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Abstract:  Studying optimal space maneuvers that searches the minimum fuel consumption for 
interplanetary missions is an important field of research for development of space technologies. 
This paper analyzes optimal maneuvers of a spacecraft that leaves one celestial body and goes 
back to this same body, using this return passage to perform a gravity assisted maneuvers using 
the mother planet to change its velocity, energy and angular momentum. During this approach, 
the space vehicle place itself in another orbit of interest of the mission. The dynamics used to 
solve this problem is the traditional model of the Restricted Three Body Problem, so it is 
assumed that the three bodies involved are mass points and don’t suffer external disturbances. 
Using the gravitational attraction and the geometric configuration of the bodies involved, the 
passage next to the body causes a considerable change in velocity (V), energy (E) and 
angular momentum of the spacecraft. Several orbits are simulated. 
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1.  Introduction 

Considering the problem of orbital maneuvers, 
many alternatives exist in the literature. An 
important possibility is the low thrust maneuver, 
where a force with low magnitude is used during a 
finite time. There are many papers in the literature 
like references [1] to [8]. A second idea is based in 
impulsive thrust, where the thrust has an infinity 
magnitude. References [9] to [15] explain this idea. 
After that, the gravitational capture has been 
considered. The perturbation of a third-body [16] is 
used to decrease the fuel consumption of the 
maneuver. References [17] to [21] are good 
examples of this approach. When considering 
missions to the solar system, they produces a very 
high cost to the missions. To deal with this fact, the 
Gravity Assisted Maneuver, also known as “Swing-
By maneuver” is used to help to design 
interplanetary missions. A mathematical treatment 
of this problem is shown here using two-body 
dynamics. This approach is usually known as 
"patched conics", refering to the fact that Keplerian 
orbits are conic sections. Examples of this approach 
are in references [22] to [29]. 

In the middle of the XIX century, astronomers and 
mathematicians knew this type of maneuver. Later 
on, analytic equations were found and numerical 

results that describe the Swing-By, especially in the 
problem of capture of comets by Jupiter were made.  

The use of this Maneuver is very important in 
reducing the costs of space missions. It is a 
maneuver where the space vehicle uses a close 
approach with a celestial body to modify the 
velocity, energy and angular momentum of the 
spacecraft. These maneuvers can be used to 
decrease the fuel expenditure in missions that 
request an Earth escape, like in the case of 
interplanetary trips. In that case, the vehicle just 
leaves the Earth with energy enough to enter in an 
elliptic orbit that crosses with the orbit of the Moon 
in some point. 

The classical methods of maneuvers use the 
propulsion model with infinite impulse, has also 
done in the present research. All the maneuvers 
considered here use two impulses to complete the 
transfer (Prado e Broucke [34]). Only the limiting 
case   = 0 is considered in this paper.  

 
2.  The Swing-by maneuvers  

The dynamics of the two bodies is used in the 
present formulation, considering that the system is 
formed by three bodies. It is possible to say that: 

1. The body m1, with finite mass, is located in the 
center of mass of the cartesian system; 
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2. M2, a smaller body, can be a planet or a satellite 
of m1, in a keplerian orbit around m1; 

3. A body m3, a space vehicle with infinitesimal 
mass, is traveling in a keplerian orbit around m1, 
when it makes an encounter with m2. 

This encounter changes the orbit of M3 and, by the 
hypothesis assumed for the problem, it is considered 
that the orbits of M1 and M2 do not change.   

Using the “patched conics” approximation, the 
equations that quantify those changes are available 
in the literature.  

The standard maneuver can be identified by the 
following three parameters (Fig. 1) (Prado [31]): 

i) V


, the magnitude of the velocity of the 

spacecraft with respect to M2 when approaching the 
celestial body; 

ii) rp, the distance between the spacecraft and the 
celestial body during the closest approach; 

iii) A, the angle the approach. 

Having those variables, it is possible to obtain , the 
total deflection angle, by using the equation 

(Broucke [1]): 
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
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A complete description of this maneuver and the 
derivation of the equations can be found in Broucke 
[1]. The final equations are reproduced below.  

