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We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for

collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates

transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic

window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle,

and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge

of chaos persists after the interior crisis, when the global attractor of the system increases its size in the

phase space. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736860]

A chaotic plasma device, the Pierce diode, is studied using

a novel concept from the dynamical systems approach:

the edge of chaos. We focus on a periodic window in the

parameter space, where typical phenomena such as cha-

otic transients and interior crisis are observed. In gen-

eral, chaotic transients arise due to the presence of a

surrounding chaotic saddle, and the ensuing interior cri-

sis triggered by the collision between a chaotic attractor

and a mediating unstable periodic orbit (UPO). Our

results show that the mediating UPO coincides with the

edge state that lies in the boundary defined by the edge of

chaos. For the first time the interior crisis in the classical

Pierce diode is fully characterized. Our results and the

methodology developed herein can be used for the char-

acterization of chaotic transitions in other spatially

extended systems.

I. INTRODUCTION

In a dynamical system, the basin of attraction of a given

attractor is the set of initial conditions that converge to that

attractor. If the system has more than one attractor, we can

define a region that separates the basins: the basin boundary.

An extension of this concept was introduced by Skufca

et al.1 while studying transition to turbulence in shear flows

using a nine-dimensional truncation of the Navier-Stokes

equation. In that model, the system has one attractor, coexist-

ing with a chaotic saddle, the structure responsible for the

chaotic transients.2–4 Skufca et al.1 observed that even

though only one basin of attraction is present, the phase

space can be divided into two regions, depending on whether

an initial condition displays a chaotic transient behavior or

not. The boundary between these two regions is called the

edge of chaos. In the last years, the dynamical properties of

the edge of chaos have been studied in a wide variety of

applications, such as direct numerical simulations of pipe

flow,5 a numerical MHD simulation for two-dimensional

magnetic reconnection,6 and a generic two-dimensional

map.7 These works illustrate the rich dynamical behavior of

the edge of chaos and its important role in transitions to

chaos and turbulence.

II. PIERCE DIODE

In this work we apply ideas of Section I to the Pierce

diode, a one-dimensional spatially extended plasma model.

Constituting the simplest model for collisionless bounded

plasma systems, the classical Pierce diode8–11 is a one-

dimensional electrostatic parallel-plane diode with gap spac-

ing L into which a monoenergetic electron beam at constant

velocity v0 and charge density q0 is injected. An immobile

neutralizing ion background with density q0 is present

between the planar electrodes held at the same potential

(short-circuit condition). Figure 1 is a schematic representa-

tion of this system. In particular, the presence of a controlled

amount of background ions inside microwave tubes allows

plasma-filled devices to operate at currents much higher than

the maximum current for vacuum tubes, thereby increasing

significantly the power handling capabilities of microwave

tubes.8,12 In this context, plasma-assisted devices can be con-

figured as a slow-wave oscillator (PASATRON), backward-

wave oscillator (BWO), and a traveling wave amplifier

(TWT) operating without focusing magnetic fields.13–15

These devices constitute unique sources of microwave radia-

tion, in which the beam propagation in the absence of exter-

nal magnetic fields is provided by the ion focusing and the

electron interaction with the electromagnetic fields. Also,

Pierce-type plasma diodes with a background of mobile ions

can generate microwaves in a sequence of chaotic pulses

whose duration is controlled by the retarding potential and

the kind of ionized gas.16 From the emitter (at x¼ 0), the

monoenergetic electron beam, after crossing the gap spacing

between the plates, is completely absorbed by the collector

at x¼ L. Although rather simple, this distributed model

exhibits many features of the electron beam dynamics in a

variety of microwave electronic devices such as the klystron

and the virtual cathode oscillator.12 In addition, this model isa)Electronic mail: pablocus@gmail.com.
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used for studying the stability of electron flows in plasma-

filled diodes and charge neutralized ion beam transport for

inertial confinement fusion17 and also space physics applica-

tions such as double layers in the magnetospheric cusp.18

The system is characterized by the single control param-

eter a ¼ xpL=v0, often referred to as the Pierce parameter,

where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0e=�0me

p
denotes the plasma frequency of

the electron beam, with �0 the vacuum permittivity and e and

me the electronic charge and the electron mass, respectively.

