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Abstract: The ability to monitor sugarcane expansion in Brazil, the world’s largest 

producer and exporter of sugar and second largest producer of ethanol, is important due to 

its agricultural, economic, strategic and environmental relevance. With the advent of flex fuel 

cars in 2003 the sugarcane area almost doubled over the last decade in the South-Central 

region of Brazil. Using remote sensing images, the sugarcane cultivation area was annually 

monitored and mapped between 2003 and 2012, a period of major sugarcane expansion. 

The objective of this work was to assess the thematic mapping accuracy of sugarcane, in 

the crop year 2010/2011, with the novel approach of developing a web platform that 

integrates different spatial and temporal image resolutions to assist interpreters in 

classifying a large number of points selected by stratified random sampling. A field 

campaign confirmed the suitability of the web platform to generate the reference data set. 

An overall accuracy of 98% with an area estimation error of −0.5% was achieved for the 

sugarcane map of 2010/11. The accuracy assessment indicated that the map is of excellent 

quality, offering very accurate sugarcane area estimation for the purpose of agricultural 

statistics. Moreover, the web platform showed to be very effective in the construction of 

the reference dataset. 
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1. Introduction 

Due to its agricultural [1], economic [2], strategic [3,4] and environmental [5–7] relevance, 

sugarcane cultivation in the South-Central region of Brazil has been annually monitored and mapped 

using Landsat-like images and visual interpretation since 2003 through the Canasat Project 

(www.dsr.inpe.br/laf/canasat/en) [8]. The annual thematic maps have been used not only to estimate 

the cultivated sugarcane area but also as reference for monitoring sugarcane harvesting practices [9], 

for assessing land use change in response to sugarcane expansion [10,11], and for analyzing crop  

yield [12]. Although these maps were carefully created using images acquired during specific periods 

of the sugarcane crop calendar, they have not yet been evaluated with an objective method of quality 

assessment to determine their utility and applicability [13–16].  

Foody [17] pointed out that the accuracy of land cover thematic maps should be assessed, not only 

to provide quality measurement, but also to determine a confidence level for decisions and analyses 

based on these maps. Indeed, accuracy assessments of thematic maps are essential for validation, 

acceptance and utilization of land cover maps [16,18]. However, the accuracy assessment process of 

thematic maps is not always a simple task [19,20]. Difficult access to extensive geographic regions and 

frequent land use changes can hinder the process of accuracy assessment but should not reduce the 

credibility of these assessments [21]. 

Positional and thematic errors are the two major types of errors that need to be evaluated in the 

accuracy assessment of thematic maps. Positional errors are associated with the misregistration 

between the thematic classification and the reference data [22,23]. Thematic errors are associated with 

erroneous labeling of either automatic and/or visual classification procedures and are the major error 

source of thematic maps [24]. 

Thematic maps of the Canasat Project estimated 8.35 million hectares of cultivated sugarcane in the 

South-Central region of Brazil for crop year 2010/11 [25]. According to the Brazilian Institute for 

Geography and Statistics (IBGE [2]), this cultivated sugarcane represents 87% of the national 

sugarcane area; the remaining 13% (1.23 million hectares) are cultivated in the Northeast region of 

Brazil. It is interesting to note that the sugarcane area has more than doubled from 2003 to 2010 in 

Brazil’s South-Central region [25], highlighting its great potential for sugarcane expansion; while the 

northeast region has remained relatively stable over this same period [2] as there is less available land 

for expansion. Sugarcane crop in the South-Central region is largely mechanized and consequently 

cultivated on relatively flat terrain that is easy to access; however, the extensive cultivated area makes 

it difficult to carry out a field campaign for the validation of thematic sugarcane map. Thus, the 

objective of this work was to assess the accuracy of area estimation and thematic mapping of 

sugarcane by the Canasat Project in the 2010/2011 crop year using a novel web platform developed to 

combine different spatial and temporal image resolutions to classify a large number of points selected 

by a stratified random sampling procedure. 

