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Adaptive node-to-node pinning synchronization control of complex networks
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In this work, we propose an adaptive node-to-node pinning control strategy. In this approach, both

the coupling strength among nodes and the pinning control gains are adaptively changed according to

well chosen adaptation laws that take into account the specificities of the oscillators and the network

topology. Proof of stability and performance comparison is also shown in this paper. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4754436]

A great variety of nowadays systems can be regarded as

networks of interconnected chaotic dynamical agents,

i.e., oscillators which interact with each other. Using

this network description, the oscillators are located in

nodes, while the edges of the network capture the inter-

action links among the oscillators. Also, researchers in

different areas of applied science and engineering have

addressed the problem of how to apply control strat-

egies that exploit the network topology and the infor-

mation exchange among the nodes to obtain desired

ordered collective behaviors in the interconnected sys-

tem. Examples of these control actions necessarily

include rendezvous and flocking problems in robotics,
1

synchronization of sensor networks,2–5 consensus and

multi-agent coordination problems in control theory,6,7

the emergence of coordinated motion in animal behav-

ior, and other biological systems (see, for instance, Refs.

8 and 9). In this work, we propose an adaptive node-to-

node pinning control strategy to achieve control goals

in distributed scenarios.

I. INTRODUCTION

Coordinated motion,3,9,10 consensus,7,11 and synchroni-

zation12–15 are the key ingredients that account for the or-

dered behavior that appears in those previously cited

situations. Consequently, the main point here is to find strat-

egies to allow one to regulate oscillators’ behavior and inter-

actions among them so that all the oscillators evolve toward

a same asymptotic behavior. When this takes place, the sys-

tem is considered synchronized.

Consider a complex network in which the oscillators are

identical and interconnected in a linear diffusive coupling

configuration, i.e.,

_xiðtÞ ¼ f ðxiðtÞ; tÞ � r
X
j2N i

CfHðxiðtÞÞ �HðxjðtÞÞg; (1)

with xiðtÞ ¼ ½xi1ðtÞ;…; xinðtÞ�T being the n-dimensional state

vector of node i, f ðxiðtÞ; tÞ the vector field describing node

dynamics, r a unique global coupling strength among nodes

assumed to be constant and time-invariant, C is the inner

coupling matrix, and H is the coupling function that for line-

arly diffusive coupling is defined as H(x)¼ x. N i is the set

of neighbors of node i, that is, the set of nodes connected

to node i. Given the node dynamics, the synchronization

problem consists of finding on what range values of r the

network synchronizes. Such problem, termed as the synchro-
nizability problem, has been solved mainly by the use of the

so-called master stability function (MSF) approach (first

introduced in Ref. 16).

For situations in which the whole network is not

synchronizable, according to MSF approach, controllers

may be designed and applied to force the network to syn-

chronize. However, considering efficiency issues, the

number of controllers to be applied on the network nodes

should be as small as possible. The goal consists in control-

ling just a fraction of network nodes by adding some local

feedback injections to them, which is known as pinning
control. This concept was first discussed in Grigoriev

et al.,17 in which pinning control of a spatiotemporal

chaos system made out of coupled map lattices was

demonstrated.

It must be stressed that the problem here is not only

determining the interconnection coupling strength, the con-

trol gain, and the control strategy to be applied to the

“pinned” nodes but also determining how many, and which

nodes need to be controlled in order to achieve the specific

synchronization goal. The problem of determining the num-

ber and type of nodes to be pinned, also termed as pinning
controllability, was discussed in Refs. 18 and 19 where suffi-

cient and necessary conditions for the stability of synchroni-

zation of the desired common solution were also given. The

problem of selecting the type of nodes that should be pinned

in order to improve synchronization performance20 by mini-

mizing synchronization time, and driving the system to a

desired state is still an open problem; however, it has been

proposed by Porfiri et al.21 a node-to-node pinning strategy

to maximize synchronization performance, i.e., minimize

synchronization time. In node-to-node pinning control, just

one node is pinned, and at each instant of time multiple of

the switching period T, a new node is randomly chosen to

be pinned.

a)felipeturci@yahoo.com.br.
b)elbert@lac.inpe.br.
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In this work, we propose an adaptive node-to-node pin-

ning control strategy that allows us to efficiently drive the

network system to a desired synchronized state. In this

approach, both the coupling strength among nodes and the

pinning control gain are adaptively changed according to

well chosen laws that take into account the specificities of

the oscillators and the network topology. We are able to

prove that our strategy allows the system dynamics con-

verges to the desired dynamical behavior under nondegener-

ative conditions. Using numerical results, we are able to

quantify how efficient our strategy is.

