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Abstract

Studying the interaction between a system’s components and the temporal evolution of the system are two common ways
to uncover and characterize its internal workings. Recently, several maps from a time series to a network have been
proposed with the intent of using network metrics to characterize time series. Although these maps demonstrate that
different time series result in networks with distinct topological properties, it remains unclear how these topological
properties relate to the original time series. Here, we propose a map from a time series to a network with an approximate
inverse operation, making it possible to use network statistics to characterize time series and time series statistics to
characterize networks. As a proof of concept, we generate an ensemble of time series ranging from periodic to random and
confirm that application of the proposed map retains much of the information encoded in the original time series (or
networks) after application of the map (or its inverse). Our results suggest that network analysis can be used to distinguish
different dynamic regimes in time series and, perhaps more importantly, time series analysis can provide a powerful set of
tools that augment the traditional network analysis toolkit to quantify networks in new and useful ways.
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Introduction

In the context of dynamical systems, time series analysis is

frequently used to identify the underlying nature of a phenomenon

of interest from a sequence of observations and to forecast future

outcomes. Over time, researchers accumulated a large number of

time series analysis techniques, ranging from time-frequency

methods, such as Fourier and wavelet transforms [1–3], to

nonlinear methods, such as phase-space embeddings, Lyapunov

exponents, correlation dimensions and entropies [4–6]. These

techniques allow researchers to summarize the characteristics of a

time series into compact metrics, which can then be used to

understand the dynamics or predict how the system will evolve

with time.

Obviously, these measures do not preserve all of the properties

of a time series, so there is considerable research toward

developing novel metrics that capture additional information or

quantify time series in new ways [7–10]. One of the most

interesting advances is mapping a time series into a network, based

on different concepts such as correlations [11,12], visibility

[13,14], recurrence analysis [15], transition probabilities [16–18]

and phase-space reconstructions [19,20] (a complete list of all the

proposed maps can be found in Donner et al.,(2010) [21] and

references therein). These studies have demonstrated that distinct

features of a time series can be mapped onto networks with distinct

topological properties. This finding suggests that it may be possible

to differentiate properties of time series using network measures.

However, it remains unclear, for example, how these topological

properties relate to the original time series.

At the root of this issue is the fact that most of these maps

M : T?G from the time series domain T to the network domain

G do not have a natural inverse operationM{1 : G?T . Recently,

some attempts to construct an invertible map have been proposed

[18,22,23]. However, they are either sensitive to arbitrarily chosen

parameters [22,23] or they use information obtained from a given

map M to build an inverse operation M{1 [18]. Consequently,

they are not applicable to real world networks, where M is not

known in advance.

A fully invertible map makes it possible to create a ‘‘dual’’

representation of a time series and its network counterpart and

directly relate common network statistics back to the original time

series and vice-versa. This dual representation would not only

allow time series analysis to benefit from the recent surge in

network related research [24,25], but network theory would be

able to draw on more than three centuries of theoretical and

applied developments in time series analysis. In this paper, we take

a significant step toward realizing this goal by introducing a map

from time series to networks that has a natural and robust inverse.

Methods

Let M be a map from a continuous time series X [T to a

network g[G, where X~fx(t)jt[N,x(t)[Rg and g~fN ,Ag
consists of a set of nodes N and arcs A. Ideally, such a map would
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Figure 1. Illustration of the proposed map. Forward map: A time series X is split into Q~4 quantiles (colored shading) and each quantile qi is
assigned to a node ni [N in the corresponding network g. Two nodes ni and nj are then connected in the network with a weighted arc (ni,nj ,wij)[A
where the weight wij of the arc is given by the probability that a point in quantile qi is followed by a point in quantile qj . Repeated transitions
between quantiles results in arcs in the network with larger weights (represented by thicker lines). Inverse map: The weighted adjacency matrix W of
network g is first normalized such that it is a Markov transition matrix with

