
USATASKER: A TASK DEFINITION TOOL
FOR SUPPORTING THE USABILITY EVALUATION

OF WEB APPLICATIONS

Leandro Guarino de Vasconcelos1 and Laércio Augusto Baldochi Jr.2
1Instituto Nacional de Pesquisas Espaciais (INPE) - Av. dos Astronautas, 1758 – 12227-010 – São José dos Campos/SP

Brazil
2Instituto de Ciências Exatas - Universidade Federal de Itajubá (UNIFEI) - Caixa Postal 50 – 37500-903 – Itajubá/MG

Brazil

ABSTRACT

Everyday tens of new applications are deployed on the Web. In general, most of these applications have rich and complex
interfaces, which are bound to present usability problems. However, for modern Web applications, usually developed in
“Internet time”, regular approaches for the evaluation of usability, based on laboratory tests, tend not to be appropriate, as
they demand an amount of effort and time that developers are not willing to spend. In order to tackle this problem, we
developed USABILICS, a system targeted for the automatic remote evaluation of usability based on an interface model.
The proposed model allows the definition of tasks using a simple and intuitive approach, which can be applied to large
and dynamic Web applications. In this paper, we detail this approach, presenting the tool that supports the definition of
tasks. Moreover, we show that our approach is effective towards supporting the definition of complex tasks in a myriad
of modern Web applications.

KEYWORDS

Remote usability evaluation, web applications, task definition tool, task analysis

1. INTRODUCTION

Developing applications for the fast-paced environment of the Web is a challenging task. Competing on
“Internet time” requires speeding up the development cycle in order to deploy applications on the Web as fast
as possible. In this scenario, usability principles are rarely considered in the development process, resulting in
Web application interfaces that tend to present usability problems.

Using regular approaches based on laboratory tests for evaluating the usability of Web applications may
not be appropriate, as these approaches demand an amount of effort and time that developers are not willing
to spend. An option to tackle this problem is using remote automatic or semi-automatic usability evaluation
tools. These tools allows evaluating a large number of users by a low cost, as users and evaluators may be
separated in time and space (Andreasen et al, 2007).

The usual approach for providing remote usability evaluation consists on capturing log information on the
client using applications that run in background gathering information about the user's interaction (Ivory and
Hearst, 2001). The captured logs are sent to server-side applications, where they may be processed in
different ways. An effective way towards identifying usability problems consists in analyzing the captured
events according to a task model, which is previously defined for the application under evaluation. The
comparison between the sequence of events performed by the end user and the sequence of events defined on
the model may indicate usability problems. WebRemUSINE (Paganelli and Paternò, 2002) and AWUSA
(Tiedtke et al, 2002) are examples of tools that exploit this approach. These tools, however, use procedures
for defining tasks that do not scale well for large and dynamic Web applications, in which tens or even
hundreds of tasks need to be defined.

In order to tackle this problem, we proposed an interface model that supports the definition of tasks in a
simple and intuitive way (Vasconcelos and Baldochi, 2012). An important aspect of our model is the fact that
it considers the similarity among the possible paths of a given task, allowing a generic approach for the

IADIS International Conference WWW/Internet 2012

307

definition of similar paths. This approach considerably shortens the time taken to define tasks, as a group of
similar tasks may be represented by a single generic task.

We validated our model by implementing USABILICS, a system that evaluates the execution of tasks by
calculating the similarity among the sequence of events produced by users and those previously captured by
evaluators. This evaluation provides a metric for the efficiency and for the effectiveness of each evaluated
task. We named this metric the usability index of a task (Vasconcelos and Baldochi, 2011). USABILICS also
provides recommendations detailing actions to be performed in order to solve detected usability problems
(Vasconcelos and Baldochi, 2012).

We performed several experiments that showed the effectiveness of USABILICS towards detecting
usability issues and recommending fixes to solve these issues. In order to validate our approach for
calculating the usability index, we selected tasks from different applications and evaluated them using
USABILICS. Following, we applied laboratory-based tests to the same tasks. We noticed an agreement
between the results of the lab tests and the values of the usability indexes. We also applied validation tests in
order to verify the effectiveness of our recommendations. By following the automatic recommendations
provided by USABILICS, developers were able to raise the usability index in most of the tested applications.

