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Abstract. This paper addresses the use of residuated implication operators to
create a fuzzy resemblance relation between cases so as to model the CBR basic
principle “the more similar two problem descriptions are, the more similar are
their solutions”. We describe how this fuzzy relation can be exploited to identify
case clusters, based of a finite number of level cuts from that relation, that are
in turn used to solve a new problem. The paper proposes some formal results
that characterize the sets of clusters obtained from the various level-cuts of the
resemblance relation.
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1 Introduction

Case based reasoning (CBR) [10,1] proposes to solve a problem using a principle that
can be stated as “similar problems have similar solutions” [1]: it is based on a two-step
procedure that exploits a base of already solved problems; the couple made of a problem
and its solution is called a case. The first step of this procedure consists in retrieving
problems in the base that are similar to the considered problem: it determines the cases
in the base that are relevant to solving the problem at hand. The second step consists
in reusing the solutions of these relevant problems, adapting them to the considered
problem.

In this paper, we mainly focus on the first step and propose to address this task by
combining two principles: on the one hand, the exploitation of a cluster decomposition
of the solved problems and on the other hand, the definition of a fuzzy relation between
solved problems. We use a weighted hypergraph as formalization of this fuzzy relation
and present its exploitation in this framework.

Cluster decomposition in this CBR context has been introduced by [8]; it is based
on a binary similarity measure between cases, called Case Resemblance Relation, that
takes into account both their resemblances in the problem description space and in the
solution description space. This measure defines a binary relation between cases; the
corresponding graph of cases is then exploited and decomposed to identify clusters of
similar cases.

Here we generalize this method to the case where the similarity measure between
cases, that aggregates the similarities in the problem and the solution spaces, is not
binary but takes values in [0, 1], leading to a fuzzy relation instead of a crisp one. The
problem is then to extract clusters from this fuzzy relation. To deal with this problem,
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we propose to first obtain the relevant level-cuts from the fuzzy relation, thus creating
a set of crisp relations. We then extract a set of clusters from the graph induced by the
crisp relation.

We propose a principled definition of such similarity measures, based on the for-
mulation of the CBR principle as a gradual rule. Indeed, the basic principle “similar
problems have similar solutions” [1] can alternatively be formulated as “the more simi-
lar the problem descriptions are, the more similar the solution descriptions are”, which
belongs to the framework of gradual rules [2,9].

Fuzzy gradual rules, initially introduced by [5], have been studied from different
points of view (see [3] for a survey): on one hand, they are interpreted as a fuzzy gen-
eralization of association rules, where the presence of one attribute must imply the
presence of a second attribute, for each data point individually, and with a fuzzy resid-
uated implication [5]. A more recent approach proposes to interpret fuzzy gradual rules
as attribute co-variations, i.e. a global gradual tendency across the data, taking into ac-
count all points simultaneously ([9], see also [3]). In this paper we are interested in the
first approach based on a fuzzy implication interpretation. More precisely, we interpret
the measure used by [8] as the particular case where the Rescher-Gaines implication
is used and we propose to generalize the approach to other operators, leading to fuzzy
relations between cases.

The use of fuzzy sets theory in CBR has been addressed in the past by many authors.
Which kinds of fuzzy rules should be used to model the CBR hypothesis is discussed,
e.g., in [7]. The authors address the question of which subset of a case base should be
used to derive a solution to a problem, given a set of reflexive and symmetric fuzzy
relations for the problem and solution spaces. They claim that gradual rules should
not be used when there exists two cases whose solutions are more similar than their
problem descriptions, and possibility or certainty rules should be used instead. They
also point out to the problem of ill-specified similarity relations, and propose the use
of modifiers, for both gradual and non-gradual rules. In [6], the authors address fuzzy
similarity-based models in case-based reasoning, giving distinct interpretations for the
CBR hypothesis, to different constraints imposed on the relationship between similari-
ties in the problem description and solution spaces Attaching individual attribute weight
vectors to cases has been shown to be advantageous when similarity relations are used
in CBR [11,12]. However, the cost of learning the weight vectors can be prohibitive.

The present work is a step in a global project of allowing weight vectors learning to
become feasible also in large case bases, by first finding case base fragments in which
the weight learning algorithm can be applied. Then, we can derive the answer to any
problem presented to the case base using the weighted fragments. The approach pro-
posed in [8], extended here, comes down to extracting the fragments that are consistent
with the CBR principle considering the original relations. The extension aims at pro-
viding a larger set of possible frameworks to deal with specific applications.