P
j wij~1. The association between nodes and quantiles is obtained by

reordering W to have large wij near to the diagonal such that the resulting time series is as continuously smooth as possible [29]. The time series is
constructed by repeatedly moving from node ni to node nj with probability wij and choosing a random number from the corresponding quantile qj

until we have obtained a time series of length T .
doi:10.1371/journal.pone.0023378.g001

Figure 2. Qualitative assessment of the faithfulness of the proposed map and its inverse. We generate first generation time series from
the toy time series model (Eq. 2) ranging from periodic (p~0) to random (p~1) with T~320 and d~0:05. We then construct the first generation
networks using Q~20 quantiles by applyingMQT from the corresponding time series. Time series with different values of p result in networks with
different topologies. As the toy time series becomes more random, the corresponding networks also become increasingly random. We construct the
second generation time series and the second generation networks by sequentially applyingM{1

QT andMQT , respectively. These panels suggest that
the first and second generation time series and networks have similar properties, supporting the hypothesis that it may be possible to use time series
analysis to characterize the topology of networks and networks analysis to characterize the structure of time series.
doi:10.1371/journal.pone.0023378.g002
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preserve all information of the original time series, possibly by a

bijective map Mb where each time series X maps to exactly one

network g~Mb½X � that is invertibly mapped to the exact same

time series X~M{1
b ½Mb½X ��. In practice, this is impossible;

continuous time series have uncountably many values whereas

networks are limited to a countable set of nodes N and

connections A between them. Thus, any map from a continuous

time series X to a network g must discretize the time series in some

manner. Here, we use a simple discretization of X that is not

sensitive to the distribution of its values. Specifically, given a time

series X , we identify its Q quantiles and assign each quantile qi to

a node ni [N in the corresponding network. Two nodes ni and

nj are then connected in the network with a weighted arc

(ni,nj ,wij)[A where the weight wij of each arc is the transition

probability in a Markov model estimated from the aggregate time

series (Fig. 1).

The proposed map, here denoted by MQT , has two important

properties. First, it is surjective. Given a time series X with

t~1,2, . . . ,T points and the number of quantiles Q, the map will

produce one and only one network g~MQT ½X �. Note that

distinct time series X and X ’ can be mapped onto the same

network g~MQT ½X �~MQT ½X ’� although the network space is

large enough that this does not typically happen in practice.

Second, if TwQ, the resulting network is weighted, directed and

connected. Third, MQT is insensitive to the distribution of values

of X . The ‘‘forward’’ map only requires the specification of the

parameter Q. This is in contrast to the maps proposed earlier,

where the structures of the resulting networks are very sensitive to

the choice of several parameters like time delay, embedding

dimension and threshold distance; demanding expert guesses

commonly used in techniques like phase-space reconstruction and

recurrence analysis [26–28].

The map proposed here has the significant advantage that it has

a ‘‘natural’’ inverse operation – a realization of a random walk on

the network with transition probability wij given by the weighted

adjacency matrix W such that
X

j
wij~1 (Fig. 1). Starting from a

random node, we construct a time series by performing a random

walk in which the probability of moving from node ni to node nj is

wij . If we identify each node in the network with a particular

quantile in the resulting time series X , we can construct the time

series by dividing its domain into Q quantiles and for each step of

the random walk choosing a value within the corresponding

quantile at random with uniform probability. In the absence of a

priori knowledge of a direct correspondence between quantiles and

nodes we assume smoothness in the resulting time series. In this

way, nodes can be associated to quantiles by reordering the

Figure 3. Comparison of statistical properties of first generation and second generation time series. We compare the means of these
properties over 10 different realizations of first and second generation time series. Error bars denote standard deviation across realizations. For both
the first and second generation time series, the autocorrelation function and the power spectrum reveal a distinct signal when the time series are
periodic (p~0), which disappears when the time series become random (p~1). As expected from the toy model that has no biases toward particular
values, both the first and second generation time series have values that are uniformly distributed between 0 and 1 for all values of p.
doi:10.1371/journal.pone.0023378.g003
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weighted adjacency matrix W to have large wij near to the

diagonal [29] such that the resulting time series is as ‘‘smooth’’ as

possible – a property that is common to many empirical time

series. To find the ordering of W close to the optimal ordering, we

use simulated annealing [30] with a cost function that weights each

element by its distance to the diagonal [31]:

C~ 1

N

XN

i,j~1

Wij ji{jj, ð1Þ

where N is the order of the transition probability matrix.