This work proceeds as follows: In Sec. II, we present

our adaptive pinning strategy and show the arguments that

allow us to state under which conditions the system dynam-

ics converges to the desired dynamics. In Sec. III, we present

results obtained from numerical experiments that numeri-

cally support our results. Finally, we end this work with gen-

eral considerations.

II. ADAPTIVE PINNING CONTROL STRATEGY

Let us now, consider the controlled network

_xiðtÞ ¼ f ðxiðtÞ; tÞ �
X
j2N i

rijCfxiðtÞ � xjðtÞg

� diqifxiðtÞ � xsðtÞg; (2)

i ¼ 1;…;N, in which the last term is the pinning control

term, qi is the control gain of node i; rij is the coupling

strength between nodes i and j; Npin is the number of pinned

nodes; xs is the desired time continuous synchronous solu-

tion to be achieved —xs is also a solution of f(x(t), t) (that

we call reference node) being a equilibrium point, a periodic

or chaotic orbit.

Let us consider, without loss of generality, that

Mpin nodes of the network are chosen as the “pinnable”

nodes so that just Npin nodes randomly chosen are effec-

tively pinned at a given time instant kT (notice that

Mpin > Npin).

We define the function diðtÞ ¼ diðkTÞ as follows:

diðtÞ ¼
1; if i 2 Mpin and

X
i

di � Npin;

0; otherwise:

(
(3)

in which Mpin is the set of all pinnable nodes.

Suppose the coupling strength and control gain can be

adaptively set via adaptation laws given by Eqs. (4) and (5),

respectively.

_rijðtÞ ¼ ajjec
ijðtÞjj

p; 8ði; jÞ 2 E; j > i; 0 < p � 2 (4)

in which ec
ijðtÞ ¼ xiðtÞ � xjðtÞ represents nodes synchroniza-

tion error, a > 0, and E ¼ [N i. Observe _rijðtÞ is only

defined for j > i, since, by the symmetry, rjiðtÞ ¼ rijðtÞ.

_qiðtÞ ¼ jjjep
i ðtÞjj

p; 0 < p � 2; (5)

in which e
p
i ðtÞ ¼ xiðtÞ � xsðtÞ represents pinning control

error, j > 0, where i ¼ 1; 2;…;Mpin.

Equations (2)–(5) define the decentralized fully
adaptive node-to-node strategy which we propose in this

work—the term fully refers to the fact that all parameters

rij and q that determine synchronizability are adaptively

estimated and decentralized because the adaptation laws

are independent. Next, we prove that this strategy guaran-

tees global asymptotic stability of the synchronized

solution xsðtÞ; and we show, via numerical analysis, that

such strategy can present better performance than the

original decentralized fully adaptive strategy. Different

from the decentralized fully adaptive node-to-node strat-
egy, in the decentralized fully adaptive strategy, a network

node, or a set of network nodes Mpin, is randomly chosen

but does not change in time, i.e., diðtÞ ¼ di defined at the

initial time.

Theorem 1. Assuming f is QUAD(D; �x) (see Defini-

tion 3 in the Appendix), with D� �xI < 0, that the decen-

tralized fully adaptive node-to-node pinning control

strategy given by Eqs. (2)–(5)) guarantees global asymp-

totic synchronization of a connected undirected network

onto the desired trajectory xs according to Definition 4.

Moreover, both the coupling and control gains converge

towards finite values.

A. Proof of Theorem 1

Based on Ref. 22, the proof of the theorem is based on

choosing an appropriate Lyapunov function, and then show-

ing that

1. The derivative _V of the candidate Lyapunov function V is

negative semidefinite (NSD).

2. The various coupling strengths rijðtÞ and the pinning con-

trol strengths qiðtÞ are bounded.

