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Abstract: Coffee is the second most valuable traded commodity worldwide. Brazil is the 

world’s largest coffee producer, responsible for one third of the world production. A coffee 

plot exhibits high and low production in alternated years, a characteristic so called biennial 

yield. High yield is generally a result of suitable conditions of foliar biomass. Moreover, in 

high production years one plot tends to lose more leaves than it does in low production 

years. In both cases some correlation between coffee yield and leaf biomass can be 

deduced which can be monitored through time series of vegetation indices derived from 

satellite imagery. In Brazil, a comprehensive, spatially distributed study assessing this 

relationship has not yet been done. The objective of this study was to assess possible 

correlations between coffee yield and MODIS derived vegetation indices in the Brazilian 

largest coffee-exporting province. We assessed EVI and NDVI MODIS products over the 

period between 2002 and 2009 in the south of Minas Gerais State whose production 

accounts for about one third of the Brazilian coffee production. Landsat images were used 

to obtain a reference map of coffee areas and to identify MODIS 250 m pure pixels 

overlapping homogeneous coffee crops. Only MODIS pixels with 100% coffee were 

included in the analysis. A wavelet-based filter was used to smooth EVI and NDVI time 

profiles. Correlations were observed between variations on yield of coffee plots and 

variations on vegetation indices for pixels overlapping the same coffee plots. The 

vegetation index metrics best correlated to yield were the amplitude and the minimum 

values over the growing season. The best correlations were obtained between variation on 
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yield and variation on vegetation indices the previous year (R = 0.74 for minEVI metric 

and R = 0.68 for minNDVI metric). Although correlations were not enough to estimate 

coffee yield exclusively from vegetation indices, trends properly reflect the biennial 

bearing effect on coffee yield.  

Keywords: remote sensing; coffee yield; vegetation indices; wavelet filtering 

 

1. Introduction 

Coffee crop is the second most traded commodity in the world, second only to the oil production 

chain. Brazil is the main coffee producer in the world. Although the coffee share in the Brazilian’s 

exports has declined over time due to product diversification, it is still an important generator of 

foreign currency for the country [1]. 

The use of remote sensing data to coffee crop has proved to be very promising, since there is 

difficulty in obtaining field data on a regional scale, especially for field mapping. However, the 

process for getting information from satellite data can be complex because it depends on spectral, 

temporal and spatial resolutions from the sensor used. In a comprehensive study to assess the accuracy 

of classification methods for coffee mapping in Costa Rica, Cordero-Sancho et al. [2] considered the 

results obtained only moderate. The authors attributed the errors to topographic effects and also to 

Landsat spatial resolution, which was insufficient to detect the average size of farms in the region. In 

Brazil, according to [3], only 68% of the crop fields mapped through Ikonos-II images were also 

identified on Landsat images. 

The spectral crop behavior in Landsat images varies depending on the crop and the dates of the 

images, but especially for coffee crop, these variations can also be related to several conditions, such 

as: planting density, crop management, crop age, cultivation, and others [4].  

Crop spectral patterns prevailing in a satellite scene present several characteristics due to different 

situations, such as: crop phenological stages and vegetative vigor, plant spacing, intercropping system 

and management practices [5,6]. These characteristics make it difficult to map and monitor processes 

for coffee crop from satellite data. However, the generation of new remote sensing products with 

significant improvements related to spatial, spectral, radiometric and temporal resolutions brings new 

perspectives for the development of applied studies.  

Landsat images, due to their spatial and spectral resolutions, are more suitable for mapping coffee 

fields, however, they can be restricted to a few scenes free of clouds and this condition can obstruct an 

effective monitoring during crop development [7–9].  

Vegetation indices have frequently been used for crop yield forecasting based on empirical 

regression models and yield models [10–16]. MODIS data, despite not having suitable spatial 

resolution to correctly identify coffee plantations, it has an appropriate temporal resolution for 

monitoring agricultural fields. Vegetation indices derived from MODIS data include geolocation 

accuracy [17] and atmospheric correction, which enable vegetation monitoring [18]. With global 

coverage almost daily, the system has a better chance of providing cloud-free products at regular time 

intervals. Brunsell et al. [19] assessed the feasibility of using MODIS data to monitor coffee productivity 
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in a municipally in southern Minas Gerais, Brazil. It was concluded that the coarse spatial resolution 

of MODIS data is offset by high temporal coverage, a benefit that favors coffee field monitoring by 

this sensor. 