For every iteration in the simulated annealing search, we use

O(N2) moves in which segments of contiguous nodes attempts to

change positions in the ordering. We accept or reject each

attempted move following a standard Metropolis algorithm. For

each attempt, we randomly pick: (a) a segment of contiguous nodes

and (b) a new position for the first node – the remaining nodes will

be placed keeping the order relative to the first node. The first

node and its new position are picked from a uniform distribution;

the width of the segment is picked from a Gaussian distribution

whose variance depends linearly on both the temperature T and

the size of the network N – for low temperatures only changes of

single nodes are proposed. We compute the value of the cost

function for the new order C0 and we accept the change with

probability p~ exp½(C{C0)=T � [29].

Like MQT , the proposed inverse map, here denoted by M{1
QT ,

has several important properties. It is also surjective; given a

network g the map will produce a time series X~M{1
QT ½g,e� over a

realization e, but distinct networks g and g’ can be mapped onto

the same time series X~M{1
QT ½g,e�~M{1

QT ½g’,e’�. However, it is

not strictly one-to-one since it has a stochastic element. That is,

M{1
QT ½g,e�=M{1

QT ½g,e’�. Note that even though the proposed map

is not one-to-one, the time series obtained by applying the inverse

map with different realizations will have very similar properties. In

contrast, previous inverse maps [22,23] depend on the arbitrary

choice of node labels and the resulting time series are highly

sensitive to this choice.

Results

To verify the extent to which the properties of the original time

series or network are recovered whenMQT andM{1
QT are applied

Figure 4. Comparison of topological properties of first generation and second generation networks. We compare the means of these
properties over 10 different realizations of first and second generation networks. Error bars denote standard deviation across realizations. In-strength
is unitary for every node when the first and second generation networks are regular (p~0) and, as the networks become increasingly random (left to
right), the in-strength distribution broadens due to the redistribution of the weights. Note that the out-strength of a node is unitary in all cases, since
the weights are Markovian probabilities. Arc weights are unitary for every arc when the first and second generation networks are regular (p~0). As p
increases, the arc weight distribution of the first and second generation networks shows presence of small weights (w*0) as well as large weights
(w*1). The shortest path length are calculated as the minimum sum of inverted weights on a path from one node to another. Shortest path lengths
[25] are uniformly distributed when the first and second generation networks are regular (p~0). As p increases, random shortcuts generally decrease
the distance between nodes, although for some cases, larger path lengths also arise due to redistribution of weights on the shortest path to other
nodes. As the networks become more random (left to right), the shortest path distribution becomes increasingly peaked.
doi:10.1371/journal.pone.0023378.g004
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Figure 5. Illustration of the forward map MQT to chaotic time series from Lorenz and Rossler systems. We use T~10,000 time points of
the x variable of the chaotic Lorenz and Rossler equations and construct networks using Q~50 quantiles by applying the forward map. Each node is
colored according to the module to which it belongs. The resulting networks display clear differences in topologies. The network of Lorenz’s system is
bulky with two large modules. It has a modularity value of M~0:4547, that is much larger than the mean (standard error) modularity value
SMTD~0:0298(0:0018) obtained from networks built from the randomizations of the original time series. Furthermore, the two lobes of the Lorenz
attractor are mapped into the two largest connected modules in the network. On the other hand, the network of Rossler’s system presents an
elongated, chain-like pattern due the strong periodicity present in its corresponding time series. The network of Rossler’s system is also modular, with
five small modules and it has a modularity value of 0:6437. This value is much larger than the mean (standard error) modularity value 0:0280(0:0017)
obtained from networks built from the randomizations of the original time series.
doi:10.1371/journal.pone.0023378.g005