This paper is organized as follows. In Section 2 we give some basic definitions and
notation and in Section 3 we describe the original crisp approach. In Section 4 we
present our extended fuzzy approach and discuss some of its properties. Section 5 finally
brings the conclusions.
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2 Basic Definitions and Notations

In this section, we recall some basic definitions that are used in the rest of the paper
and provide some notation, successively concerning residuated implications, similarity
relations, hypergraphs and imprecise partitions.

Given a left-continuous t-norm T, a residuated implication operator —7 is defined
as T —T Y = Sup,¢o,1] | (¥, 2) < y. Some well-known examples include

— the Godel implication, residuum of T = min, defined as z—Tqy = 1, if x < v,
and y, otherwise;
- the Goguen implication, defined as z—1 7y = 1, if x < y, and y/z, otherwise.

The Rescher-Gaines implication operator, defined as x—Trgy = 1 if < y, and
0, otherwise, is not a residuated operator itself but is the point-wise infimum of all
residuated implications.

A similarity relation S on a domain U is a binary fuzzy relation, i.e. a mapping
S : U x U — [0,1] that is both reflexive and symmetric. Some authors require it also
satisfies the t-norm transitivity property, but we do not take it into consideration here as
it does not play a role in our framework.

The set of similarity relations on a given domain U forms a lattice (not linearly
ordered) with respect to the point-wise ordering (or fuzzy-set inclusion) relationship.
The top of the lattice is the similarity Sy, which makes all the elements in the domain
maximally similar: S, (z,y) = 1, for all z,y € U. The bottom of the lattice Sy, is
the classical equality relation: Sy (2, y) = 1, if = y, and 0, otherwise.

Particularly useful are families of parametric similarity relations S = {Sp, S0 } U
{Ss}serc(o,+00) that are such that: (i) So = Spot, (i) St = Stop, and (iii) 8 < 3,
then Sg < Sg, where S < S’ means Vx,y € U, S(z,y) < S'(z,y) and Jzo,yo €
U, S(wo,y0) < S5'(z0, y0)-

A hypergraph is a generalization of a non-directed graph, where edges can connect
any number of vertices. Formally, it can be represented as a pair, H = (N, E'), where
N is a set containing the vertices (nodes) and F is a set of non-empty subsets of NV,
called hyperedges. The set of hyperedges F is thus a subset of 2™V\(), where 2% is the
power set of N. An “ordinary graph” is then a hypergraph in which all hyperedges have
at most two elements.

Given a hypergraph H = (N, E), a hyperedge h € E is said to be maximal when
A k' € E, such that b, C k' and b’ # h. Each hyperedge in E is a clique, therefore, the
set of maximal hyperedges is the set of maximal cliques of E.

Let B be a subset of a domain U. We propose the definition of an imprecise partition
of BasasetZp = {B,..., By}, B; C B, B; # (), such that

- U,_1,Bi=Band
- 3 B;, B; € B, such that B; C Bj and i # j.

Each B; € B is called an imprecise class. An imprecise partition does not allow one
class to be contained inside another one but, contrary to precise partitions, it does allow
non-empty intersections between classes. Let Zf; and 7% be two imprecise partitions of
B. TJ; is said to be finer than 77, (Z; < Ij), when Yh' € T;;,3h” € T} such that
h’ C h'. Reciprocally, Z%, is said to be coarser than Z;.
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3 Original Crisp Framework for Case Resemblance Hypergraph

In the following we describe the crisp approach, taking many of the definitions and
notations from [8].

3.1 Basic Definitions

A case is defined as an ordered pair ¢ = (p,0) € P x O where p is the description of
the solved problem and o the description of its solution. P = P; X ... X P, and O are
respectively the problem description and the solution spaces.

Let S,u: € O? denote the overall similarity relation on O. Let S;,, C P? denote the
overall similarity relation on the problem space. S;,, may obtained by using a suitable
aggregation function (e.g. means, t-norms, t-conorms, OWA operators, etc) applied on
the set of similarity relations {51, ..., S,, }, each of which corresponding to a description
variable.

3.2 Obtaining Clusters from a Case Base

Let ¢, = (Pas0a) and ¢, = (pp, 01) denote two cases in C. The crisp case resemblance
relation S, is defined as

171f0 < Sin(pa,pb) S Sout(oayob)
0, otherwise

Sres(caacb) = { (1)

Based on this relation, the case set can be organized through a decomposition in clusters
based on this resemblance relation. Several (possibly intersecting) clusters of cases can
be obtained from S,.s.