Considering the difficulties and restrictions inherent to the accuracy assessment process,  

Stehman [26] proposed the use of a regression estimator along with ancillary data gathered by 

specialists to reduce field work. Dorais and Cardille [27] integrated the high spatial resolution of 

images available on Google Earth with a time series of images from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor for monitoring deforestation and evaluating map quality. A similar 
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process was used by Cohen et al. [28] to detect forest disturbance and recovery using a Landsat time 

series integrated with Google Earth. Indeed, combining images of high spatial resolution with those of 

high temporal resolution for visual analyses of specific points by specialists seems to be a novel and 

valuable approach to be used in the accuracy assessment process. Thus, a web platform was developed 

to simultaneously analyze georeferenced high-spatial resolution (Landsat-like) images and  

high-temporal resolution (MODIS) images, to validate the maps generated by the Canasat Project and 

also introduce a novel method for determining the accuracy of the sugarcane map. 

2. Materials and Methods 

The thematic accuracy assessment of the sugarcane map from the Canasat Project for the  

South-Central region of Brazil was carried out for the 2010/2011 crop year (harvest from April 2010 to 

December 2010). The South-Central region of Brazil comprises the states of São Paulo, Minas Gerais, 

Paraná, Mato Grosso, Mato Grosso do Sul, Goiás, Rio de Janeiro, Espírito Santo, Santa Catarina and Rio 

Grande do Sul. However, the states of Rio de Janeiro and Espírito Santo have a relative small sugarcane 

area with low potential for expansion and the states of Santa Catarina and Rio Grande do Sul have an even 

smaller sugarcane area; therefore, these states were not considered in the present study. Although several 

subclasses of sugarcane were mapped (for details see Rudorff et al. [8]) they were aggregated as a single 

sugarcane class. Therefore, the thematic accuracy assessment accounted for a two-class thematic map, 

i.e., sugarcane and no sugarcane. The following remote sensing images and ancillary data were used 

in the present work: (i) 396 images acquired by Landsat-5 and Landsat-7 from January 2009 through to 

September 2010; (ii) MODIS-EVI2 time series (February 2000–December 2011) of the MOD09 

product for the entire South-Central region (tiles H12V10, H12V11, H13V10, H13V11, H14V10 and 

H14V11); (iii) a partial sugarcane map for São Paulo state provided by the sugarcane producers to the 

State Secretary of Environment (SMA-SP); and (iv) information on cultivated sugarcane in 

municipalities of the study area available at IBGE [2]. All Landsat images were registered based on the 

orthorectified images from the Enhanced Thematic Mapper Plus sensor (ETM+) of Landsat-7 [29] using 

a first order polynomial and the nearest neighbor interpolation method [22]. The root-mean-square 

(RMS) error of the georeferenced images was less than 0.5 pixels. The final preprocessing step applied a 

linear 2% contrast in all Landsat images. The remote sensing images were integrated in a web platform, 

using the Virtual Laboratory of Remote Sensing Time Series described by Freitas et al. [30]. 

2.1. Statistical Design 

Unlike other crops, sugarcane must be cultivated near a sugar and/or ethanol processing plant to 

reduce transportation cost and minimize fast postharvest deterioration. Thus, sugarcane is only planted 

in municipalities that have a nearby processing unit. Because official statistics on cultivated area are a 

reliable source of information, we used the sugarcane area information from IBGE [2] as the initial 

step for stratification. Due to the large region covered by the mapping and the characteristics of 

sugarcane cultivation, municipalities with no sugarcane (S = 0) were excluded from the analyses. 