Figure 6. Illustration of the proposed forward map to the problem of detecting differences in the data structures of patients in
different health conditions. We use 100-minute normalized heart rate time series from a healthy subject (upper panel) and a subject with severe
congestive heart failure (lower panel) sampled every &0:01 seconds (T = 10,000 points) [36]. We construct the networks using Q~50 quantiles by
applyingMQT from the corresponding time series. The resulting networks display clear differences in topology, which are especially apparent on the
relatively separated cluster in the network associated with the unhealthy subject. These differences in topology are confirmed by generating
networks with different number of nodes (Fig. 7) and using time series from different healthy and unhealthy subjects (Fig. 8).
doi:10.1371/journal.pone.0023378.g006
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sequentially, we introduce an ensemble of time series that range

from periodic to random:

x(t)~

mod x(t{1)zdzg,1ð Þ, with probability p

mod x(t{1)zd,1ð Þ, otherwise

8><
>:

ð2Þ

where d is a constant, p parameterizes the probability that

noise modifies the otherwise periodic time series, and g is a

random variable drawn from a uniform distribution in ½0,1�.
We choose p~0,10{2,10{1 and 100 and d~0:05 and generate

numerous time series with T~320 points. We then apply the

forward map with Q~20 quantiles to the generated time series

and obtain the resulting networks. We refer to these time series

and networks as the ‘‘first generation’’ time series and

networks, respectively. Figure 2 shows that time series with

different properties are mapped onto networks with visually

distinct topologies. Specifically, as the time series become more

random, the corresponding networks become increasingly more

random, much like the small-world network model of Watts &

Strogatz [32].

We next apply the map M{1
QT to each of the first generation

networks and obtain the ‘‘second generation’’ time series, again with

T~320 points. For simplicity, we assign each quantile to the

corresponding quantile from the first generation time series. The

visual similarity between the first generation time series X and the

second generation time series M{1
QT ½MQT ½X �,e� is apparent,

regardless of the value of p (Fig. 2). We quantitatively demonstrate

the faithfulness of the proposed map in the time series domain T by

comparing the autocorrelation function, the power spectrum

and the distribution of the first and second generation time series

(Fig. 3).

Finally, we apply MQT to the second generation time series

using Q~20 quantiles to obtain the corresponding ‘‘second

generation’’ networks. It is visually apparent that first generation

networks g and second generation networks MQT ½M{1
QT ½g,e��

have similar topologies for all values of p (Fig. 2). We quantitatively

demonstrate the faithfulness of the map in the network domain G
by comparing the in-strength, arc weight and shortest path length

distributions of the first and second generation networks (Fig. 4).

Our results show that the topological features of the first gen-

eration networks are recovered in the second generation networks

for all values of p. The results of Figures 3 and 4 indicate that our

method is able to preserve both structured and unstructured

information in both the time series and network domains, even

after successive mappings.

To further highlight the potential of the forward map described

above, we apply it to two time series belonging to different

dynamical systems. The first time series is the x variable of the

Figure 7. Application of the proposed forward map to the heart rate time series using different number of quantiles. We apply MQT

using Q~40,60 and 70 nodes to time series from healthy (left panels) and unhealthy subjects (right panels). Note the visual similarity of these
networks with the networks presented in Figure 6, attesting the robustness of the results of the proposed forward map, regardless of the value
of Q.
doi:10.1371/journal.pone.0023378.g007
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chaotic Lorenz equations:

dx=dt ~ s({xzy)

dy=dt ~ rx{y{xz

dz=dt ~ bzzxy

ð3Þ

with parameter values s~10, r~28, and b~8=3. Numerical

solutions of these equations leads to an attractor embedded in a

three-dimensional space with coordinates (x,y,z) [33]. The

trajectory rotates about one of two unstable fixed points and

eventually escapes to orbit the other fixed point. This behavior is

recognizable in the x variable (left panel in Fig. 5) since its values

oscillate between the positive and the negative x-region.