One of the main characteristics of coffee crop is that it takes two years to complete the entire 

phenological cycle of fructification. Branches that grow in the first phenological year will produce 

coffee beans in the second phenological year. In high-production years, a plant works mostly toward 

grain-filling to the detriment of new branch growing which will be responsible for production the 

following year. In low-production years the plant works rather to grow new branches which will 

produce beans the subsequent year. Thus a coffee plot exhibits high and low production in alternated 

years. Additionally, this relationship between leaf biomass and coffee yield is influenced by the 

occurrence of diseases, especially coffee rust (Hemileia vastatrix). In years with high production, rust 

infestations are more severe resulting in high leaf fall after harvest and, consequently, it causes yield 

reduction the following year [20–24]. Therefore, the occurrence of rust in years of high yield 

accentuates the effect of coffee biennially [25].  

Coffee yield forecasting in Brazil relies on the assumption that weather is the main factor 

responsible for bean yield [26,27]. Although the biennial bearing effect on coffee yield and its 

importance in yield modeling are well known [28], there is no effective tool to assess this pattern and 

estimate it in spatial domain. 

Considering this predominant yield alternation in coffee crops in consecutive years and the 

relationship between yield and leaf area, it is possible to expect similar patterns in the alternation of 

vegetation indices. In this case, correlations could be used as an indicator of yield biennially. This 

relationship has been studied in individual coffee fields scale [20–24] or spatially aggregated over a 

municipally scale [19] but, up to now it has not been spatially assessed in the whole largest Brazilian 

coffee-exporting province.  

This study aimed to evaluate the potential of using NDVI and EVI indices generated from MODIS 

product (MOD 13) to detect the biennial coffee yield from 2002 to 2009, in the southern region of 

Minas Gerais State, Brazil. 

2. Methodology 

The selected study area covers the southern region of Minas Gerais State (coordinates  

20°00′–23°00′S and 43°50′–47°30′W), where the coffee yield represents more than a half of the state 

total production (Figure 1). The region was chosen based on its importance in the national coffee yield 

and also on its diversity of environments and cropping systems. A humid subtropical climate (Cwa) 

characterizes the region, according to the Koppen classification, with hot and humid summers and mild 

to cool winters. 

We used EVI time series [29–31] and NDVI vegetation indices [32], totaling 23 scenes per year, 

both indices derived from MODIS sensor, product MOD13. The years from 2002 to 2009 were 

considered in order to verify the possibility of detection of biennial coffee yield. MODIS images, 

which were obtained originally in HDF format (Hierarchical Data Format) and in sinusoidal 

projection, were processed using application MRTool–MODIS Reprojection Tool. The data was 

initially reprojected to latitude and longitude geographic coordinates, WGS84 datum and then, 
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converted to GeoTIFF format. A coffee field map obtained from Landsat TM/5 satellite by [33] for the 

year 2007 also was considered in this study. 

Figure 1. The study area in the south of Minas Gerais State. 

 

2.1. Selection of Pixels with Coffee Fields 

Since there are coffee plots in the study region smaller than the minimum area of MODIS pixels 

(6.25 ha), pixels with spectral mixture among coffee fields and other land cover classes, as well as, 

mixed patterns with different coffee plots are expected. Thus, we selected only pixels from EVI and 

NDVI images which represent homogeneous coffee fields. This process was carried out based on 

coffee field maps obtained from TM/Landsat 5. The procedure used to co-register Landsat images was 

the same presented by [34] with Landsat Enhanced Thematic Mapper Plus (ETM+) and 

MODIS/TERRA multi-temporal data. 

Figure 2. Overlap of the limits of MODIS pixels with coffee fields in TM/Landsat 5 

image, false color composite color 3B4R5G, (A) pixels fully occupied by coffee crop and 

(B) crop variability within a MODIS pixel in Landsat images. 

  

(A) (B) 
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Only pixels 100% occupied by coffee areas according to the Landsat derived coffee map [33] were 

selected from MODIS images. However, due to several factors as age of coffee crops, plant density, 

type of substrate, etc, different spectral responses can be found in the pixel, according to Figure 2. 