The electron flow in this system can be described by the cold

fluid equations, namely, continuity, momentum, and the

Poisson’s equations

@q
@t
þ @ðqvÞ

@x
¼ 0; (1)

@v

@t
þ v

@v

@x
¼ @/
@x

; (2)

@2/
@x2
¼ a2ðq� 1Þ; (3)

where q is the mass density, v is the electron flow velocity,

and / is the electric potential. In Eqs. (1)–(3) non-

dimensional variables (density q, velocity v, electric potential

/, space coordinate x, and time t) are used.19 They are related

to the corresponding dimensional variables as follows:

q0 ¼ q0q; v0 ¼ v0v; /0 ¼ ðv2
0=eÞ/;

x0 ¼ Lx; t0 ¼ ðL=v0Þt; (4)

where the primed variables denote the dimensional values.

Then, the boundary conditions are qð0; tÞ ¼ 1, vð0; tÞ ¼ 1,

and /ð0; tÞ ¼ /ð1; tÞ ¼ 0.

A linear approximation analysis8,10 can be performed on

the assumption of solutions of the form qðx; tÞ ¼ q0 þ q1ðx; tÞ
and vðx; tÞ ¼ v0 þ v1ðx; tÞ, where time and spatial dependence

of q1ðx; tÞ and v1ðx; tÞ are, respectively, of the form e�ixt and

eikx. Substituting these ansatz solutions in Eqs. (1)–(3) and

taking just leading terms, we obtain the a linear dispersion

relation given by

2X2ðX2 � a2Þ þ iafðXþ aÞ2½eiðX�aÞ � 1�
�ðX� aÞ2½eiðXþaÞ � 1�g ¼ 0; (5)

where we define X as a scaled complex frequency

X ¼ Lx
v0

¼ r þ is: (6)

The dispersion relation (5) provides time growing (unsta-

ble) non-oscillatory solutions for ð2n� 1Þp � a � 2pn,

ðn ¼ 1; 2; 3;…Þ, growing (unstable) oscillatory solutions

for 2pn � a � ð2nþ 1� �nÞp, and damped (stable) oscilla-

tory solutions for ð2n� 1� �nÞp � a � ð2n� 1Þp, where

0 < �n � 1 varies slightly with n. Thus the stability character

of linear oscillatory solutions alternates as the parameter a is

increased by p, as illustrated in Barroso et al.17 Then an other-

wise single damped mode starts growing at a ¼ p and remains

unstable until a ¼ 2p, a situation in which a virtual cathode is

formed with electrons being reflected back to the emitter.

Moreover, the transition from instability to stability just below

each odd multiple of p is described by a Hopf bifurcation.10

III. BIFURCATION DIAGRAM

We solve the continuity and momentum equations

(1)–(3) using a first-order backward difference scheme in

space and a second-order implicit scheme in time, over a spa-

tial grid with N¼ 512 points, using a time step Dt ¼ 0:001

which guarantees the Courant condition is satisfied all the

time. In order to satisfy the zero-potential conditions, the Pois-

son’s equation is solved by means of the sine fast Fourier

transform method.20 The state of the system at each discrete

time tk is given by qk
i ¼ qðxi; tkÞ and vk

i ¼ vðxi; tkÞ, where

xi is a grid point. We define a Poincaré map as qðx ¼ 0:25; tÞ
¼ 1 and @tqðx ¼ 0:25; tÞ < 0 to construct a bifurcation dia-

gram by varying the parameter a. For every value of a, we dis-

card the initial transient (100 iterations) and plot the next 200

iterations of the map. We are interested in a periodic window

of period-3 (p-3) near a ¼ 3p. Figure 2(a) shows the bifurca-

tion diagram of this periodic window, and Fig. 2(b) the first

and second Lyapunov exponents of the attractor using the

method by Benettin et al.21 In this method, two trajectories

yðtÞ and yðtÞ þ dðtÞ are integrated from time t to tþ Dt, and

the local separation (or contraction) rate is obtained as

kt ¼
1

Dt
ln
jdðtþ DtÞj
jdðtÞj : (7)