By testing USABILICS with more than a dozen of different Web applications, we could notice some
limitations in our system, particularly in the definition of tasks. The initial version of USABILICS provided a
tool that supported the definition of tasks composed of linear paths, where the beginning and the end of each
task was clearly defined. There are, however, tasks that do not present a linear sequence of events. The task
adding a product to a shopping cart, is an example of such task. In this task, the end user may perform a
linear sequence of steps in order to select a product and then add and remove the product to and from the cart
several times. Just because the user is not sure about buying the product, it does not mean that she is
performing a wrong action. USABILICS was unable to detect this kind of behavior. Issues were also found in
the definition of tasks where the user may perform a certain sequence of events in any order – as filling a
form, for instance. Finally, defining tasks that present optional events was also not supported.

In order to address these issues, we developed UsaTasker, a task definition tool that supports the
management of tasks targeted to be evaluated in a Web application. UsaTasker allows evaluators to define
tasks by simply interacting with the application's graphical interface. After recording the task, our tool
provides facilities for the management of the captured events, allowing (i) the definition of sequence of
events in which each event may occur in any order; (ii) the definition of sequence of events that may be
repeated several times; and (iii) the definition of optional events.

The main goal of USABILICS is performing usability evaluation without burdening both the application
developer and the end user. In order to accomplish this goal, UsaTasker provides a graphical user interface
which presents a task as a sequence of boxes, where each box represents an event of the task. In order to
define an event as optional, all the evaluator needs to do is to select the desired box using the mouse and
change its property from mandatory to optional. The other functionalities of the tool are equally simple.

This paper presents UsaTasker, showing that it plays an important role towards making USABILICS a
complete and robust system for the usability evaluation of modern Web applications. The text is organized as
follows. Section 2 presents COP, the interface model that allows the generalization of tasks. Section 3 details
how UsaTasker exploits COP in order to define generic tasks. This section also presents the graphical user
interface tool that allows the management of captured tasks. Following, Section 4 shows UsaTasker in action,
presenting a usage scenario in which the most important features of UsaTasker are exploited. Finally, Section
5 presents our final remarks and discusses future work.

2. THE COP INTERFACE MODEL

The automatic remote usability evaluation based on task analysis is commonly performed using test
scenarios, which can be analyzed by specific algorithms, such as those that identify interaction patterns, or
those that points out the interactions that do not follow the optimal path of a task. For modern Web
applications, the definition of the set of tasks that composes a test scenario may be very time consuming, as
there are virtually hundreds of paths that may be used to perform a given task. Therefore, the definition of
each possible path for each task of a large application is simply not feasible.

ISBN: 978-989-8533-09-8 © 2012 IADIS

308

A Web application is composed of a collection of pages, which in turn are composed by elements such as
hyperlinks, tables, forms, etc. These elements, specially in dynamic Web applications, are commonly shared
among several pages. By exploiting this pattern, we proposed COP, an interface model that aims at
facilitating both the definition and the analysis of tasks (Vasconcelos and Baldochi, 2012). The COP model is
based on three main concepts: Container, Object and Page. An object is any page element that the user may
interact with, such as hyperlinks, text fields, images, buttons, etc. A container is any page element that
contains one or more objects. Finally, a page is an interface that contains one or more containers. According
to the 4.01 HTML specification, the attributes id and class are identifiers for page elements, and the id
attribute needs to be unique within a page.

According to the COP model, an object may be unique (using its id) or similar to other objects in terms
of formatting (i.e. border or font type, color, etc.) and/or in terms of content (i.e. hyperlinks, buttons and
images). The same applies to containers: a container may be identified in a unique way, or it may be
classified as similar to other containers, but only in terms of formatting. Finally, it is worth noticing that
objects and containers may appear in one or more pages of a Web application.