Then we calculated the statistics of Landsat pixels (channel 3) confined into MODIS pixels (NDVI 

and EVI images) in order to minimize the effect of spectral mixture. We have used Landsat channel 3 

due to the well-known interaction between this wavelength (red) with vegetation canopies. 

Coefficient of variation was used to describe variability. In this case, lower coefficient of variation 

indicate less variation of Landsat pixels located in MODIS pixels, suggesting the presence of large 

homogeneous stands. Figure 3 illustrates the processing performed for the selection of these pixels and 

an analysis of temporal patterns. This statistical analysis was made using a SPRING GIS tool 

(Geographical Information System) developed by [35]. 

Figure 3. Flowchart of data processing adopted in the study. 

 

We initially generated a cadastral vector file from MODIS images where each object corresponds to 

one pixel. This vector was used to calculate the statistics of channel 3—TM/Landsat image. The vector 

was updated with the Landsat derived coffee map in order to obtain the percentage of coffee field in 

each object. A query was made to the database to get only objects with 100% of coffee field and 

coefficient of variation of less than 40 for channel 3 (indicating homogeneous crop). Then the selected 

pixels are related only to homogeneous coffee plots bigger than 6.25 ha. These pixels were used as the 

basis for selecting coffee plots in field data collection. The correlations were considered taking into 

account yield of individual coffee plots and overlapping pixels of EVI/NDVI.  

2.2. Filtering the Time Series 

The time series corresponding to the selected pixels were filtered using a wavelet based filtering 

(Equation (1)), according to [36–38]. This procedure was established in order to eliminate possible 

noise or pixels with presence of clouds. We assumed that the frequency of noise components in the 

time series of vegetation indices is greater than seasonal changes in these coffee field indices, and a 
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reconstruction of the series by selecting high frequencies allowed the data filtering without changing 

the pattern of seasonal changes: 

dx
a

bx

a
xfbaWf 







 
 






1
)(),(  (1) 

where a is a scale parameter and b is the change parameter which represents the mother wavelet ψ [39]. 

2.3. Metrics Derived from Vegetation Indices 

The vegetation indices were converted into five metrics (amplitude, sum, maximum, minimum and 

average) in order to link biomass reading and yield values throughout the year. For each year of the 

time series, the amplitude of vegetation indices concerning maximum and minimum values throughout 

the year for each selected pixel was calculated in order to quantify the magnitude of leaf loss within 

each crop year (Figure 4). We assumed that the vegetation indices represented the crop leaf area and 

the annual variations that occurred in these indices expressed the gain or loss of leaves during the 

coffee crop development within the agricultural year. Since the plant works to grow branches (and 

leaves) which will produce beans the next year, these metrics derived from vegetation indices during 

the year can be linked to yield. Hereafter when we mention vegetation indices we refer to the metrics 

derived from vegetation indices. 

Figure 4. Annual variation of vegetation indices for the selected pixels (A). Standard crop 

with the maximum vegetation index value for March (B) and minimum vegetation index 

for August (C) on Image TM/Landsat 3B4R5G. 

 

(A) 

(B)(B)

 

(C)(C)

 

Besides the amplitude values, for each selected pixel we also evaluated the sum of vegetation 

indices [40,41], the maximum, minimum and average values for each year, in order to identify which 

metric could present better correlation with productivity. 

NDVI and EVI data (amplitude, sum, maximum, minimum and average) were weighed in relation 

to the maximum value observed in the time series as shown in Equation (2):  
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IVm

IVa
IVw   

(2) 

where IVw: Weighed vegetation index; IVa: Vegetation index in the year; IVm: Maximum vegetation 

index in the time series. 

2.4. Yield Data 

Yield data from 20 to 37 plots of Mundo Novo varieties (60-kg bags of green coffee per hectare), 

corresponding to the pixels selected from 2002 to 2009 were obtained (Table 1). This data was 

collected in interviews with farmers from four locations: Três Pontas, Boa Esperança, São Sebastião 

do Paraíso e Monte Santo de Minas. Then, yield data and EVI; NDVI metrics (amplitude, sum, 

maximum, minimum and average) were weighed in relation to the maximum value observed in the 

time series according to Equations (2) and (3): 

Pm

Pa
Pw   (3) 

where Pn: weighed yield; Pa: year yield (60-kg-bags of green coffee per hectare), Pm: maximum yield 

in the series (60-kg-bags of green coffee per hectare). 