3. The pinning errors e
p
i ðtÞ ! 0.

Let us define the N-dimensional row matrix KðtÞ ¼
½KijðtÞ� as

KijðtÞ ¼
rijðtÞ; if ði; jÞ 2 E;

�
X
k2N i

rikðtÞ; if i ¼ j;

0; otherwise;

8><
>: (6)

with rijðtÞ ¼ rjiðtÞ; and the extended matrix KEðtÞ as the

ðN þ 1Þ-dimensional matrix,

KEðtÞ ¼
0

K �

0 � � � 0

2
4

3
5:

Using definitions given above, the governing equations of

the pinned network (2) can be recast as

_XðtÞ ¼ FðXðtÞ; tÞ þ KEðtÞXðtÞ � KpinðtÞXðtÞ; Xð0Þ ¼ X0;

(7)

where XðtÞ ¼ ½xT
1 ðtÞ;…; xT

NðtÞ; xT
s ðtÞ�

T
, FðXðtÞ; tÞ ¼ ½f ðx1

ðtÞ; tÞT ;…; f ðxNðtÞ; tÞT ; f ðxsðtÞ; tÞT �T , KEðtÞ ¼ KEðtÞ �In,

KpinðtÞ ¼ KpinðtÞ � In, in which,
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q1ðtÞd1ðtÞ 0 � � � � � � � � � � � � 0 �q1ðtÞd1ðtÞ
0 q2ðtÞd2ðtÞ 0 � � � � � � � � � 0 �q2ðtÞd2ðtÞ

0 0 . .
.

0 � � � � � � 0 �

0 0 0 qMpin
ðtÞdMpin

ðtÞ 0 � � � 0 �qMpin
ðtÞdMpin

ðtÞ
0 0 0 0 0 � � � 0 0

� � � � � � � �

0 0 0 0 0 0 0 0

2
6666666664

3
7777777775
;

is the ðN þ 1Þ-dimensional Laplacian-like matrix KpinðtÞ.
Without loss of generality, since a Laplacian-like matrix can

always be rearranged so that the first Mpin nodes are chosen

to be the pinnable nodes.

The edge-based coupling strength adaptation law

embedded in KEðtÞ is given by Eq. (4) and the control gain

adaptation law is given by Eq. (5), with rijð0Þ � 0; 8ði; jÞ 2
E and qið0Þ � 0; 8i ¼ 1;…;Mpin.

The synchronization error can now be written as

eðtÞ ¼ XTðtÞMXðtÞ, and synchronization will be achieved if

limt!1 eðtÞ ¼ 0, i.e., if limt!1 ec
ijðtÞ ¼ 0 and limt!1 e

p
i ðtÞ

¼ 0. To prove this to be the case, we can consider the fol-

lowing candidate Lyapunov function:

VðX; r; q; tÞ ¼ 1

2
gXTðtÞMXðtÞ þ 1

2c
½c� rðtÞ�T ½c� rðtÞ�

þ 1

2b
½r� qðtÞ�T ½r� qðtÞ�; (8)

where g, c, and b are positive scalars, r is an Mpin-dimen-

sional arbitrary vector, c is an m-dimensional arbitrary vec-

tor, rðtÞ ¼ frigðtÞ is defined as the vector whose elements

are all the adaptive coupling gains among nodes, that is, rðtÞ
is the vector ½r11ðtÞ r12ðtÞ � � �� of size m ¼ jEj, qðtÞ ¼
fqiðtÞg is defined as the vector whose elements are the pin-

ning control gains.

The ðN þ 1Þ-dimensional matrix M is defined as

follows:

M ¼

�1

IN �

�1

�1 � � � �1 N

2
664

3
775;

also define M ¼ M � In.

We then have

_V ¼ gXTðtÞM½FðXðtÞ; tÞ þ KEðtÞXðtÞ � KpinðtÞXðtÞ�

� 1

c

Xm

i¼1

ðci � riðtÞÞT _riðtÞ�
1

b

XMpin

i¼1

ðri � qiðtÞÞT _qiðtÞ

¼ gXTðtÞM½FðXðtÞ; tÞ � DXðtÞ� þ gXTðtÞMDXðtÞ
þ gXTðtÞMKEðtÞXðtÞ�gXTðtÞMKpinðtÞXðtÞ