Stratified random sampling was conducted with the strata (h) chosen based on the proportion of the 

municipality covered by sugarcane (), given by 
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where Si represents the sugarcane area of the ith municipality estimated by IBGE [2]; and Ai represents 

the total area of the ith municipality. Once the municipalities were assigned to the strata, the 

municipality boundaries were erased leaving only the four strata (see Figure 1 for a display of the 

strata). Euclidean distances were computed considering the values of  for each municipality in the 

grouping analysis, using the Ward clustering method [31], resulting in a dendogram (see Figure 1) to 

select the strata. This method minimizes the variance within each stratum. Although the variance of i 

is not the key characteristic in the estimation of the sugarcane area or an estimation of accuracy, the 

variance depends on the proportion of the sugarcane area in each stratum, h, since h characterizes a 

feature of a pixel (point) which is the sampling unit. Thus, for each stratum h the proportion of area of 

sugarcane (based on the IBGE information) can be defined as h, where h is the ratio between the 

sum of Si and the sum of Ai for all municipalities in stratum h. 

For each stratum h the number of pixels (population—Nh) was obtained based on the spatial 

resolution of the Landsat images. We use the binomial function, which is a specific case of the 

multinomial function [20,32–34] recommended when the thematic map has only two mutually 

exclusive classes [33] (e.g., sugarcane and no-sugarcane), to estimate the sample size (n) 

  
   

 
 
 

  

  
 

(2) 

where n is the sample size; Z/2 is the two-tailed tabulated value for the standard normal distribution 

with 99% confidence level; p is the probability of occurrence of the sugarcane class, given by the 

mean of all values calculated in Equation (1) (  ); q is the probability of occurrence of the no 

sugarcane class, given by the relation q = 1 − p. We adopted this value of p because it increases the 

sample size when compared with p values estimated using the expected map overall accuracy. E is the 

permitted sample error adopted as 2.5%. It is expected that stratified random sampling reduces the 

standard error relative to the simple random sampling. Indeed we verified that the standard deviation 

of the overall accuracy was reduced by 2.42 times when comparing the stratified random sampling 

with the simple random sampling. In fact, the binomial function and the adopted p value provided a 

larger number of sample points than would be required of stratified sampling to obtain the target 

sample error of 2.5% but not so large that sampling becomes unfeasible [35]. 

The standard deviation values in relation to h were extracted along with the number of 

municipalities (Mh) and the number of pixels (Nh) of the Landsat images. Based on an adaptation of the 

optimal allocation described by Cochran [32], we used the standard deviation of h instead of the 

proportion h defined earlier. Thus, the sample size for each stratum (nh) was calculated by 

    
         

          
 (3) 

where n is the sample size for the entire study area (Equation (2)); Nh is the number of pixels of 

stratum h and sd(h) is the standard deviation of  in stratum h. 
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Figure 1. The four sugarcane strata and the n selected points in the study area; the trajectory 

of the field work; the visited points; and some illustrative photos from the field work. 

 

Thus the equations of user’s accuracy and producer’s accuracy for sugarcane (UAsh and PAsh) and 

no-sugarcane (UAnh and PAnh) classes and the overall accuracy (OA) are based on the error  

matrix [21,36–39] for each stratum (h), shown in Table 1. 
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Table 1. Error matrix for each stratum, with overall accuracy (OA), user’s accuracy (UA) 

and producer’s accuracy (PA) equations. 

Class 
Reference Data 

Row Total 
Sugarcane No-Sugarcane 

M
ap

 

Sugarcane n11 n12 Tms = n11 + n12 

No-sugarcane n21 n22 Tmn = n21 + n22 

Column Total Trs = n11 + n21 Trn = n12 + n22 nh =n11 + n12 + n21 + n22 

OAh (n11+n22)/nh 

UA UAsh = n11/Tms UAnh = n22/Tmn  

PA PAsh = n11/Trs PAnh = n22/Trn  

nij represents the number of pixels with map class i and reference class j. 

The OA, UA and PA for the entire map was calculated based on the error matrix of each stratum, 

and considering weights (Wh is described further and presented in Table 2). 

Table 2. Lower and upper limits of sugarcane % in each stratum and summary of the 

parameters used in the thematic accuracy assessment. 