Table 1. Number of yield data samples collected for each year (ni) and number of valid 

samples when we calculated the difference between 2 years (ni–ni−1).  

Table 2002 2003 2004 2005 2006 2007 2008 2009 

ni 20 25 27 32 37 37 37 35 

ni–ni−1 - 20 25 27 32 37 37 35 

2.5. Correlations 

Correlations (Pearson correlation coefficient) were calculated for two different situations: 

(i) correlations between variation in yield and variation in vegetation indices in the same year  

(Equations (4) and (5)), assuming that an increase in yield could result in a reduction of vegetation 

indices and; (ii) correlations between variation in vegetation indices and variation in yield the 

following year (Equations (5) and (6)), assuming that an increase in vegetation indices could result in 

an increase of yield the following year. This approach was adopted to highlight the coffee biennial 

yield and also, to see a possible alternating pattern of vegetation indices during the yield for each two 

years. Variations or differences in vegetation indices and yield between two years allow us to assess 

the effect of biennial yield in alternated years. 

1 iii PwPwP  (4) 

1 iii IVwIVwIV  (5) 

iii PwPwP   11  (6) 

where ΔPi: yield variation for the year (i); Pwi: weighed yield for the year (i); Pwi−1: weighed yield for 

the previous year (i−1); ΔIVi: vegetation index variation for the year (i); IVwi: weighed vegetation 

index for the year (i); IVwi−1: weighed vegetation index for the previous year (i−1);  
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ΔPi+1: yield variation for the following year (i+1); Pwi+1: weighed yield for the following year (i+1); 

Pwi: weighed yield for the year (i). 

3. Results  

3.1. Annual Variation of Vegetation Indices  

Figure 5 present results of the filtering process of NDVI and EVI data, for a sampled pixel. 

Although coffee is a perennial crop, the results showed that the pixels selected with coffee fields 

exhibit great variation for each year, as demonstrated in Figure 5. NDVI and EVI data for coffee field 

samples have reached maximum and minimum values in March/April and in August/September, 

respectively, which represent the end of the rainy and dry season periods in the study region.  

Figure 5. Filtered EVI and NDVI time series for coffee crop and the original data (without 

filtering process). 

  

NDVI and EVI minimum values have also coincided with postharvest period, when the crop 

normally loses part of its leaf biomass due to damage caused by harvesting. Thus, besides the climate 

seasonal effect on the reduction of coffee leaf biomass, the low values found for NDVI and EVI data 

might also have been caused by the harvest practice.  

3.2. Yield Data and Vegetation Index Variation for Each Two Years  

The results of the correlation analyses between variation on coffee yield and variation on VI metrics 

for the same year (∆VIi vs. ∆Pi) from 2003 to 2009 are presented in Tables 2 and 3.  

Table 2. Correlation coefficients between variation on coffee yield and variation on EVI 

metrics in the same year for each metric assessed.  

Metric  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 

 N a 20 25 27 32 37 37 35 

ampEVI 

r b 0.56 0.50 0.48 0.32 0.40 0.20 0.41 

r-sq c 0.32 0.25 0.23 0.10 0.16 0.04 0.17 

p-value d 0.01 0.01 0.01 0.07 0.01 0.23 0.01 

SE e 0.50 0.48 0.50 0.52 0.51 0.49 0.55 
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Table 2. Cont. 