A hypergraph H = (C, E), E C C?, is said to be compatible with S if and only
if it obeys the following conditions:

— Veq,cp € C,if Sres(ca, cp) = 1, then 3h € E, such that {c,, ¢, } C h.
— Vea, ¢y € C,if Spes(ca, cp) = 0, then Ak € E, such that {c,,cp} C h.

A notable hypergraph H = (C, E) compatible with S, is the one in which F contains
the maximal cliques of S..s, thus constituting an imprecise partitioning of case base C.

3.3 Computing a Solution to a New Problem According to a Cluster

Given a case base, a similarity relation for each variable, global similarity measures .S,
and S,y;, and a hypergraph H = (C, E') compatible with S,..s, we want to derive an
appropriate solution o* for a new problem description p*.

First of all, we gather the clusters in /, containing cases whose problem descriptions
are somewhat similar to p*, denoted E* = {h € E | 3¢; = (pi, 0:) € h, Sin(pi, p*) >
0}.Foreach h = {¢1, ..., ¢, } € E*, we then compute its corresponding solution for p*,
denoted by o7, using a suitable aggregation function. Weighted aggregation operators
(eg. weighted means, weighted t-norms, etc) can be used when the the solution variables
are numerical, using the similarity between each p; and p* as weights, considering the
cases (pi, 0;) in h. For non-numerical variables, a weighted voting method can be used.
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3.4 Determining Cluster Strength in Relation to a New Problem

In [8] the final solution o* is selected from O, the set of solutions for p* from the
clusters in E*. To guide this selection, for each cluster in E*, we calculate the strength
of that cluster in relation to p*. We take the solution from the cluster whose descriptions
are the most strongly related to p*.

The cluster strength of h = {c1,...,¢r}, ¢; = (pi, 0i), in relation to a problem p*
can be obtained applying a suitable aggregation operator (e.g. means, t-norms, etc) on
the Sy (pi, p*) values.

3.5 Using Attribute Weights

Weights can be attached to cases, so that cases considered more important for a given
application have higher weights. Weight vectors can also be assigned to the descrip-
tion variables in a case: one can use either the same weight vector for all cases, or
assign individual weight vectors to each case, so that more significant attributes in-
side a case receive higher weights (see [14] for an individual weight vector learning
algorithm).

A weighted version of S;,, can also be used to compute the clusters themselves. If
individual weight vectors are used, the resulting relation is possibly asymmetric and
one has to make it symmetric before applying the rest of the formalism (see [8]).

3.6 Example

Table 1 illustrates S;,, and S, for a simple case base as well as its computed S..cs
relation. As the relations are symmetric by definition, only the upper halves are shown.
The maximal hypergraph for S, is calculated as H = (C, E) , with E = {{a, b, e, f},
{a.d.e 1}, {a, g}, {d. h}, {g.h}, {c.d, e, £}, {c, g}}.

Table 1. Tllustrative relations Sy, (table 1), Sou+ (table ii) and the resulting Sr.s (table iii)

i [Pa pp _Pc Pa pe Py Pg Pn__ii[0a Ob Oc 04 0c O 0g o ii|ca Cb Cc Ca Ce Cf g Ch
pa| 1 080 0.00 0.07 049 0.19 0.07 096 oq|1 1 1 I 1 1 047027 ¢co|l 1 0 1 I 1 1 0
2 1 0.00 0.00 0.35 0.02 0.00 0.76 o 111 1 1039019 ¢ 1001 100
Pe 1 051020047 033000 o 1 1 1 1077057 eco 111110
Pa 1 037 0.80 081007 oq4 1 1 1043023 cq 11101
Pe 1 049038045 o 11035015 ce 1100
Py 1 063019 of 1 035015 c¢f 100
Py 1 008 o4 1 080 c (I
Ph 1 Oh 1 ch 1

Note that we have cases in the example above which would not be related through
Sres. For example, Syes(cp, ¢n,) = 0 because Sy, (pp, pr) = .76 > Sout(op, o) = .19.
However, using Godel residuated operator we have Fg(cp, cp) = .19, so these cases
will be considered as resembling each other on all level cuts F ., for o € (0,.19].
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4 Generalized Fuzzy Framework

In this section, we propose to extend the approach presented in the previous section,
to a generalized fuzzy framework. More precisely, we propose to fuzzify the notion
of case resemblance relation S,..s described in Section 3.2. We then examine how the
subsequent processing steps can be modified to perform case-based reasoning from a
fuzzy case resemblance relation.