The structure of the COP model is presented in Figure 1. A unique object is an object that is identified in
a unique way. Unique objects, as well as similar objects in terms of formatting or content may be kept within
a single container, which is also identified in a unique way (unique container), or in two or more similar
containers. Figure 1 also shows that a container may belong to a unique page or take part in several pages.

As far as the W3C Recommendation for the construction of hypertext-based documents (Raggett et al,
1999) is concerned, it is possible to say that the concepts of the COP model are sufficient to uniquely identify
any element in a Web interface. Therefore, we advocate that our model is adequate for the definition of tasks
in Web applications. Defining a task means specifying an optimal path for accomplishing this task. An
optimal path for a given task is the sequence that presents the smaller number of required events for
performing the task.

Figure 1. The COP model.

UsaTasker exploits the COP model in order to allow the generalization of events for similar objects and
containers. This feature allows to represent a (large) group of similar tasks using a single captured task. In
order to make this feature clear, consider the definition of the task buying a product in an e-commerce Web
site that has 10,000 products for sale. Individually specifying all the possible paths to perform this task is
virtually impossible. However, by exploiting the COP concepts, UsaTasker allows the automatic definition of
alternative paths as it considers the similarities among objects and containers. As a result, the effort for
defining tasks is considerably shortened.

IADIS International Conference WWW/Internet 2012

309

3. TASK DEFINITION

Defining tasks is the starting point for providing remote and automatic usability evaluation. The usual
approach for the definition of tasks is based on notations, which are used to specify task models.
WebRemUSINE, for instance, exploits the ConcurTaskTree notation (Patternò, 2000) for defining tasks.

The use of notations, however, makes the definition of tasks cumbersome. Nielsen (1993) points out that
learning complex notations and formal methods may prevent developers from applying usability evaluation
in their projects. Moreover, it is also complex to compare the end user logging information to a notation-
based task definition. Finally, it is worth noticing that the definition of tasks is specially challenging for
today's large Web applications, in which it is possible to perform a given task using different paths in the
application's GUI.

Towards making the definition of tasks easier, we developed a tool that allows defining tasks in a simple
and intuitive way, by simply interacting with the application's graphical interface. Similar to Google
Analytics (www.google.com/analytics) and WELFIT (Santana and Baranauskas, 2010), this tool is a server-
side application that allows users to subscribe themselves as evaluators of specific Web applications.
Therefore, the evaluator defines a task by simply using the application, in the same way end users are
supposed to do.

In order to validate the USABILICS system, we performed several experiments with this tool
(Vasconcelos and Baldochi, 2011, 2012). While testing USABILICS, we noticed that our approach for
defining tasks as linear paths was not appropriate, as it was not able to support the definition of tasks that
present: (i) events that can be performed in any order; (ii) optional events; and (iii) repeated events.

Besides this limitation, we noticed that more than just supporting the definition of tasks, our tool should
support the management of tasks, providing CRUD-like operations. Therefore, we built a new version of our
task definition tool, which we called UsaTasker.

UsaTasker provides an user-friendly interface for the management of tasks, where the evaluator can
create, view (read), update and delete tasks. For creating a new task, the evaluator logs in the server-side
application and fills in the name and a description for the task she wishes to define. Following, the selected
application is loaded in a new window, making it possible to start recording the task. While the evaluator
surfs the application interface, UsaTasker defines optional paths according to the options of the COP model.
Upon finishing the task, the evaluator closes this window, stopping the recording process.

During the task definition, when the evaluator selects and object, such as a button, she is prompted with
specialization options associated to this object and to its containers within the page. According to the COP
model, containers can be tables, cells, forms and divs. This approach allows selecting any container of an
object, making it simple to generalize tasks. As an example of this feature, consider a container A, which
contains some links and another container, A1, also containing links. If the evaluator clicks in a link in A and
selects the option “consider similar objects”, then that event will be generalized to all links in A and A1, as A
contains A1. Therefore, when defining an event within a task, it is possible to consider from a single object of
a form to all objects within a page.