Metric  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 

 N a 20 25 27 32 37 37 35 

sumEVI 

r b −0.33 0.12 −0.06 −0.20 −0.49 −0.40 −0.47 

r-sq c 0.11 0.01 0.00 0.04 0.24 0.16 0.22 

p-value d 0.15 0.59 0.78 0.26 <0.01 0.01 <0.01 

SE
 e
 0.57 0.55 0.57 0.53 0.48 0.46 0.53 

maxEVI 

r b 0.29 0.34 0.24 0.12 −0.05 −0.15 −0.10 

r-sq c 0.08 0.11 0.06 0.01 0.00 0.02 0.01 

p-value d 0.22 0.11 0.22 0.53 0.78 0.38 0.56 

SE e 0.58 0.52 0.55 0.54 0.55 0.49 0.60 

minEVI 

r b −0.46 −0.38 −0.50 −0.45 −0.65 −0.54 −0.55 

r-sq c 0.21 0.14 0.25 0.20 0.42 0.30 0.31 

p-value d 0.04 0.07 0.01 0.01 <0.01 <0.01 <0.01 

SE e 0.54 0.51 0.49 0.49 0.42 0.42 0.51 

avrgEVI 

r b −0.33 0.12 −0.06 −0.20 −0.49 −0.40 −0.47 

r-sq c 0.11 0.01 0.00 0.04 0.24 0.16 0.22 

p-value d 0.15 0.59 0.78 0.26 <0.01 0.01 <0.01 

SE e 0.57 0.55 0.57 0.53 0.48 0.46 0.53 
a samples; b pearson’s coefficient; c coefficient of determination; d significance.; e standard error 

Table 3. Correlation coefficients between variation on coffee yield and variation on NDVI 

metrics in the same year for each metric assessed.  

Metric  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 

 N a 20 25 27 32 37 37 35 

ampNDVI 

r b 0.44 0.33 0.10 0.41 0.42 0.26 0.11 

r-sq c 0.20 0.11 0.01 0.17 0.18 0.07 0.01 

p-value d 0.05 0.11 0.61 0.02 0.01 0.12 0.52 

SE e 0.54 0.52 0.57 0.50 0.50 0.48 0.60 

sumNDVI 

r b −0.15 0.25 0.10 0.07 −0.36 −0.40 −0.23 

r-sq c 0.02 0.06 0.01 0.01 0.13 0.16 0.05 

p-value d 0.52 0.23 0.61 0.69 0.03 0.01 0.18 

SE e 0.60 0.54 0.57 0.54 0.51 0.46 0.59 

maxNDVI 

r b 0.11 0.07 0.07 0.37 −0.20 −0.30 −0.19 

r-sq c 0.01 0.00 0.00 0.14 0.04 0.09 0.04 

p-value d 0.64 0.75 0.73 0.03 0.23 0.07 0.28 

SE e 0.60 0.55 0.57 0.51 0.54 0.48 0.60 

minNDVI 

r b −0.45 −0.52 −0.30 −0.36 −0.66 −0.45 −0.21 

r-sq c 0.20 0.27 0.09 0.13 0.43 0.20 0.04 

p-value d 0.05 0.01 0.12 0.04 <0.01 <0.01 0.23 

SE e 0.54 0.48 0.54 0.51 0.42 0.44 0.59 

avrgNDVI 

r b −0.15 0.25 0.10 0.07 −0.36 −0.40 −0.23 

r-sq c 0.02 0.06 0.01 0.01 0.13 0.16 0.05 

p-value d 0.52 0.23 0.61 0.69 0.03 0.01 0.18 

SE e 0.60 0.54 0.57 0.54 0.51 0.46 0.59 
a samples; b pearson’s coefficient; c coefficient of determination; d significance.; e standard error. 

The sum of VI values during the year (sumEVI and sumNDVI), maximum (maxEVI and maxNDVI) 

and average (avrgEVI and avrgNDVI) that occurred during each agricultural year did not show constant 
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trends from correlation analysis. Funk et al. [10] reported several studies suggesting that mid-to-late 

season NDVI represents better yields than those of seasonal integrations or maximum values. 

The VI variation range (ampEVI and ampNDVI) presented positive correlation for crop yield in 

each agricultural year, indicating that an increase in yield between two years caused a higher VI 

variation range for that year. This could be understood as a situation of high defoliation levels.  

Although the correlations were significant for almost every year, yield cannot be explained only due 

to biomass since coefficients of determination were low and the standard error of prediction shows the 

uncertainties are high. The correlations between yield and foliation were more significant with the 

minimum values of vegetation indices (minEVI and minNDVI) during the year. The best Pearson 

coefficients were −0.65 for minEVI and −0.66 for minNDVI (Figure 6). However, coefficients of 

determination were also low and the standard errors of prediction were high indicating that biomass is 

not the only factor to influence coffee yield. 

Figure 6. Correlation between variation on coffee yield and variation on minimum values 

of vegetation indices (minEVI and minNDVI) for the same year.  

 

The inverse correlation observed for all years indicated that positive increases in yield resulted in a 

decrease in the minimum values of vegetation indices, which suggests a greater loss of leaves after 

harvest in years of high crop yield. The minimum VI values occurred in August and in September, i.e., 

the period that corresponds to the end of the dry season as well as in the short photoperiod 

situation [28]. However, this period can be observed when the harvest is finishing.  