Stratum A B C D 

Limits (in%) (0; 5.5] (5.5; 27] (27; 53] (53; 100] 

   1.812% 13.623% 38.048% 64.794% 

sd(  ) 0.007989 0.018522 0.034417 0.055521 

Mh 286 343 199 74 

Nh 12,495,627 28,040,236 24,634,031 25,620,349 

Wh 0.1376 0.3088 0.2713 0.2822 

nh 104 396 504 500 

n11 49 191 246 249 

n12 3 7 6 1 

n21 0 2 6 6 

n22 52 196 246 244 

nij is defined in Table 1. 

2.2. Web Platform and Reference Database 

The system architecture of the web platform, illustrated in Figure 2, was developed within the 

Virtual Laboratory of Remote Sensing Time-Series [30] and used to visually classify the randomly 

selected points (n) as sugarcane or no-sugarcane by the four independent interpreters to construct the 

reference dataset. The system is composed of a server and a client (browser/photo interpreter) side. 

The process begins after the photo interpreter logs in at https://www.dsr.inpe.br/laf/validamapacana/. 

After the user successfully logs in, the system obtains a list of all points, highlighting whether each 

point had or not been already interpreted by the logged user (Figure 2(2)), and build the webpage using 

HTML and Javascript (Figure 2(1)). As illustrated in Figure 3, once the browser’s webpage is loaded 

(Figure 2(1)) it retrieves two images: a basemap using Google Maps (Figure 2(3)) and a partial 
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sugarcane map of São Paulo state obtained from the State Secretary of Environment (SMA-SP)  

(Figure 2(4)). Every map movement sends a new image request to Google Maps (Figure 2(3)) and also 

retrieves the appropriate shapefiles (Figure 2(4)). To view a data point, the photo interpreter must click on a 

specific numerical point ID (Figure 2(5)). Once the point was selected, both the ten-year MODIS-EVI2 

time series data (Figure 3(6)) for that specific MODIS pixel and the list of available Landsat images 

around that point (Figure 3(3)) appear in the browser’s window. Thus, the photo interpreter can choose 

the proper Landsat image (Figure 3(3)) that will be overlaid on the Google Maps image (Figure 2(7)) 

and used by him/her to classify the point as either sugarcane or no-sugarcane (Figure 3(5)). Once a 

point has been classified and saved (Figure 3(6)) the system highlights it as a classified one.  

This web platform directly addresses the problem of how to go about monitoring and quantifying 

land-use land cover change over large areas with high accuracy without spending a lot of money 

on high-resolution data. This platform can be accessed at http://www.dsr.inpe.br/laf/class/ 

validamapacana/en/ login: guest@guest.inpe.br password: 123456. The web platform consists of a 

Google Maps basemap, over which Landsat-5 images (bands 3, 4 and 5) taken during the 2009 and 

2010 years. To the right of the basemap is a list of points (Figure 3). Each point is related to a specific 

MODIS-EVI2 pixel, which after being clicked, becomes highlighted on the basemap. Furthermore, 

clicking on a point brings up the corresponding 11-year MODIS-EVI2 [30,40] for that pixel. The user 

can roll over the MODIS-EVI2 time series bringing up the date on which each MODIS-EVI2 image 

was compiled, and use this information and the Landsat images to determine whether a point does or 

does not show evidence of sugarcane.  

Figure 2. System architecture. 
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Figure 3. The web platform developed within the Virtual Laboratory of Remote Sensing 

Time-Series [30] to classify the 1,504 selected points used to construct the reference dataset. 

 

The classification of the n randomly sampled points was performed by four image interpreters 

following the sugarcane classification methods described by Rudorff et al. [8]. One of the four 

interpreters was specialized in sugarcane mapping and the classification of this interpreter prevailed 

over the other three in case of disagreement. 

However, considering that the construction of the reference dataset based on the web platform is a 

relatively novel approach, a large field campaign was carried out to evaluate its actual effectiveness. 

The field campaign was performed from 5 to 10 July 2011 when 2,620 km across sugarcane areas were 

traversed in the states of São Paulo, Minas Gerais and Paraná. To access the sampled points of interest 

a Global Position System (GPS) device was integrated within the Global Mapper software. Photos 

were taken at each visited point and the current land use was briefly described. 