When the evaluator finishes the task definition, UsaTasker presents the captured events graphically, as
shown in Figure 2. This visual feedback is important towards providing a way to verify if each event that
composes a task was correctly recorded. In Figure 2, each box represents an event, and the blue directed
edges indicate the order of each event within the task. Besides viewing the details of each event, the evaluator
may delete an event, if she considers that this event is irrelevant in the optimal path of the task. To perform
the deletion of an event, all the evaluator needs to do is clicking on the X icon on the top of the desired box.

The graphical representation of events provided by UsaTasker was specially tailored to address the
limitations of our first task definition tool. Therefore, the next subsections shows how UsaTasker allows the
definition of tasks that present events that can be performed in any order, optional events and repeated
events.

3.1 Ordering of Events

There are tasks in which the order of events is irrelevant. In order words, these tasks do not present a
precedence order among its events. The filling of a form is an example: the end user may fill the text fields in
any order, if all mandatory fields are filled, the task succeeds.

ISBN: 978-989-8533-09-8 © 2012 IADIS

310

Figure 2. Captured events in UsaTasker.

UsaTasker, by default, defines that the events of a task present a precedence relation, according to the
order that the events were recorded during the definition of the task. However, after recording the task, the
evaluator may define that an event or a set of events do not present such relation. To perform this action in
the UsaTasker GUI, the evaluator selects the events (consecutive boxes) in which she does not wish to apply
the precedence relation. Figure 3 presents a sequence of boxes representing events. When an event is marked
as without precedence, it appears with a yellow background.

3.2 Optional Events

In order to evaluate a task performed by an end user, USABILICS compares the sequence of events
performed by this user to the corresponding sequence recorded by the evaluator in the definition of the task
(the optimal path for the task). Events in the user's sequence that do not belong to the optimal path are
considered wrong actions. The more wrong actions appear in the user's sequence of events, the lower is the
usability index for that task.

There are, however, some actions that should not be considered wrong, even if they result in events that
do not belong to the optimal path of the task. Consider, for instance, an application that provides a Help
button to aid the end user. Clicking this button should not impact the evaluation of the task. Another example
is the optional fields of a form.

UsaTasker provides a feature to mark a box as optional, indicating that the corresponding event should
not be considered in the analysis of the task. Figure 3 shows an optional event, which is indicated by the
dashed line on the border of the event's box. It is worth noticing that an event may be optional and, at the
same time, belong to a sequence of events without precedence relation. This leverages the flexibility for the
definition of complex tasks.

Figure 3. UsaTasker features: optional and repeated events.

IADIS International Conference WWW/Internet 2012

311

3.3 Repeated Events

Modern Web applications present events that could or should be repeated a given number of times within the
sequence of events of a task. In an e-commerce application, for instance, the action of selecting a product and
putting this product in the shopping cart may be repeated many times, according to the quantity of products
the end user wishes to buy.

In order to allow the repetition of events within a task, UsaTasker presents a feature that allows selecting
sequences of events that may be repeated. In order to define repeated events, all the evaluator needs to do is
to click in the box that represents the first event in the sequence and then click in the last box of the sequence.
After this procedure, a dark blue directed edge connecting the first and the last box will appear. Figure 3
shows that Event 2 and Event 3 may be repeated.

4. USATASKER IN ACTION

UsaTasker was designed to make the definition of tasks simple and intuitive. It was specially tailored for
modern Web applications, which present pages containing tens or even hundreds of components, usually
nested inside different containers. In order to illustrate the features of UsaTasker and show its effectiveness
towards defining tasks for today's applications, we trace the procedure for defining the task buying a deal in
Groupon (www.groupon.com), probably the most popular collective buying website.

The first step towards buying a deal, is selecting the deal. Figure 4A illustrates the selection of the first
deal on the deal selection page. The blue rectangle highlights the object selected by the evaluator and the red
one indicates the container of this object. Using the generalization options from the COP model, it is possible
to define this event a single time for all deals in the website. To do this, the evaluator chooses the options
objects with same content, in similar containers, in this page. As a result, all buttons with the image View
Deal inside all containers in the deal selection page will be considered.