The second time series is the x variable of the chaotic Rossler

equations:

dx=dt ~ {y{z

dy=dt ~ xzay

dz=dt ~ bzz(x{c)

ð4Þ

with parameter values a~0:432, b~2:0, and c~4:0. Its phase-

space generates a chaotic attractor with a single lobe, in contrast to

the Lorenz attractor which has two. The trajectory within the

attractor follows an outward spiral close to the (x,y) plane around

an unstable fixed point. Once the trajectory spirals out enough, a

second fixed point influences it, causing a rise and twist in the z-

dimension [34]. This behavior generates a quasiperiodic oscilla-

tory pattern in the x variable, with max/min peaks/troughs with

different amplitudes (left panel in Fig. 5).

In both cases, we apply the forward map with T~10,000 and

Q~50 quantiles. The resulting networks (right panel in Fig. 5)

Figure 8. Application of the proposed forward map to the heart rate time series associated to different subjects. We applyMQT using
Q~50 nodes to time series from three healthy (left panels) and unhealthy subjects (right panels). Regardless of the number of different subjects, the
resulting networks are visually similar with those presented in Figure 6. This is another demonstration of the robustness of MQT .
doi:10.1371/journal.pone.0023378.g008

Figure 9. Illustration of the proposed inverse map to different types of real-world networks – metabolic network and the Internet.
We use Arabidopsis thaliana network with Q~607 nodes and USA Internet 1997 with Q~1,589 nodes [37,38]. The corresponding adjacency matrices
of these two networks are reordered (left panels) and times series with T~100,000 points each are generated by applying M{1

QT (for clarity only
T~1,000 points are shown in the right panels). The resulting time series display clear differences in dynamics. In the first application, the topological
features of the metabolic network are translated into a time-series with a high degree of persistence (or long-range correlations), due to the presence
of modules in the original structure. In the second one, every time the random walker reaches one of the several hubs, it has a high probability of
being sent to a different branch of the network. This behavior produces the noisy signal characteristic of low persistence (short correlations) time
series. These differences in dynamics are confirmed by performing random walks over different realizations (Fig. 10), and computing their statistical
properties (Fig. 11).
doi:10.1371/journal.pone.0023378.g009
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display clear differences in topology. The network of Lorenz’s

system presents a bulky structure, with the two lobes of the Lorenz

attractor being mapped into the two largest connected modules in

the network. On the other hand, the network of Rossler’s system

presents an elongated chain-like pattern which stems from the

strong quasiperiodicity present in the corresponding time series.

The five small modules in this network originate from the different

amplitude levels generated by the Rossler attractor.

In order to further illustrate the potential for real-world

applications of the forward map, we apply it to the long standing

problem of detecting the subtle differences between interbeat

interval time series of healthy and unhealthy subjects [35].

Specifically, we obtained two human heart rate time series from

PhysioNet [36]; one from a healthy subject and one from a subject

with severe congestive heart failure (Fig. 6). The healthy time series

is notable for its apparent nonstationarity and ‘‘patchiness’’. On

the other hand, congestive heart failure may be associated with the

emergence of excessive regularity, as is apparent from the

unhealthy time series. We apply the forward map using 100-

minute heart rate time series, T~10,000 and Q~50 quantiles

(Fig. 6). The resulting networks display clear differences in

topology, which are especially apparent on the relatively separated

cluster in the network associated with the unhealthy subject.

We demonstrate the robustness of the results found in Figure 6

by applying MQT to the healthy and unhealthy heart rate time

series over different values of Q. Figure 7 suggests that the forward

map is able to produce networks with similar topologies, regardless

of the value of Q. As another demonstration of robustness, we

apply the forward map to the different healthy and unhealthy

heart rate time series. Figure 8 suggests that the forward map is

able to produce networks with similar dynamics for both healthy

and unhealthy subjects.