Performing the normalization

dðtþ DtÞ7!dðtþ DtÞ jdð0Þj
jdðtþ DtÞj (8)

and repeating the integration M times, the maximum Lyapu-

nov exponent is given by the average

k1 ¼
1

M

XM

k¼1

ktk : (9)

The second Lyapunov exponent can be obtained straightfor-

wardly by integrating a third initial condition forming an or-

thogonal base with y and yþ d.

FIG. 1. Schematic diagram of the Pierce diode.
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Three types of bifurcation that characterize the periodic

window are noteworthy: a saddle-node bifurcation (SNB) at

a � 2:85584 p, where a splitting pair of p-3 stable and unsta-

ble periodic orbits arises; a period-doubling cascade leading

to a banded chaotic attractor (BCA); and an interior crisis (IC)

at a ¼ ac � 2:8552792 p, where the banded chaotic attractor

is converted into a banded chaotic saddle (BCS), and the size

of the chaotic attractor is increased. Coexisting with a banded

attractor inside the periodic window, a surrounding chaotic

saddle (SCS), given by red dots in Fig. 2(a), is responsible for

chaotic transients that mimic the dynamics of the larger cha-

otic attractor outside the periodic window.

IV. LIFETIME FUNCTION AND BISECTION METHOD

To study how the surrounding chaotic saddle SCS

shapes the phase space within the periodic window of Fig. 2,

we introduce the lifetime function1 of an initial condition

y0 ¼ fq0
i ; v

0
i g; i ¼ 1;…;N; (10)

where q0
i and v0

i are the initial density and velocity profiles

in the spatial grid. The lifetime is defined as the time initial

condition y0 takes to converge to the attractor inside the peri-

odic window. We use a two-dimensional projection of the

Poincaré map zk ¼ fqðx ¼ 0:5; tkÞ; qðx ¼ 0:75; tkg to facili-

tate the definition of convergence. First, we collect a set of

M Poincaré points S ¼ fzj
A; j ¼ 1;…;Mg in the attractor.

Then, we integrate the initial condition y0 generating the dis-

crete two-dimensional Poincaré map zk. For each discrete

time step k, we define the distance between zk and S as

Dðzk; SÞ ¼ min ðjjzk � z
j
Ajj; j ¼ 1;… ;MÞ; (11)

where jjzk � z
j
Ajj is the Euclidean distance. When the dis-

tance to the attractor is less than some suitable threshold

Dðyk; SÞ < d, we consider yk has converged to the attractor.

In this case we use d ¼ 10�4. A two-dimensional density

plot of the lifetime in the phase-space at a ¼ 2:85529p is

shown in Fig. 3(a). Blue areas denote initial conditions that

converge quickly to the banded chaotic attractor. Areas of

longer lifetime, in red tones, exhibit an apparent fractal

structure, which indicates the proximity of the correspond-

ing initial conditions to the stable manifold of the surround-

ing chaotic saddle. Thus, there exist two possible

trajectories for a given initial condition in the phase space:

(i) the trajectory may converge directly to the attractor or

(ii) the trajectory may visit the vicinity of the surrounding

FIG. 2. (a) Bifurcation diagram: a p-3 periodic window of the Pierce diode.

Within the window the attractor (blue dots) coexists with the surrounding

chaotic saddle (red dots) and a p-3 UPO (black lines). SNB (IC) denotes

saddle-node bifurcation (interior crisis). (b) First (black) and second (red)

Lyapunov exponents.