When a deal is selected, the page shown in Figure 4B is loaded. This page presents a Buy button, which
should be clicked to proceed with the purchase. When the evaluator clicks this button, she is prompted again
with the options of the COP model. At this time, the selected options are: objects with same content, in
similar containers, in any pages. By selecting these options, a general event is created that considers the
selection of all Buy buttons in all deal pages. Using the feature of repeated events, it is possible to define that
this action may be repeated several times, so that the customer can buy several deals before proceeding to
checkout. This is not shown here due to space restrictions.

Figure 4C presents the discount options that are shown in some deals when the customer press the Buy
button. In order to include the discount options as part of the task, the evaluator may click on any of the
discount links and choose the following options from the COP model: objects with same formatting, in
similar containers, in any pages. Considering that the discount options are only presented in some deals and
that some customers are not eligible to discounts, this event should be optional. Therefore, after finishing the
recording of the task, the evaluator must select the box associated to this event and mark it as optional.

When proceeding to checkout, the Sign in page shown in Figure 4D may be displayed to the customer, in
case she has not logged in before. This event may be defined as optional, as it will not happen for all
customers.

The blue rectangles on Figure 4E highlights objects that the customer may interact with before finishing
the purchase. The customer may update the purchase options, changing the quantity of deals, for instance.
She may also change her personal information. These actions are optional, and therefore, the evaluator must
mark their corresponding boxes as optional, after the end of the recording procedure.

Finally, in the checkout page shown in Figure 4F, the evaluator fills the text fields highlighted in blue
(payment information) and clicks the Complete Order button. These events are identical for all purchases,
therefore, the selected options of the COP model for the text fields are: objects with same formatting, in
similar containers, in any pages. For the button, the options are objects with same content, in similar
containers, in any pages. As a result, a general checkout event is created.

ISBN: 978-989-8533-09-8 © 2012 IADIS

312

(A) (B)

(C) (D)

(E) (F)

Figure 4. UsaTasker in action - defining a task.

Figure 5 depicts the graphical representation of the recorded task. Boxes with dashed lines represent
optional events. Boxes with yellow background shows events that do not present precedence relation, i.e.,
may occur in any order. Finally, the blue line connects events that may be repeated.

5. CONCLUSIONS AND FUTURE WORK

Performing usability evaluation in large and dynamic Web applications is not a simple issue. At one hand,
traditional laboratory-based tests are costly and time-consuming. At the other, existing remote usability
evaluation tools are not effective towards evaluating complex modern Web applications. In order to tackle
this problem, we developed USABILICS, a system target to provide remote and automatic usability
evaluation based on task analysis.

IADIS International Conference WWW/Internet 2012

313

Figure 5. UsaTasker representation for the task Buying a deal.

In order to evaluate tasks, the first step is defining them. Existing approaches for defining tasks are too
complex, therefore their usage for Web developers is limited. Moreover, these approaches do not provide
solutions that scale well for applications that present hundreds of tasks. In order to address this issue, we
developed UsaTasker, a task definition tool supported by COP, our interface model. UsaTasker was tailored
for today's large Web applications, providing generalization options that make the definition of tasks easier
and faster. It provides CRUD-like operations, simplifying the management of tasks. Moreover, it allows
viewing tasks as sequences of boxes representing events. Using this interface, evaluators may (i) define an
event as optional, (ii) allow the repetition of events and (iii) change the precedence status of an event.

UsaTasker empowers the USABILICS system, making it a robust solution towards providing remote and
automatic usability evaluation for Web applications. To the best of our knowledge, no reported tools provide
the features found in UsaTasker.

As future work, we plan to improve UsaTasker in order to cluster tasks that present intersections in their
sequence of events. If two or more tasks present an identical sequence of events, we may use a single
sequence for all these tasks, reducing the amount of information that needs to be stored.