4.1 Fuzzy Case Resemblance Relation

As exposed in the introduction, we propose to modify the similarity measure between
cases, so as to model a gradual formalization of the basic CBR principle, as “the more
similar two problem descriptions are, the more similar are their solutions”.
We consider a residuated implication operator ¢ (see Section 2) and define a Fuzzy
Case Resemblance Relation (FCRR) as the mapping
Fy: C* —0,1]
. RN 0, if Sy, (pa:pb) =0
(Ca’ Lb) ~ F¢(Ca7 Cb) N { (b(S'in (pa: pb)7 Sout(oav Ob))a otherwise
@
Note that (as with S,.cs), the first condition in the definition of Fy is necessary, otherwise
two cases would be considered completely similar while having completely dissimilar
problem descriptions.

4.2 Adaptation of the Methodology to the Fuzzy Approach

Contrary to Sy, the new case resemblance relation I is not necessarily crisp and
thus requires an adaptation of both the cluster decomposition of the case base and the
computation of the solution to a new problem.

The proposed adaptation of the crisp methodology relies on the o level cut decom-
position of the fuzzy case resemblance relation. We propose to derive hypergraphs from
a Crisp Case Resemblance Relation (CCRR), defined as

1,if F(ci,cj) > @
0, otherwise.

Va € (0,1], Fp o(ciycj) = { 3
Even though an infinite number of level cuts can be derived from FCRR F, we only
need a finite number of CCRRs Fy, ,, one for each distinct « greater than 0 in Fy.

The other issues mentioned in Section 3 can then be dealt with in a straightforward
manner. It suffices to make S,.; = Fy o, discarding definition (1), and apply the pro-
cedures given in the previous section.

4.3 Example

Table 2 shows the fuzzy case resemblance relations Fz o and Fi7 o, obtained by the
application of Godel and Goguen implications, respectively, on the data in Table 1. In
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Table 2. CCRRs based on FCRRs F and Fz, for S;y, and Soq+ given in Table 1

Fa

Cq Ch Cc Cd Ce Cf Cg

Ch

Ca
Cp
Ce
Cd
Ce
cr
Cg
Ch

1 101
1 00
11

1

1
1
1
1
1

1
1
1
1
1
1

1 0.27
0 0.19
1 0
043 1
0.35 0.15
0.35 0.15
1 1
1

Frlca ¢y cc cq ce c§ cg cCp
ce |1 1.0 1 1 1 1 028
cp 1 001 1 0 025
Ce 1 1 1 1 1 0
cd 1 1 1 053 1
Ce 1 1 0920.33
cy 1 0.550.79
Cg 1 1
Ch 1
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our example, the relevant values of « for Fz and F'y are respectively Ag = {.15, .19,
.27,.35,.43, 1} and Ay = {.25, .28, .33, .53, .55,.79,.92, 1}.

Table 3 presents the imprecise partitions Fg . generated from the CCRRs Fy, , o €
Ay, derived from FCRRs F and Fp7. For example, using Godel residuated operator

with a = .19, we obtain hypergraph Hg 19 = (C, Eg, 19) from Fg 19, with E¢

{{a7 b7 e? f}’ {0/7 b7 h}’ {aﬂ d? e? f7 g}’ {a7 d? g7 h}’ {C7 d7 67 f’ g}}'

Table 3. Maximal cliques obtained for each relevant Fz o and F'r7 o level cut from Table 2

a |Eg,a
1 {{CL,b, €, f}’ {a,d,e,f},{a,g}, {d7 h}’ {97 h}’ {C7d767 f}’ {Cvg}}
'43 {{a7 b7 67 f}’ {a'7 d7 6’ f}’ {a? d’ g}’ {d7 97 h}’ {C? d? 67 f}’ {C7 d7 g}}
35 {{Cb,b, €, f}’ {a’daeafvg}’ {d797 h}v {Cvdve7 fag}}
'27 {{a’ b’ 67 f}’ {a7 d’ e’ f’ g}’ {a’ d’ g’ h}’ {C7d7 67 f’ g}}
19|{{a,b,e, f}, {a,b,h}, {a,d,e, f, g}, {a,d,g,h}, {c,d,e, f,g}}
'15 {{a7 b7 67 f’ h}’ {a’7d7e’ f’g7 h}7 {C7d7e7 f’g}}
(a4 En‘a
1 H{{a,b,e, f},  {a,d,e f}.{a, g}, {d;h}, {g, h}, {c,d,e, f}.{c,9}}
92({{a,b,e, f}, A{a,d.e, f}.{a,e,9}, {d.9}. {9, h}, {c;d,e, f}. {c, e, g}}
'79 {{a7 b’ e’ f}’ {a7 d’ 6’ f}’ {a’ e’ g}’ {d’g}’ {f7 g}’ {g’ h}’ {C7 d’ e’ f}’ {C7 e’ g}}
'55 {{a/7 b7 e’ f}’ {a7 d’ e’ f}’ {a/’ 67 f’ g}’ {d’ f’ 9}7 {f’ g’ h}’ {07 d7 67 f}’ {07 67 f’ g}}
'53 {{a7 b7 e’ .f}’ {a’7 d’ 67 f7 g}’ {d7 .f7 97 }L}’ {c7 d7 e’ f7 g}}
'33 {{a7 b7 e7 f}’ {a7 d7 67 f’ g}’ {d7 67 f7 g7 h}’ {C7 d7 67 f7 g}}
'28 {{0’7 b7 e’ f}’ {a7 d’ e’ f7 g, h}’ {C7 d’ 6’ f’ g}}
'25 {{a7 b7 e’ f7 h}’ {a’7 d’ 67 f7g7 h}’ {67 d7 67 f7 g}}