3. Results and Discussion 

During the 2010/2011 crop year, 902 of the 2,362, municipalities considered in this study (those of São 

Paulo, Minas Gerais, Paraná, Mato Grosso, Mato Grosso do Sul and Goiás) cultivated sugarcane [2]. 

Figure 1 shows the dendogram and the spatial distribution of the four sugarcane strata that were 

defined based on the percentage of sugarcane in each municipality (φ). The lower and upper limits of 

the sugarcane percentage for each stratum were adjusted as follows: stratum A (0; 5.5]; stratum  

B (5.5; 27]; stratum C (27; 53]; and stratum D (53; 100] (Table 2). The sample size (nh) for the entire 
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study area was 1,504. Table 2 summarizes the following parameters for each stratum h: proportion of 

area of sugarcane (  ) and standard deviation of h (sd(h)); number of municipalities (Mh); number 

of pixels (Nh) of the Landsat image; weight (Wh), given by Nh/Nh; number of samples obtained by  

Equation (3) (nh) for each stratum; and number of pixels with map class i and reference class j (nij), as 

described in Table 1. 

All municipalities with more than 53% of sugarcane (stratum D; Table 1) were in São Paulo State 

(Figure 1) which was responsible for approximately 63% of the sugarcane area in the studied region in 

crop year 2010/2011 [2]. However, São Paulo state also has the smallest municipalities with an 

average size of 384 km
2
 followed by Paraná (499 km

2
), Minas Gerais (687 km

2
), Goiás (1,382 km

2
), 

Mato Grosso do Sul (4,578 km
2
) and Mato Grosso (6,407 km

2
); therefore, it was expected that the 

most densely cultivated sugarcane municipalities were located in those states with a smaller average 

for municipality size. Nevertheless, sugarcane has been planted for centuries in São Paulo state as a 

consequence of favorable soil and climatic conditions [41]. Moreover, there are also other factors that 

favor sugarcane production in São Paulo and its vicinity: positive socioeconomic aspects; agroindustry 

infrastructure; a large road network; close proximity to consumer markets; and significant local 

investment in plant breeding [42]. 

During the field campaign, 362 of the 1,504 points from the reference dataset were visited. They 

were distributed in the strata as follows: no points in stratum A; 28 points in stratum B; 114 points in 

stratum C; and 220 points in stratum D. All 362 points visited in the field were correctly classified by 

the interpreters indicating that the web platform was very useful in the construction of the reference 

dataset. Thus, it was possible to calculate the overall and by stratum accuracy indices presented in 

Table 3 for each stratum. 

Table 3. Descriptive statistics of the following accuracy figures: overall accuracy (OA); 

producer’s accuracy related to the sugarcane class (PAs); producer’s accuracy related to 

the no-sugarcane class (PAn); user’s accuracy related to the sugarcane class (UAs); and 

user’s accuracy related to the no-sugarcane class (UAn). 

Stratum Statistic OA PAs PAn UAs UAn 

A 
Estimated 0.97 1.00 0.95 0.94 1.00 

sd 0.0084 0.0000 0.0309 0.0326 0.0000 

B 
Estimated 0.98 0.99 0.97 0.96 0.99 

sd 0.0075 0.0073 0.0128 0.0132 0.0071 

C 
Estimated 0.98 0.98 0.98 0.98 0.98 

sd 0.0150 0.0096 0.0096 0.0096 0.0096 

D 
Estimated 0.99 0.98 1.00 1.00 0.98 

sd 0.0053 0.0095 0.0041 0.0040 0.0097 

Overall 
Estimated 0.98 0.98 0.97 0.97 0.98 

sd 0.0039 0.0027 0.0048 0.0049 0.0027 

Table 3 shows that the accuracy values for all strata were above 96%, but stratum A with PAnA and 