REFERENCES

Andreasen, M. S. et al, 2007. What happened to remote usability testing?: an empirical study of three methods.
Proceedings of the SIGCHI conference on Human factors in computing systems CHI ’07, pp. 1405–1414.

Ivory, M. Y. and Hearst, M. A., 2001. The state of the art in automating usability evaluation of user interfaces. ACM
Computing Surveys 33, pp. 470–516.

Nielsen, J., 1993. Usability Engineering. Academic Press.
Paganelli, L. and Paternò, F., 2002. Intelligent analysis of user interactions with web applications. Proceedings of the 7th

international conference on Intelligent user interfaces (IUI ’02), pp. 111-118.
Paternò, F., 2000. Model-Based Design and Evaluation of Interactive Applications . Springer.
Raggett, D. et al, 1999. The global structure of an HTML document. http://www.w3. org/TR/1999/REC-html401-

19991224/ struct/global.html.
Santana, V. F. and Baranauskas, M. C. C., 2010 . Summarizing observational client-side data to reveal web usage

patterns. Proceedings of the 25th ACM Symposium on Applied Computing (SAC ’10), pp. 1219–1223.
Tiedtke, T. et al, 2002. AWUSA: A tool for automated website usability analysis. PreProceedings of the 9 th Internatio-

nal Workshop on the Design, Specification and Verification of Interactive Systems , pp. 251–266.
Vasconcelos, L. G. and Baldochi, L. A., 2011. USABILICS: remote usability evaluation and metrics based on task

analysis (in portuguese). Proceedings of the 10th Brazilian Symposium on Human Factors in Computer Systems &
5th Latin American Conference on Human-Computer Interaction, Porto de Galinhas, Brazil, pp. 303–312.

Vasconcelos, L. G. and Baldochi, L. A., 2012. Towards an automatic evaluation of web applications. Proceedings of the
27th ACM Symposium on Applied Computing (SAC ’12), Riva del Garda, Italy, pp. 709-716.