We also illustrate the potential for real-world applications of the

inverse map described above by applying it to two networks

belonging to different network classes (for details, see [37,38]). The

first network is the metabolic network of Arabidopsis thaliana, with a

relatively high modularity, characterized by long open ‘‘chain’’ or

closed loops of non-hubs, and a core of a few hubs that are directly

reachable from one another. The second, the Internet in 1997,

which has a star-like structure with several hubs and low

modularity. First, we associate nodes to quantiles by reordering

the corresponding adjacency matrices [29]. Next, we obtain time

Figure 10. Different realizations of the inverse map M{1
QT in the real newtorks. We perform four realizations of M{1

QT to the Arabidopsis
thaliana metabolic network (Q~607 nodes and T~100,000 points), and USA Internet 1997 (Q~1,589 nodes and T~100,000 points). Note the clear
similarity of these time series with the time series presented in Figure 9, demonstrating the robustness of the proposed inverse map.
doi:10.1371/journal.pone.0023378.g010

Figure 11. Statistical properties of the time series presented in Figure 9, generated from the Arabidopsis thaliana network and the
USA Internet 1997. Note that the long-range correlations present in the metabolic network are well captured by the autocorrelation function and
the corresponding power density spectrum, which displays a clear power-law scaling. On the other hand, the results in the USA Internet 1997 bear
the footprint of the short-correlated signal generated by the Internet network. Note a power-law scaling with a less steep slope.
doi:10.1371/journal.pone.0023378.g011
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series with T = 100,000 points each using networks with Q~607
and Q~1,589 nodes, respectively (Fig. 9). The resulting time

series display clear differences in dynamics, which we confirm by

performing random walks over different realizations (Fig. 10), and

computing their statistical properties (Fig. 11). Our results

demonstrate that networks with different topologies result in time

series with different dynamics.

Discussion

The proposed map can be extended to include higher-order

correlations. Just as a traditional Taylor expansion approximates

the value of a time series X near a particular point t0 by evaluating

the derivatives of x(t) near t0, MQT resembles a ‘‘wholistic’’

Taylor expansion – it estimates values near a particular point t0 by

the Markovian probability that x(t0z1) follows x(t0) with the

same accuracy for any point t0 of the time series. Just as the

precision of a Taylor expansion improves as higher-order terms in

the expansion are retained, the precision of the map can be

improved by incorporating higher-order Markov chains. For

example, MQT can be readily adapted to capture second-order

correlations by constructing networks from the second order

Markov probability density p(x(t0z1)jx(t0),x(t0{1)), resulting in

networks with directed and weighted hyperedges connecting the

nodes associated with the quantiles of x(t0) and x(t0{1) to the

node associated with the quantile of x(t0).
It is worth mentioning that the proposed map procedure

touches on a few classic analysis techniques. In some sense, it bears

some resemblance to symbolic dynamics, where a continuous

system is discretized into a sequence of symbols representing the

state of the system [39]. In our map nodes play the role of symbols

and a symbolic series is then produced by looking at a particular

path through the network. The proposed map procedure also

provides a unique approach to compressing time series data. Since

most financial, health and climate time series consist of millions of

measurements, our map procedure naturally provides an excellent

storage mechanism to compress the T points of these large time

series into a list of at most Q2 values of the Markov transition

matrix W . Additional storage savings occurs when W is suffi-

ciently sparse that it is more efficient to store a weighted edge list.

Our results build a bridge connecting time series analysis and

network-related research. In this sense, networks can be analyzed

by exploring an extensive set of statistical properties of the

associated time series. For example, motifs in a network are

mapped as periodicities in a time series, which are characterized

by looking at the corresponding power spectrum of the time series.

At the same time, different dynamical regimes in time series can be

analyzed by exploring an extensive set of topological statistics at

the associated network domain.
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