FIG. 3. (a) Density plot of the lifetime, given in units of Poincaré points, in

a two-dimensional phase-space projection at a ¼ 2:85529p. Blue areas indi-

cate initial conditions that converge quickly to the attractor. Initial condi-

tions leading to longer lifetimes are represented by red tones. The edge of

chaos is given by the boundary between the blue and red areas. (b) Sche-

matic representation of the edge of chaos (SM) indicated by a solid line and

its associated saddle object (the edge state). Any initial condition lying on

the edge of chaos will converge to the edge state.
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chaotic saddle before converging to the attractor. Under

this circumstance, we can define two regions or pseudo-

basins of attraction in the phase space: the laminar basin

(blue region) related to (i) and the chaotic basin (red region)

related to (ii). The basin boundary separating laminar and

chaotic basins is the edge of chaos.1 The asymptotic trajec-

tory on this boundary is called the edge state (ES). In order

to determine the ES, we apply the bisection method.1 From

Fig. 3(a) we note that any path connecting the two basins

must intersect the edge of chaos (dashed line in Fig. 3(b)).

First we select two initial conditions, yL and yC, in the lami-

nar and chaotic basins, respectively. A condition yC is in

the chaotic basin if it has a long lifetime. Such a condition

can be obtained as a small perturbation of the unstable

steady state qðx; 0Þ ¼ 1þ dqðxÞ and vðx; 0Þ ¼ 1þ dvðxÞ,
with dqð0Þ ¼ dvð0Þ ¼ 0 to satisfy the boundary conditions.

The laminar condition yL can be any point in the attractor.

We integrate the initial condition yM ¼ ðyL þ yCÞ=2 and

decide which side the initial condition is on. By successive

bisections, we reduce the distance d ¼ jjyL � yCjj and bring

yL and yC close to the edge of chaos. By integrating the sys-

tem using the final yL and yC as initial conditions we gener-

ate trajectories that follow the edge of chaos, spend some

time near the ES, and then diverge either to the attractor or

to the chaotic saddle.

As an example, we apply the bisection method for

a ¼ 2:85564 p, in the middle of the periodic window, where

the attractor is a p-3 stable periodic orbit. Figure 4 shows the

Poincaré points of every three iterations of laminar (blue

circles) and chaotic (red triangles) initial conditions. Both

trajectories follow the edge of chaos in the beginning, pass-

ing near the edge state, after which they separate. The lami-

nar trajectory converges quickly and smoothly to the

attractor, whereas the chaotic one spends some time near the

surrounding chaotic saddle before converging to the attrac-

tor. We compute the ES for several values of the control pa-

rameter a in the periodic window and conclude that the

saddle object that separates the laminar and chaotic basins is

the p-3 UPO that arises jointly with the p-3 periodic attractor

at the SNB (black line in Fig. 2(a)). Hence, the edge state is

the p-3 UPO and its stable manifold (SM) is the edge of

chaos.