ISBN: 978-989-8533-09-8 © 2012 IADIS

314

	ICWI 2012 - COVER
	ICWI 2012
	COPYRIGHT
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURES
	FULL PAPERS
	SEMANTIC RETRIEVAL OF DOCUMENTS FROM DIGITAL REPOSITORIES IN THE MOODLE ENVIRONMENT
	HTML SEGMENTATION USING ENTROPY GUIDED TRANSFORMATION LEARNING
	WPPS: A NOVEL AND COMPREHENSIVE FRAMEWORK FOR WEB PAGE UNDERSTANDING AND INFORMATION EXTRACTION
	AN APPROACH FOR EXTRACTING WEB FORM LABELS BASED ON DISTANCE ANALYSIS OF HTML COMPONENTS
	EXTRACTING AND EXPOSING RELATIONAL DATABASE METADATA ON THE WEB
	BUSINESS MODELS FOR MOBILE APPLICATIONS
	AN INFLUENCE PERSPECTIVE: IS USER PARTICIPATION CRUCIAL IN THE WEB DEVELOPMENT PROCESS?
	AWARENESS OF OTHERS IN ACCESSIBLE COLLABORATIVE RICH INTERNET APPLICATIONS
	DATA QUALITY IN WEB PORTALS FOR INTERACTION WITH OTHER PEOPLE
	AUTHORITYRANK: COGNITIVE AUTHORITY AND INFORMATION RETRIEVAL IN THE WEB
	A WEB-BASED METHOD FOR ONTOLOGY POPULATION
	DOMAIN ONTOLOGIES MODELING VIA SEMANTIC ANNOTATIONS OF UNSTRUCTURED WIKI KNOWLEDGE
	SOCIAL LEARNING: DEFINING LEARNING OBJECTS FROM SOCIAL TOOL
	A UBIQUITOUS ELECTRONIC TOURIST GUIDE FOR THE CAMINHOS DE PEDRA ITINERARY
	RECO – A FRAMEWORK FOR EXPERIMENTATION WITH RECOMMENDERS
	TRANSLATING XML QUERIES INTO EQUIVALENT SQL STATEMENTS
	A SURVEY ON SOCIAL NETWORK SITES' FUNCTIONAL FEATURES
	A STUDY OF THE CONDITIONS FOR A GOOD DIGITAL CITIZEN IN A NEW MEDIA ERA
	WEB-BASED INFORMATION EXPLORATION OF SENSOR WEB USING THE HTML5/X3D INTEGRATION MODEL
	A RUBY DOMAIN SPECIFIC LANGUAGE (DSL) FOR WEB MASHUPS
	A REAL-TIME WEB-BASED HEALTH MONITORING SYSTEM BASED ON ENTERPRISE SERVICE BUS
	HOW CAN A MOBILE VENDOR ENGENDER SHOPPER TRUST AND REDUCE PERCEIVED OPPORTUNISM?
	INFRASTRUCTURE TO NEXT-GEN PROACTIVE E-COMMERCE ENVIRONMENT THROUGH INTERNET: UBIQUITOUS COMMERCE FOR THE MASSES
	ABANDONMENT IN WEB APPLICATIONS FOR PURCHASING AIRLINE TICKETS
	CYBERSQUATTING DETECTION BY AUTOMATIC DOMAIN NAME RE-ACCENTING
	WHAT DETERMINES E-LOYALTY? AN ANALYSIS OF FACTORS AFFECTING ON-LINE CUSTOMER RETENTION
	INFLUENCE OF PERCEIVED QUALITY OF UNIVERSITY OFFICIAL WEBSITE TO PERCEIVED QUALITY OF UNIVERSITY EDUCATION AND ENROLLMENT INTENTION
	AUTOMATIC AND CONTINUOUS MONITORING AND COMPOSITION OF NONDETERMINISTIC WEB SERVICES
	USABILITY EVALUATION OF ELECTRONIC SIGNATURE BASED E-GOVERNMENT SOLUTIONS
	A SEMANTIC WEB APPROACH FOR AUTOMATED TEST GENERATION
	EXPLORING PARTICIPATORY DESIGN FOR SNS-BASED AEH SYSTEMS
	DEAF LITERACY: A COMPUTATIONAL PROCESS TO DESIGN SIGN LANGUAGE/PORTUGUESE ARTIFACTS FOR INTERNET
	PARALLEL HIGHER-ORDER SVD FOR TAG-RECOMMENDATIONS
	A TRAVEL SEQUENCE RECOMMENDATION APPROACH BASED ON MARKOV MODEL
	LEARNING SYNONYM RELATIONS FROM FOLKSONOMIES
	EXPLORING THE EFFECTS OF SOCIAL INFLUENCE ON USER BEHAVIOR TARGETED TO FEEDBACK SHARING
	USABILITY EVALUATION OF FACEBOOK´S PRIVACY FEATURES: COMPARISON OF EXPERTS AND USERS
	SUBJECT CLASSIFICATION OF WEB PAGES
	USATASKER: A TASK DEFINITION TOOL FOR SUPPORTING THE USABILITY EVALUATION OF WEB APPLICATIONS
	ASSESSING THE PERFORMANCE OF JAVA AND ERLANG IN WEB 2.0 APPLICATIONS
	EMULATION OF COMPLEX NETWORK INFRASTRUCTURES FOR LARGE-SCALE TESTING OF DISTRIBUTED SYSTEMS
	A CLIQUE BASED WEB GRAPH MODEL
	INTEGRATING PROCESS AND SERVICES THROUGH META-MODELS
	AN ADAPTIVE APPROACH FOR IDENTIFYING REPUTATION OF RESEARCHERS
	STRATEGIES AND MOTIVATIONS BEHIND ARTIFICIAL TRENDING TOPICS IN TWITTER
	GUIDE OF ACCESSIBILITY AND USABILITY RECOMMENDATIONS AIMING FOR THE DEVELOPMENT OF HYPERMEDIA FOR DEAF
	COMPARISON OF USABILITY TESTING TOOLS FOR WEB GRAPHICAL INTERFACES
	IDENTIFYING PRAGMATIC PATTERNS OF COLLABORATIVE PROBLEM SOLVING
	INTERPRETATION OF WEB SITE USER INTERACTION AS A BASE FOR CONTEXT-AWARE PAGE ADAPTATION