Tables 4 and 5 present correlations between variation on VI metrics and variation on coffee yield 

the following year (∆Pi+1 vs. ∆VIi) from 2003 to 2008.  

Table 4. Correlation coefficients between variation on EVI metrics and variation on coffee 

yield the following year for each metric assessed.  

Metric  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 

 N a 20 25 27 32 37 37 

ampEVI 

r b −0.57 −0.55 −0.56 −0.33 −0.48 −0.24 

r-sq c 0.33 0.30 0.31 0.11 0.23 0.06 

p-value d 0.01 0.01 <0.01 0.06 <0.01 0.17 

SE e 0.61 0.51 0.57 0.55 0.55 0.45 
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Table 4. Cont. 

Metric  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 

 N a 20 25 27 32 37 37 

sumEVI 

r b 0.52 0.06 0.10 0.18 0.49 0.47 

r-sq c 0.27 0.00 0.01 0.03 0.24 0.22 

p-value d 0.02 0.79 0.61 0.31 <0.01 <0.01 

SE e 0.61 0.57 0.58 0.55 0.48 0.44 

maxEVI 

r b −0.17 −0.29 −0.27 −0.16 0.01 0.20 

r-sq c 0.03 0.08 0.07 0.02 0.00 0.04 

p-value d 0.49 0.17 0.18 0.39 0.93 0.25 

SE e 0.61 0.57 0.59 0.55 0.54 0.48 

minEVI 

r b 0.62 0.55 0.53 0.29 0.74 0.62 

r-sq c 0.39 0.30 0.28 0.09 0.55 0.39 

p-value d <0.01 0.01 <0.01 0.10 <0.01 <0.01 

SE e 0.61 0.48 0.57 0.55 0.46 0.42 

avgEVI 

r b 0.52 0.06 0.10 0.18 0.49 0.47 

r-sq c 0.27 0.00 0.01 0.03 0.24 0.22 

p-value d 0.02 0.79 0.61 0.31 <0.01 <0.01 

SE e 0.61 0.57 0.58 0.55 0.48 0.44 

a samples; b pearson’s coefficient; c coefficient of determination; d significance.; e standard error. 

Table 5. Correlation coefficients between variation on NDVI metrics and variation on 

coffee yield the following year for each metric assessed. 

Metric  2002/03 2003/04 2004/05 2005/06 2006/07 2007/08 

 N a 20 25 27 32 37 37 

ampNDVI 

r b −0.63 −0.47 −0.26 −0.34 −0.40 −0.30 

r-sq c 0.39 0.22 0.07 0.12 0.16 0.09 

p-value d <0.01 0.02 0.19 0.06 0.01 0.08 

SE e 0.59 0.48 0.57 0.54 0.52 0.47 

sumNDVI 

r
 b
 0.34 0.03 −0.04 −0.12 0.38 0.42 

r-sq c 0.12 0.00 0.00 0.01 0.14 0.17 

p-value d 0.14 0.91 0.83 0.53 0.02 0.01 

SE e 0.60 0.55 0.59 0.54 0.50 0.48 

maxNDVI 

r b 0.00 −0.08 −0.12 −0.33 0.24 0.30 

r-sq c 0.00 0.01 0.01 0.11 0.06 0.09 

p-value d 1.00 0.70 0.56 0.67 0.15 0.08 

SE e 0.60 0.52 0.59 0.55 0.53 0.48 

minNDVI 

r b 0.65 0.68 0.46 0.27 0.63 0.48 

r-sq c 0.43 0.46 0.21 0.07 0.39 0.23 

p-value d <0.01 <0.01 0.02 0.14 <0.01 <0.01 

SE e 0.61 0.46 0.56 0.55 0.45 0.48 

avgNDVI 

r b 0.34 0.03 −0.04 −0.12 0.38 0.42 

r-sq c 0.12 0.00 0.00 0.01 0.14 0.17 

p-value d 0.14 0.91 0.83 0.53 0.02 0.01 

SE e 0.60 0.55 0.59 0.54 0.50 0.48 

a samples; b pearson’s coefficient; c coefficient of determination; d significance.; e standard error. 