   AVVE   sinsin2 2   (1) 

   AVVC   sinsin2 2   
(2) 

    sin2sin2   VVVV


 
(3) 

 

3.  The Consecutive Collision Orbits Problem 

M1 and M2, are the two primaries with masses (1 - 
) and , respectively. M2 is in a circular orbit 
around M1. The space vehicle M3 leaves M2 from a 
point P (t = 0). It follows a trajectory around M1 
that meets again with M2 in a point Q (t = f), where 
0, f  [0,2] and f > 0. The values of 0 and f 
are not necessarily symmetrical (Santos [32]). 
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Figure  1 – Swing-By Maneuver. 
 

The problem will be modeled using the dynamics of 
the two bodies, which means that  = 0, implying in 
the reduction of the problem with three bodies in a 
problem with two bodies. In this way, the equations 
derived by Kepler can be used to find the solutions. 
Two impulses will be used in the transfer maneuver. 
It is assumed that the three bodies involved are mass 
points and do not suffer external disturbances (Fig. 
2). 

 

 

Figure  2 - Consecutive Collision Orbits. 

 

Hénon [33] studied this problem and published 
graphs with solutions for the case of circular orbits. 
Howel [34] published solutions for the elliptic case, 
where the transfers were symmetrical with respect 
to the periapsis. Prado e Broucke [30] also 
published solutions for this problem, in the same 
situations, using the Lambert method. Hitzl and 
Hénon [36] also published results in this topic. The 
results were analyzed and disposed in form of tables 
and graphs.  
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4.  Mathematical Formulation of the Consecutive 
Collision Orbits Problem 

The Hénon [33]  problem, formulated as a Lambert 
problem, can be described in the way shown below. 

i) The position of M3 is known at t = 0 (point P, 
initial point of the transfer orbit). The position 
vector R1 can be specified as a function of the 
angle 0, where: 

)ecos(Ψ1

)ea(1
R

0

2

1 


  (4) 

It is the same value for M2 and M3, because at 
the initial moment (t = 0) M2 and M3 occupy 
the same position.  

ii) The position of M3 at t = f (point Q, final point 
of the orbit). The position vector R2, similar to 
the item above, it is described by the equation:  

)cos(1

)1( 2

2
fe

ea
R




  (5) 

iii) The total transfer time is given by 
 0ft  . Remember that the angular 

velocity of the system () is unit, so  can be 
considered to be the time as well as the angle.  

iv) The total angle , that the spacecraft must 
travel to go from P to Q, for the case where the 
orbits are elliptic, has several possible values.  

First of all, it is necessary to consider two possible 
choices for the transfer: the one that uses a direction 
of the shortest possible angle between P and Q 
(“short way”) and the one that uses the direction of 
the longest possible angle between these two point 
(“long way”).  

After considering these two choices, it is also 
necessary to consider the possibilities of 
multirevolution transfers. In this case, the spacecraft 
leaves P, makes one or more complete revolutions 
around M1, and then it goes to Q. Thus, combining 
those two factors, the possible values for  are [f  

- 0 + 2m] and [2-(f  - 0) + 2m]. There is no 
upper limit for m, and this problem has an infinite 
number of solutions, except in the case where the 
orbit of M3 is parabolic or hyperbolic, where  has 
a unique value. 

The solution of the Lambert problem is the 
Keplerian orbit that contains the point P and Q and 
that requires the given transfer time t =  = f - 

0 for the spacecraft to travel between these two 
points. In this paper, we used the Gooding’s 
Lambert routine to solve the Lambert problem 
(Gooding [36]).  

Possible applications for this technique are 
interplanetary research in the Solar System, a basis 
for a transportation system between the Earth (M1) 
and the Moon (M2) where no orbit correction is 
required, etc. 

 

5.  Hypotheses for a Earth’s Swing-By 

1. The system is formed by two bodies in elliptic 
orbits and a third massless body moving under 
the action of the gravitational forces; 

2. The origin of the system is placed in the center 
of mass. The horizontal axis is the line M1 and 
M2 and the vertical axis is perpendicular to that 
line; 

3. The spacecraft leaves P, crosses the horizontal 
line (Sun - Earth), goes to the apsis and then 
reaches the point Q, where the close approach 
occurs (Fig. 2); 

4. After the close approach, the spacecraft modify 
the velocity, energy and angular momentum; 

5. We used the system of canonical units. This 
formulation implies that the unit of distance is 
the distance between M1 (Sun) and M2 (Earth); 
the angular velocity () of the motion of M1 and 
M2 is assumed to be unitary; the mass of the 

smaller primary (M2) is given by 
21

2

mm

m


 ,  

(where m1 and m2 are the real masses of M1 and 
M2, respectively) and the mass of M2 is (1 - ), 
to make the total mass of the system unitary; the 
gravitational constant is one; 

In this system of units, the gravitational 
parameter of the Earth is t = 2.9970165E-6. 