	SHORT PAPERS
	HEURISTIC AND AI APPROACH TO OPTIMIZE PLAGIARISM DETECTION TOOL USING A PUBLIC SEARCH ENGINE
	ONTOLOGY ON THE LEVEL G OF THE SOFTWARE PROCESS MODEL MPS.Br TO ASSIST BUSINESS PROCESSES MODELING
	A MULTI-TOOL SCHEME FOR SUMMARIZING TEXTUAL DOCUMENTS
	AUTOMATION OF A VENDING SYSTEM USING SMARTPHONES
	RERANKING IMAGE SEARCH RESULT BASED ON PHOTOGRAPHIC QUALITY ASSESSMENT WITHOUT IMAGE FEATURES
	TOPIC PAGE MINING BASED ON PHRASERANK FOR ADVERTISEMENT IMAGE
	ON THE USE OF SOCIAL MEDIA FOR IMPORTANT THINGS: FACEBOOK AS A COPING TOOL
	GENAPI: A GENERIC SOCIAL-NETWORKING API
	DISTINCTION BETWEEN OPINION AND INFORMATION SPEADING IN SOCIAL NETWORKS
	A MODELING APPROACH FOR KNOWLEDGE MANAGEMENT IN COMPLEX BUSINESS SYSTEMS
	AN INCREMENTAL APPROACH TO TECHNOLOGY-SUPPORTED CURRICULUM DESIGN AND APPROVAL
	MEANINGFUL LEARNING IN MATHEMATIC SEDUCATION: A PROPOSAL OF DEVELOPING A PROTOTYPE OF AN AUGMENTED REALITY TOOL TO SUPPORT THE TEACHING OF CALCULATION
	SOCIAL NETWORK ENGINEERING AND ONTOLOGY ENGINEERING FOR E-LEARNING: HOW DO THESE WORK TOGETHER?
	DETERMINATION OF TOPIC DESCRIPTION TERMS IN TOPIC MODELS
	METROPOLITALIA: A CROWDSOURCING PLATFORM FOR LINGUISTIC FIELD RESEARCH
	INVESTIGATING COLLABORATION AND EFFECTIVENESS OF VIRTUAL TEAMS WITH DISTINCT ORGANIZATION TYPES
	WEB ANALYTICS AS ONE OF THE FEEDBACK MECHANISMS IN ELECTRONIC GOVERNMENT MANAGEMENT
	BRICK: A LINKED DATA EXPERIENCE
	LESSONS LEARNED FROM CREATING A TRUST SYSTEM FOR P2P MARKETPLACES

	REFLECTION PAPERS
	EDUCA REPOSITORY SERVICE: API TO SUPPORT DIFERENTES DIGITAL REPOSITORIES
	INTERACTION DESIGN ISSUES FOR MOBILE MULTI-TOUCH APPS
	BUILDING TEST SUITES FROM TEST RECORDINGS OF WEB APPLICATIONS: REFLECTION PAPER
	PEOPLE’S HISTORY APPLICATIONS: USING THE WWW TO RE-WRITE HISTORY
	DATA PROTECTION AND EMPLOYEE BEHAVIOUR: THE ROLE OF INFORMATION SYSTEMS SECURITY CULTURE

	POSTERS
	E-LEARNING IN INFORMATICS TEACHING
	SOCIAL CHEESECAKE: AN UX-DRIVEN INTERFACE FOR MANAGING CONTACTS
	DESCRIPTION STANDARDS: CROSSWALK PROPOSAL FOR EDUCA
	CAREER EDUCATION SUPPORT UTILIZING MOBILE DEVICES
	TOWARDS AN APPROACH BASED ON ELECTRONIC CONTRACT TO ADDRESS THE VENDOR LOCK-IN IN CLOUD COMPUTING

	AUTHOR INDEX

