occurring mainly in the borders of plots. Furthermore, approximately 6% or 70 km2 of deforestation 
areas were missing in the simulated image classification. These errors occurred mainly in the dark 
objects of an image, such as recent biomass burnt scars and degraded forests areas. 

5. Conclusions  

The results obtained by the proposed method present a potential for INPE’s deforestation detection 
activities such as DETER and PRODES by enhancing not only the contrast between forest and 
deforested areas, but also allowing a better area estimation.  

The advantages of this low computational requirement method when compared to other fusion 
techniques are: the improvement of the spatial resolution, the unlimited number of bands and the size 
involved in multiresolution multitemporal blending techniques. Also, linear regressions and correlation 
histogram distributions show a good conformance in preserving the surface reflectance and in forest 
and non-forest estimates through LSMM.  

This multiresolution multitemporal fusion technique shows promising results for accuracy 
development and upgrades could be developed to minimize the source of errors related to the MODIS 
point spread function and MODIS viewing angle. 
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