� 1

c

Xm

i¼1

ðci � riðtÞÞT _riðtÞ �
1

b

XMpin

i¼1

ðri � qiðtÞÞT _qiðtÞ;

with D ¼ D� In. Since f is QUAD by assumption, we can

state that XTðtÞM½FðXðtÞ; tÞ � DXðtÞ� � ��xXTðtÞMXðtÞ, so

that

_V � �g�xXTðtÞMXðtÞ � gXTðtÞMKpinðtÞXðtÞ
þ gXTðtÞ½MDþMKEðtÞ�XðtÞ

� 1

c

Xm

i¼1

ðci � riðtÞÞT _riðtÞ
1

b

XMpin

i¼1

ðri � qiðtÞÞT _qiðtÞ: (9)

Equation (9) can also be written as

_V � �gXTðtÞMKpinðtÞXðtÞ þ gXTðtÞ½MðD� �xIÞ

þMKEðtÞ�XðtÞ�
1

c

X
E
½cij � rijðtÞ�uðxiðtÞ � xjðtÞÞ

� 1

b

X
P
ðri � qiðtÞÞ#ðxiðtÞ � xsðtÞÞ

:¼ W1ðXðtÞ; qðtÞÞ þW2ðXðtÞ; rðtÞÞ þW3ðXðtÞ; rðtÞÞ
þW4ðXðtÞ; qðtÞÞ:

(10)

One can easily check that the matrix MKEðtÞ ¼ KEðtÞ, and

matrix MKpinðtÞ will be given by

q1ðtÞd1ðtÞ 0 � � � � � � � � � � � � 0 �q1ðtÞd1ðtÞ
0 q2ðtÞd2ðtÞ 0 � � � � � � � � � 0 �q2ðtÞd2ðtÞ

0 0 . .
.

0 � � � � � � 0 �

0 0 0 qMpin
ðtÞdMpin

ðtÞ 0 � � � 0 �qMpin
ðtÞdMpin

ðtÞ
0 0 0 0 0 � � � 0 0

� � � � � � � �

�q1ðtÞd1ðtÞ �q2ðtÞd2ðtÞ � � � �qMpin
ðtÞdMpin

ðtÞ 0 0 0
XMpin

i¼1

qiðtÞdiðtÞ

2
6666666666664

3
7777777777775
:
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The matrices MKpinðtÞ and MKEðtÞ are therefore both sym-

metric and real for any time t � 0. From Definition 1,

MKpinðtÞ and �MKEðtÞ are also diagonally dominant (see

Ref. 23) and, having non-negative diagonal entries. Then,

Lemma 1 yields MKpinðtÞ is positive semidefinite (PSD) and

so is �MKEðtÞ (i.e., MKEðtÞ is NSD). Thus, in Eq. (10),

W1ðXðtÞ; qðtÞÞ � 0 for any time t � 0. From the assumption

that D� �xI < 0 is real symmetric, we have MðD� �xIÞ � 0.

Therefore, ½MðD� �xIþ KEðtÞÞ� � 0 and so we have that

W2ðXðtÞ; rðtÞÞ � 0 in Eq. (10) for any time t � 0. We now

have to look at the terms W3ðXðtÞ; rðtÞÞ and W4ðXðtÞ; qðtÞÞ
in Eq. (10).

We can write W3ðXðtÞ; rðtÞÞ ¼
P
Eðci � riðtÞÞjjec

ijðtÞjj
p

and W4ðXðtÞ; qðtÞÞ ¼
P
Pðri � qiðtÞÞjjep

i ðtÞjj
p
. Functions

W2ðXðtÞ; rðtÞÞ and W3ðXðtÞ; rðtÞÞ in Eq. (10) are both linear

functions of riðtÞ; similarly, W1ðXðtÞ; qðtÞÞ and W4ðXðtÞ;
qðtÞÞ are both linear functions of qiðtÞ. Hence, if riðtÞ and

qiðtÞ diverged in time, these terms would diverge exponen-

tially. Nevertheless, there will always exist a suitable value

of the constants g, c, and b such that, for all X(t), riðtÞ and

qiðtÞ, jW2ðXðtÞ; rðtÞÞj � jW3ðXðtÞ; rðtÞÞj, and jW1ðXðtÞ; qðtÞÞ
j � jW4ðXðtÞ; qðtÞÞj for any time t � 0. As W1ðXðtÞ; qðtÞÞ is