Remote Sens. 2012, 4  

 

2503 

Based on significance of correlation for every year and higher Pearson coefficients the correlations 

between the variations in VI’s and variation in yield the following year presented better results for 

minimum values of EVI and NDVI (minEVI and minNDVI). The best Pearson coefficients were 0.74 

for minEVI and 0.68 for minNDVI (Figure 7). Again the coefficients of determination were low and 

errors were high.  

Figure 7. Correlation between variation on minimum values of vegetation indices (minEVI 

and minNDVI) and variation on coffee yield the following year. 

 

These low coefficients and high errors have indicated that, although vegetation indices may express 

crop biomass, yield is a more complex factor which depends on leaf biomass but also on numerous 

environmental conditions. In addition, the effect of biomass in yield is an indirect result of increases in 

blossoming. High yield values are a result of suitable biomass conditions; however, only suitable biomass 

does not ensure high yields, especially in years with water stress or extreme minimum temperature during 

critical phenological phases [28,42]. In such phases water stress can harm the blossoming development. 

Furthermore, the procedure for selecting representative pixels in fields with homogeneous crops was 

carefully done according to the description in Section 2.1; nevertheless, the coarse spatial resolution of 

MODIS can represent a difficulty in obtaining pixels without spectral mixture. 

The lowest correlations occurred in 2006 (variation in VI’s 2006 vs. variation in Yield 2007), with 

Pearson coefficient of 0.29 for min EVI and of 0.27 for min NDVI, respectively, and this must have 

been caused by adverse weather conditions in 2006. Several factors can influence yield but water 

deficit is one of the most important [43]. According to the water balance for Guaxupé location 

(Figure 8), there was a long-drawn drought in 2006 that advanced during nine months until  

mid-November, which could have affected flowering development and, consequently, the relationship 

between coffee yield in 2007 and VI’s in 2006. For the analysis between coffee yield and vegetation 

indices that same year, the continuous drought did not seem to have influenced the correlations 

because, in this case, the relationship may have been based on other factors such as occurrence of 

diseases [24] and mechanical damage caused by harvesting [44].  
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Figure 8. Water balance for Guaxupé location and Pearson correlation coefficients from 

2002 to 2009. 
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In general the relationships between vegetation indices and yields the following years were inverse 

and higher than vegetation indices and yields the same year. The negative signs indicated that in the 

same year, yield can affect the vegetation indices, due to a higher incidence of diseases and also to 

greater damages caused by mechanical harvesting (both promote leaf fall), while in consecutive years 

vegetation indices represented the yield, since the branches formed in that year will be responsible for 

yield the following year.  

4. Discussion 

Although the correlation results were smaller than those found in studies with annual crops [11–15] 

and errors were high, the trends suggest a leaf area dependence in relation to coffee yield in the same 

year. Coffee is a perennial crop and takes two years to complete its phenological cycle, unlike most 

other crops, which complete their reproductive cycle in one year. Thus this crop represents a unique set 

of problems because it follows a biannual phenological cycle and exhibits high and low production in 

alternated years. This feature has been reported by several authors [26,27] as one important factor to be 

incorporated on agrometeorological models for estimating coffee yield. An effective tool to assess this 

pattern and estimate it in spatial domain could improve significantly coffee yield modeling.  

Brunsell et al. [19] used lagged correlation analysis and deviations from the annual cycle to relate 

yield to accumulated deviations in fractional vegetation. MODIS vegetation indices were spatially 

aggregated over the municipally of Monte Santo de Minas, Minas Gerais, Brazil. The authors noted 

that data from MODIS vegetation indices converted into fractional vegetation indicate trends in coffee 

yield. Since the correlation between vegetation indices and yield is significant in our study, the 

alternated pattern in coffee yield is also true for vegetation indices. Thus, it is possible to infer the 

biennial effect through vegetation indices. 
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As shown in Tables 2–5, these trends can also be seen in the level of pixels vs. yield of coffee plot, 

especially for the amplitude and minimum values of VI. 

The higher the coffee yield, the higher the defoliation levels, as suggested by positive correlations 

between VI variation range (ampEVI and ampNDVI) and variation in crop yield in the same year 

(Tables 2 and 3). Similar results were obtained by [44] in a field-based study where the authors found 

correlations around 0.90 between yield and crop defoliation in southern Minas Gerais region, Brazil. 

This defoliation could be attributed either to mechanical damage caused by harvest procedure or to a 

higher incidence of diseases such as coffee rust [20,21,24].  