V. INTERIOR CRISIS

In the following, we examine the role of the edge state

in the interior crisis which occurs at the end of the periodic

window (Fig. 2). In chaotic systems with one positive

Lyapunov exponent, an interior crisis is a sudden transition

triggered by a collision between a chaotic attractor, a medi-

ating unstable periodic orbit UPO and its stable manifold.22

Moreover, at the onset of crisis, the SCS also collides with

the attractor.23 One has to find all these structures to charac-

terize the crisis. When the crisis takes place, at a ¼ ac, we

numerically find the chaotic attractor, the chaotic saddle

SCS using the sprinkler method,24 and the edge state ES

with the bisection method.1 We use the fact observed by

Rempel et al.2 that the boundary of the stable manifold of

SCS approximates the stable manifold of the mediating

UPO. We compute the stable manifold of the SCS with the

projection technique developed by Rempel et al.2 to study

chaotic transitions in high-dimensional systems. A suitable

grid of chosen initial conditions is constructed using one

point A from BCA and three points B, C, and D from SCS

at the vicinity of the collision. Figure 5 shows a three-

dimensional projection of this grid (grey points) jointly

with the attractor BCA (blue) and the chaotic saddle SCS

(red) at the moment of the interior crisis. Figure 6(a) shows

the attractor BCA (blue), the surrounding chaotic saddle

SCS (red dot), and the p-3 edge state ES (black crosses) in

a two-dimensional projection of the phase space. The grid

of initial conditions near the collision corresponds to the

dashed rectangle of Fig. 6(a). Figure 6(b) shows an enlarge-

ment of this region to elucidate the collision that character-

izes the interior crisis. At the onset of crisis, the chaotic

saddle (red) and the boundary of its stable manifold (grey)

collide with the banded chaotic attractor (blue). The edge

state (black cross) and its stable manifold (dashed lines)

form the boundary between the attractor and the chaotic

saddle pseudo-basins (blue and red regions, respectively, in

FIG. 4. Poincaré time series of two trajectories on the laminar side (blue

circles) and chaotic side (red triangles) of the edge of chaos before converg-

ing to the p-3 periodic attractor for a ¼ 2:85564p. Poincaré points are plot-

ted for each three iterations, m ¼ 1; 4; 7;….

FIG. 5. Three-dimensional projection of the grid of initial conditions gener-

ated from four points A, B, C and D, containing part of the banded chaotic

attractor BCA (blue) and the chaotic saddle SCS (red).
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Fig. 3(a)), and when they collide, the edge of chaos also

collides simultaneously with them.

VI. CRISIS-INDUCED INTERMITTENCY

At the collision the chaotic attractor loses its stability and

is converted into a BCS. The SCS is robust and persists after

the crisis. Figure 6(c) shows these two non-attracting chaotic

sets at a ¼ 2:85523 p, after the interior crisis. Both the BCS

and the SCS display the characteristic gaps that reflect the

fractal structure of chaotic saddles along their unstable direc-

tion.2 After the onset of the interior crisis, an infinite number

of coupling UPOs are created, filling the gap regions via an

event called explosion.25,26 These newly created unstable peri-

odic orbits have components in both surrounding and banded

regions and are responsible for the coupling of the two

regions. In general, the coupling UPOs are difficult to find

numerically, due to their long periods. This is a particularly

complex task in a spatially extended system. To this end we

adapted the method of Lathrop and Kostelich,27 originally

used to search for UPOs in experimental chaotic time series.

First, we get a time series containing 250 000 points zk of

the two-dimensional Poincaré map projection described in

Sec. IV. Then, the following distance function is defined

dðk; pÞ ¼ jjzk � zkþpjj; (12)

where p is the specified period of the UPO to be found. When

dðk; pÞ < �, zk is called a recurrent point. We set � ¼ 10�6

which defines the accuracy level of the UPO detection. A

recurrent point is not necessarily a component of a periodic

orbit of period p. However, if a recurrent period p appears fre-

quently, it is likely that the corresponding recurrent points are

close to periodic orbits of period p. The idea is to construct a

histogram of the recurrent points for each period and identify

peaks in the histogram. Figure 7 shows the histogram for the

Poincaré time series at a ¼ 2:85523p. It clearly shows the

peaks corresponding to the different UPOs of period multiple

of 3 created within the periodic window at each period dou-

bling bifurcation. The first peak at a period not being a multi-

ple of 3 is p¼ 14. By inspecting the recurrence points for

p¼ 14 we see that they occupy almost exactly the same place

in the phase space. We identify the set of recurrent points as a

p-14 coupling UPO, which is plotted as green crosses in Fig.