NSD and W2ðXðtÞ; rðtÞÞ is NSD, we get for all X(t), riðtÞ and

qiðtÞ, _V � 0 against the assumption that riðtÞ and qiðtÞ
diverge in time. Therefore, the various riðtÞ and qiðtÞ are

upper bounded and _V � 0 for all XðtÞ 2 RnðNþ1Þ;
riðtÞ 2 R 8i ¼ 1;…;m, qiðtÞ 2 R 8i ¼ 1;…;Mpin; and the

synchronization error eðtÞ ¼ XðtÞTMXðtÞ is bounded.

Therefore, we can conclude that _V � 0 and so both the

error e(t) and the coupling and control gains rijðtÞ and qiðtÞ
are bounded.

From Eqs. (4) and (5), we know that all the gains are

strictly monotonically increasing and so, being bounded,

they converge to constant values. Therefore, asymptotically

_rijðtÞ ! 0; 8ði; jÞ 2 E and _qiðtÞ ! 0; 8i ¼ 1;…;N. From

Eq. (9), we can finally conclude that the error e(t) must

asymptotically converge to zero.

III. NUMERICAL RESULTS

In this section, we present an example of the decentral-

ized fully adaptive node-to-node pinning control applied to a

complex network of 300 Chen’s oscillators.24 We also com-

pare the performance of the new strategy to the decentralized

fully adaptive strategy.

Consider a network of 300 nodes structured on a scale-

free like topology with 2400 links constructed using the BA

model presented in Ref. 25. Specifically, we consider a con-

trolled network of the form (2) consisting of 300 identical

Chen’s oscillators defined as follows:

_xi ¼
�r1 r1 0

0 r3 0

0 0 r2

0
@

1
A xi1

xi2

xi3

0
@

1
Aþ 0

�xi1xi3

xi1xi2

0
@

1
A; (11)

where i ¼ 1;…; 300; r1 ¼ 35; r2 ¼ 3; r3 ¼ 28, parameters

for which the system exhibits chaotic behavior.

Initial conditions on network nodes are randomly selected

from a normal distribution with mean ð
ffiffiffiffiffi
63
p

;
ffiffiffiffiffi
63
p

; 21Þ and

standard deviation 1. Initial condition of the reference node is

ð
ffiffiffiffiffi
63
p

;
ffiffiffiffiffi
63
p

; 21Þ, that is an unstable equilibrium point. The

total number of pinned nodes, Npin, is set to 1; pinned nodes

are chosen by random each instant of time multiple of the

switching period T¼ 0.05 unit time. Initial conditions of

parameters rij and q are all zero.

Figure 1 shows error time evolution of the network nodes

when applying decentralized fully adaptive node-to-node

pinning control strategy, observe that error e
p
i ðtÞ evolves

toward zero.

Figure 2 shows the time evolution of the states of the

network, observe node states synchronize onto the reference

orbit that is an equilibrium point in this case. Figure 3 shows

the evolution of the coupling strength rijðtÞ, observe they all

converge to low constant values. Finally, Figure 4 shows

time evolution of the control gain qjðtÞ of the pinned node j,
observe the switching behaviour of the curve due to the char-

acteristic of the control strategy.

FIG. 1. Pinning error e
p
i ðtÞ: Figure shows the evolution of the pinning syn-

chronization error e
p
i ðtÞ of each state variable of each node of the network.

Observe states’ error go to zero as time evolves. In the figure, each different

color represents one node different node of the network.

FIG. 2. Synchronous state: Figure shows the time evolution of each state

variable of each node of the network. Observe states go to the equilibrium

point set by the reference node as time evolves. In the figure, each different

color represents one node different node of the network.
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We now compare the performance of the decentralized

fully adaptive node-to-node pinning control to the original

decentralized fully adaptive strategy. To do that, we compare

the convergence time of the two strategies averaged over 50

simulation realizations. The convergence time is defined as

the time the Euclidian norm of the pinning error epðtÞ takes

to be less than � ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:001
p

. The result is an average conver-

gence time of 16.29 units of time for the decentralized fully

adaptive strategy in which the node to be pinned is chosen

by random at initial time, while the decentralized fully adapt-

ive node-to-node pinning strategy has an average conver-

gence time of 14.64 units of time, confirming the proposed

strategy can have better performance than the original decen-

tralized fully adaptive strategy. The numerical experiment

can be also performed on a random or small-world network

preserving the qualitative result. We do not show it in this

paper for a matter of brevity.