For the correlation analyses between VI and coffee yield the following year (Tables 4 and 5), the 

leaf biomass indicates trends in yield as an indirect result of increases in blooming. The water stress in 

2007 could have affected blooming development and, consequently, the relationship between coffee 

yield that year and VI’s in 2006 (Figure 8). Since it is not possible to use passive remote sensing to 

quantify the magnitude of the coffee blooming in the study region because of the presence of clouds 

when coffee trees are flowering, leaf biomass is still a reasonable way to estimate coffee yield.  

The better results obtained with the minimum values could point toward the most appropriate period 

in the study region for image acquisition to be used in further studies. When there are no clouds during 

this period (August/September) and if there are other images available with better spatial resolution as 

TM/Landsat, good results are also expected, since the main limitation of MODIS images in this case is 

their low spatial resolution.  

In addition to the meteorological variables, the spectral response of coffee plantation can be 

influenced by pruning, plant spacing, intercropping system and others cultural practices. These factors 

can promote several uncertainties when vegetation index is correlated with productivity as shown by 

the high errors obtained. Moreover, even the best results of this analysis show that the vegetation 

indices can only explain about 50% of yield variance. In this way correlation analysis showed that 

vegetation indices did not entirely explain yield variation because there are a lot of factors responsible 

for final yield, but these indices could be useful as indicators of coffee biennial yield.  

In relation to the vegetation indices evaluated, minEVI seems to be slightly better than minNDVI in 

our study, since in the analyzed period the correlations between minEVI values and yield were 

significant while the correlation between minNDVI values and yield were not significant in all 

analyzed years (Tables 2–5). A known limitation of NDVI index is the decrease or the saturation in 

sensitivity when leaf area index values (LAI) increase [45,46], such as coffee trees that can reach 

values of LAI higher than 8 [47]. Delalieux et al. [48] found the NDVI saturation effect when leaf area 

rates of crops exceed the value 5. On the other hand, EVI has shown to be less prone to saturation 

effect with higher sensitivity in regions of high biomass [49,50] which could make it more appropriate 

for studies of coffee canopy.  

In our study we assessed correlations between metrics derived from MODIS vegetation indices and 

coffee yield. Only pixels overlapping large coffee plots were related to yield of the respective plots. 

The results point toward the possibility of using higher spatial resolution imagery to estimate the 

biennial bearing effect on coffee yield at the level of individual coffee fields. It can also be associated 

to agrometeorological models for estimating coffee yield in the spatial domain.  
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5. Conclusions 

Among the five metrics derived from MODIS vegetation indices, including amplitude, sum, 

maximum, minimum and average values over the year, the minimum values were better correlated 

with coffee yield. Based on significance of correlation for every year and higher Pearson coefficients, 

correlation analysis between minimum values of vegetation indices (NDVI; EVI) and coffee yield the 

following year presented better results—Pearson coefficients ranging from 0.29 to 0.74 for minEVI 

and 0.27 to 0.68 for minNDVI, significant in both cases in five out of the six analyzed years. Even the 

best results of this analysis showed that the predictions are not high—Standard errors of prediction 

ranging from 0.42 to 0.61 for minEVI and 0.45 to 0.61 for minNDVI. The lowest correlations, that 

occurred in 2006 (variation in VI’s 2006 vs. variation in Yield 2007), with Pearson coefficient of 0.29 

for minEVI and of 0.27 for minNDVI, have been caused by a long-drawn drought in 2006 which 

affected flowering development and, consequently, the relationship between coffee yield in 2007 and 

VI’s in 2006. Therefore, if no extreme weather event happens, minimum values of EVI and NDVI over 

the year were found to be useful as indicators of coffee biennial yield, since the trends properly reflect 

the coffee yield. Moreover, the best correlations were observed with vegetation index data obtained in 

August/September, the period in which there are cloud-free higher spatial resolution images, which can 

produce better results.  

Despite the low spatial resolution of MODIS data and the fact that yield is a complex factor because 

it depends on several conditions, the indices were able to express the relationships between leaf 

biomass and coffee yield. Although coffee yield cannot be estimated exclusively from MODIS 

vegetation indices, these indices can be derived from higher spatial resolution images in order to obtain 

better results and can be used coupled with agrometeorogical models for estimating coffee yield.  
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