 

5.1.  Earth’s Swing-By (EGA) 

After the spacecraft performs the Consecutive 
Collision Orbits, it takes advantage of the passage 
by the body M3 close to the primary M2 to make a 
Swing-By to change its energy.  

 

5.1.1.  Simulation e = 0.4 

Some simulations for the case Earth-Satellite, 
considering the closest approach of the space 
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vehicle with the Earth equal to the value of 1.2 
radius of the Earth were performed. 

Table 1 and Figures 3 – 5, show solutions with 
maximum V, found from the solutions of the 
problem proposed. For certain values of  we find 
values of maximum gains (measured by V and 
E). Note that the solutions are not unique. 

 

 

Figure  3 - Variation of velocity (V) after the 
Swing-By with e = 0.4, o = - 2.5 rad, f  = 4 rad. 
 

Varying the values of the angles (0), we found 
values of maximum gains for the variation of the 
energy (E) and velocity (V). 

In the graphs and Tables (Figs. 3 and 4, Table 1) are 
visualized the variation of the velocity (V). It is 
visible that there are several maximum (V  
0.242028) and minimum gains (V0.08). There 
are also values for the angle of approach (A) for 
which a mission that is looking for fuel savings is 
not possible. 

For the energy variation (Figs. 5 and 6, Table 1) we 
also found maximum (E0.242026) and minimum 
(E  -0.15) points. The values of the angle of 
approach () that gives you a larger gain of energy 
is around 47.4º, with angle of approach (A) around 
269.8º. 

Figures 7 and 8 shows the balance of the velocity 
variation, i.é. the value of V total, that is the result 
of the V value obtained from the Swing-by less the 
V spent with the operation maneuver to get the 
multiple encounters. 

 

 Figure  4 -  vs. Variation of velocity (V),        
for e = 0.4, o = -2.5 rad e f  = 4 rad. 
 

 

 Figure  5 - Variation of Energy (E) after the 
Swing-By with  e = 0.4, o = -2.5 rad e f  = 4 rad. 
 

 
Figure  6 -  vs. Variation of Energy (E), for e = 
0.4, o = -2.5 rad e f  = 4 rad. 
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Table 1 - Swing-By with gain V > 0.242. V and E in canonical units 

e = 0,4 
o = -2,5 rad 
f  = 4 rad 

Angle	
of 

Approach 

Variation 
of 

Velocity 

Variation 
of 

Energy 

 A V E 
rad degree rad degree 

-0,579 -33,1743 4,702196 269,416 0,242018 0,242006 
-0,577 -33,0597 4,709691 269,8454 0,242008 0,242007 
0,82 46,9825 4,719034 270,3807 0,242019 0,242013 
0,821 47,0398 4,718033 270,3234 0,24202 0,242016 
0,823 47,1544 4,71604 270,2092 0,242022 0,24202 
0,824 47,2117 4,715047 270,1523 0,242023 0,242022 
0,825 47,2690 4,714058 270,0956 0,242024 0,242023 
0,826 47,3263 4,713071 270,0391 0,242024 0,242024 
0,827 47,3836 4,712088 269,9828 0,242025 0,242025 
0,828 47,4409 4,711107 269,9265 0,242026 0,242026 
0,829 47,4982 4,71013 269,8706 0,242026 0,242026 
0,832 47,6701 4,707216 269,7036 0,242028 0,242024 
0,833 47,7274 4,706251 269,6483 0,242028 0,242023 
0,834 47,7847 4,705288 269,5931 0,242028 0,242022 
0,835 47,8420 4,704329 269,5382 0,242028 0,24202 
0,84 48,1285 4,69958 269,2661 0,242028 0,242008 
0,841 48,1858 4,69864 269,2122 0,242028 0,242005 
1,973 113,0446 4,699659 269,2706 0,242024 0,242004 
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