IV. CONCLUSION

When one deals with a pinning control strategy for the

synchronization of complex network two characteristics are

highly desirable: online estimation of the coupling strength

and the control gain necessary to guarantee synchronization;

and minimization of the convergence time. In this work, we

propose a strategy that has both desirable characteristics—

the decentralized fully adaptive node-to-node strategy for the

synchronization of complex networks.

In this work, we define the decentralized fully adaptive

node-to-node strategy; we prove the proposed strategy guar-

antees global asymptotic stability of the synchronized solu-

tion xs; and we show, via numerical analysis, that such

strategy can present better performance than an adaptive

strategy like the decentralized fully adaptive strategy.
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APPENDIX: MATHEMATICAL DEFINITIONS

We report here some mathematical definitions and lem-

mas that are used in the paper.

Definition 1. Let A be an m-dimensional square matrix.

According to Ref. 26, the matrix A is said to be diagonally

dominant if

jaiij �
Xm

j¼1;j6¼i

jaijj: (A1)

Lemma 1. Let A be a Hermitian m-dimensional diagonally

dominant square matrix with non-negative diagonal entries.

Then, A is PSD. By Gershgorin’s circle theorem,26 for each

eigenvalue k of A, an index i exists such that

k 2 aii �
Xm

j¼1;j6¼i

aij; aii þ
Xm

j¼1;j 6¼i

aij

" #
; (A2)

which implies, from Definition 1, that kj � 0; 8j ¼ 1;…;m.

Definition 2. The Laplacian m-dimensional square ma-

trix A of a connected undirected network is a symmetric irre-

ducible PSD matrix, with rankðAÞ ¼ m� 1, defined by

A ¼
�1; if ði; jÞ 2 E;

�
X
k2N i

aik; if i ¼ j;

0; otherwise:

8><
>: (A3)

where E is the set off all connected nodes.

Definition 3. A function f : Rn �Rþ ! Rn is

QUADðD; �xÞ, see Ref. 27, if, for any x; y 2 Rn,

ðx� yÞT ½f ðx; tÞ � f ðy; tÞ� � ðx� yÞTðD� �xIÞðx� yÞ (A4)

where D is an arbitrary diagonal matrix of order n, and �x is a

positive scalar.

FIG. 3. Coupling strength rijðtÞ: Figure shows the evolution of each cou-

pling strength rijðtÞ of the network edges (links). Observe each coupling

strength converges to a bounded value as time evolves. In the figure, each

different color represents one node different coupling strength rijðtÞ.

FIG. 4. Pinning control gain q(t): Figure shows the evolution of the pinning

control gain qjðtÞ of the pinned node j. Observe each control gain qjðtÞ con-

verges to a bounded value as time evolves. In the figure, each different color

represents the control gain of a different pinnable node.
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Definition 4.24 Let xiðt; t0;X0Þ, i ¼ 1;…;N, be a solution

of the controlled network (2), where X0 ¼ ðxT
1 ð0Þ;…;

xT
Nð0ÞÞ

T 2 RnN . Let f : X�Rþ ! Rn be continuously

differentiable, X 	 Rn. If there exists a nonempty subset

C 	 X, with xð0Þ 2 C; i ¼ 1;…;N, such that xiðt; t0;X0Þ
2 X; i ¼ 1;…;N, for all t � t0, and

lim
t!1
jjxiðt; t0;X0Þ � xsðt; t0; xsð0ÞÞjj2 ¼ 0; i ¼ 1;…;N;

(A5)

where xsð0Þ 2 X, then the controlled network (2) is said to

achieve controlled network synchronization and C�…� C
is called the region of synchrony for the dynamic network (2).

To achieve controlled network synchronization, the con-

trol �qiðtÞep
i ðtÞ should make the norm of all error vectors

e
p
i ðtÞ approach zero as time t goes to infinity. That is

limt!1jjep
i ðtÞjj2 ¼ 0; i ¼ 1;…;N: (A6)
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