UAsA of 95% and 94%, respectively. The smallest number of samples (nh = 104), together with the 

lowest sugarcane percentage (≤5.5%), contributed to the fact that no omission errors were observed for 
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the sugarcane class in stratum A. Therefore, the omission errors observed in the no-sugarcane class 

were responsible for the lowest accuracy performance of stratum A. In short, the Canasat sugarcane 

map overestimated in about 6% the sugarcane area in stratum A. Sugarcane overestimation was also 

observed for stratum B where the mean errors of inclusion and omission were 1%. Inclusion error in 

stratum B might be associated with cattle raising activity in the vicinity of sugarcane cultivated area 

which can cause interpretation errors, especially with well-cultivated pasture land [10,43]. In stratum 

C, the mean inclusion error of 2% (UAs = 98%) was compensated by the mean omission error of 2% 

(Pas = 98%) providing accurate area estimation. In stratum D, Canasat sugarcane map underestimated 

in about 2% the sugarcane area. Although stratum D presents the densest sugarcane cultivated area, other 

crops are also being cultivated that might cause minor interpretation confusion [8]. However, it is difficult 

to find a plausible technical explanation for such a low interpretation error which is likely to be at the 

quality limit of what can be achieved by visual interpretation of Landsat images for sugarcane mapping 

in this region. 

Although the overall mean error of the sugarcane map was 2% (OA = 98%) the mean inclusion 

error of 2% (UAs = 98%) was compensated for by the mean omission error of 2% (Pas = 98%) 

providing a mean error associated with the estimate of the sugarcane area close to −0.5% that was 

calculated using a weighted mean of the strata, where the individual weights were computed by multiplying 

the area of the stratum by the average sugarcane proportion within the stratum (Tables 2 and 4). The mean 

area estimation error of −0.5% corresponds to an underestimation of less than 42 thousand hectares of 

sugarcane in the crop year 2010/2011 based on the sugarcane thematic map of the Canasat Project. It is 

worth mentioning that the visual Landsat based mapping include the within sugarcane-field road 

network that is estimated to be around 5% of the total sugarcane area [44]. Sugarcane for the beverage 

industry to produce “cachaça” or for cattle raising to produce silage is also included in this thematic 

sugarcane map. However, this sugarcane area is not very significant and remains quite stable from year 

to year with almost no influence on the relative annual sugarcane area estimation. 

Table 4. Overall error matrix weighted by stratum. 

Class 
Reference Data 

Row Total 
Sugarcane No-Sugarcane 

M
ap

 Sugarcane 732.11 19.89 752.00 

No-sugarcane 12.30 739.70 752.00 

Column Total 744.41 759.59 1,504.00 

OA 98% 

UA 97% 98%  

PA 98% 97%  

Area error 
             

        
 0.504% 42,077 ha 

4. Summary and Final Considerations 

In this work, we assessed the thematic mapping accuracy of the sugarcane map for the  

South-Central region of Brazil produced by the Canasat Project (www.dsr.inpe.br/laf/canasat/en/) 
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relative to crop year 2010/2011. To do this, we developed a web platform that integrated different 

types of remote sensing images and ancillary data to assist the visual interpretation and classification 

of 1,504 randomly sampled points. We also visited 362 points by traveling 2,620 km in the states of 

São Paulo, Minas Gerais and Paraná to check the effectiveness of the classification procedure of the 

web platform, which showed to be very effective in the construction of the reference dataset. The 

overall accuracy (OA) index was 98% varying from 97% for the stratum with less sugarcane (0 to 5.5%) to 

99% for the stratum with most sugarcane (53 to 100%). Since part of the omission errors were 

compensated by the inclusion errors, the mean thematic error associated with the sugarcane area estimation 

was −0.5%, meaning an omission of less than 42 thousand ha out of a total of 8.3 million ha [25]. 

The thematic accuracy assessment indicated that the sugarcane map of the crop year 2010/11 from 

the Canasat Project has an excellent thematic accuracy providing sugarcane agricultural statistics of 

high confidence. However, it should be noted that this error refers only to the thematic accuracy 

assessment, since positional accuracy assessment was not evaluated in this work. 
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