6(c). The spatio-temporal dynamics of electron density associ-

ated to this coupling UPO is shown in Figs. 8(a) and 8(b)

shows the corresponding time series for x ¼ 0:5. We see that

the first temporal minimum at x ¼ 0:5, appearing at t � 3:2
(left arrow in Fig. 8(b)) after having passed through other thir-

teen local minima, reappears at t � 61:6, marked by the right

arrow in Fig. 8(b). The relation of the UPO dynamics with the

chaotic dynamics of the Pierce diode for the control parameter

FIG. 6. Two-dimensional Poincaré plots at the onset of ((a) and (b)) and after

((c) and (d)) the interior crisis. (a) Three structures involved at the onset of cri-

sis: the banded chaotic attractor (BCA, blue), the surrounding chaotic saddle

(SCS, red) and the p-3 edge state (black crosses). (b) An enlargement of the

dashed rectangle region indicated in (a). The p-3 mediating UPO (the edge

state) and its stable manifold (the edge of chaos, dashed line) collide with

BCA and SCS. The stable (grey) and unstable (green) manifolds of SCS are

also shown. (c) Post-crisis banded chaotic saddle (BCS, blue), SCS, and a

p-14 coupling UPO (green crosses) with its branches in the gaps of both

banded and surrounding regions. (d) An enlargement of (c). The edge state

(black cross) and the edge of chaos (dashed lines) are also shown.

FIG. 7. Histogram of recurrent points for a Poincaré time series at

a ¼ 2:85523p. UPOs with period multiple of 3 are clearly detected. The first

peak not being a multiple of 3 corresponds to a p� 14 UPO, marked by an

arrow.

FIG. 8. (a) Spatio-temporal evolution of the electron density of the p-14

UPO. (b) Temporal evolution of the electron density at x ¼ 0:5 in the same

time interval as (a). The time interval between two red arrows corresponds

to one period of the UPO.
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a ¼ 2:85523 is illustrated in Fig. 9, showing the continuous

time evolution of the electron density at x ¼ 0:5 and x ¼ 0:75

for the p-14 UPO (green curve) and the chaotic attractor of

the system (orange area). We see that the coupling UPO tra-

jectory is nicely embedded in the orange area, thus appearing

as a subset of the attractor.

An enlargement of the same region of phase space as in

Fig. 6(b) is shown in Fig. 6(d), including the edge state

(black cross) and its stable manifold (dashed lines). After the

crisis the edge of chaos separates the two regions occupied

by SCS and BCS.

The link between both regions provided by the coupling

UPOs has, as a direct consequence, the formation of a larger

chaotic attractor characterized by an intermittent behavior.

Figure 10 shows the time series of crisis-induced intermit-

tency28 corresponding to the post-crisis chaotic attractor. The

laminar and bursty periods of the crisis-induced intermittency

correspond to the trajectory visiting the vicinity of the BCS

and SCS chaotic saddles, respectively. Grebogi et al.28

showed that the characteristic intermittency time s, obtained

as the average over a long time series of the time between

bursty periods, follows the scaling law

s ¼ ðaC � aÞ�c; a . aC; (13)

where c is the critical exponent. In Fig. 11 we plot s as a

function of aC � a in log-log scale. The linear behavior is

consistent with the power law Eq. (13), which critical expo-

nent c ¼ 0:56 6 0:02 is obtained from the slope of the linear

fit represented by the red line.

VII. CONCLUSION

In this work the edge of chaos, a structure that separates

the transient behavior from the attracting one is examined in

the Pierce diode for the first time. We showed that in a peri-

odic window of that system, the edge state is the p-3 unstable

periodic orbit that emerges from a saddle-node bifurcation at

the start of the periodic window. In addition, we obtained the

direct evidence of the crucial role of the edge of chaos in an

interior crisis, a ubiquitous chaotic transition at the end of per-

iodic windows. From this direct evidence, it is expected that

the dynamical properties of chaotic transitions are defined by

the edge of chaos and the edge state. This is a significant find-

ing since it can be used to understand more complex transi-

tions in high-dimensional dynamical systems.3,29,30
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