Note that, given a FCRR [y, many clusters appear in hypergraphs derived from
different CCRRs Fy . In the example shown here, we see that the total number of
clusters using Godel (respec. Goguen) operator is 29 (respec. 44) but only 16 (respec.
20) of them are distinct.

4.4 Some Properties of the Fuzzy Approach

Hypergraphs Hierarchy. The maximal hypergraphs Hy , = (C, Ey ), generated

from the level cuts Fy, , of a given FCRR Fy, are nested:

ifa>a then By < By o

(see Section 2 for the definition of <). Fy . is thus an imprecise partition finer than

E¢7a/'
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The proof is simple, based on the fact that similarity relations Iy ., are such that
(v < &) = (Fp,or < Fy,a) (see Section 2 for the definition of <). This property is
illustrated in Table 3: any cluster from I , is included in a coarser Ey ./, with oo > o,

Residuated Implication Operators. The residuated implication operators share some
interesting characteristics in this framework. Let z be the number of distinct values
appearing in F, collected in A = {1, ...,z }, a1 = 1.

It holds that:

1. Forall ¢, Fy+ = Fy 1 = Sres, and thus H; = H. In other words, whatever residu-
ated implication operator is used to calculate the FCRR for a case base, the finest
imprecise partition generated from that FCRR coincides with the crisp case resem-
blance relation Sys. The proof is straightforward: by definition, Fy 1(cq,cp) =
1 if Sin(pa,spp) > 0 and ¢(Sin (Pasb), Sout(0a,05)) = 1. Due to the proper-
ties of residuated operators, the second condition only holds when S;;, (pa, ps) <
Sout(0a, 0p). The two conditions coincide with the definition of S,..s, which com-
pletes the proof. It must also be underlined that the crisp case resemblance rela-
tion is a specific case of the fuzzy extension, that corresponds to the choice of the
Rescher-Gaines implication: more formally, Frg = Syes-

2. For all ¢,

1, if min(Sin (Pa, Pb); Sout (0a, 05)) > 0
0, otherwise.

Fy (cicj) = Fp. = { @
Therefore, given two FCRRs generated from the same case base with different
residuated implication operators, their coarsest imprecise partitions also coincide.
The proof is based on monotonicity properties of the t-norm operators used to ob-
tain the residuated implication operators.

Properties (1) and (2) imply all residuated operators applied to a given case base gen-
erate at least two common crisp relations, the largest and the smallest ones compatible
with the case base. As a consequence, they also generate the same corresponding set of
maximal cliques. For example, in Table 3, we see that E¢, = Ey7, and Eg ,, = Ep7,,.
Moreover, we have Eg, = E, = E (see Section 3.6).

In the example, it is easy to check that Godel and Goguen operators lead to very
different crisp relations and only coincide in the unavoidable ones. Nevertheless, they
have many clusters in common and it is possible to conceive heuristics that would be
able to take advantage of that fact, leading to a reduced computational effort, if more
than one operator is to be used in a given application.

4.5 Experiments Using Related Approaches

In [11], the authors used similarity relations associated to the description and solution
variables spaces and the weighting approach proposed in [14] (see also [2]) on a real-
world classification problem. It was shown that weighting the attributes in each case
in the training set tends to lead to better results than the non weighted counterparts.
Arguably, the weighting is able to overcome possible discrepancies on the similarities
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relations and reality, in what regards a given problem. Indeed, different relations may
induce the same order in the pairs of cases in what regards their similarity, but a partic-
ular valuation may be more consistent than another with the relations associated to the
other variables.

Weighting is computationally expensive, which makes it impracticable to use in
large case bases. However, a good compromise can be obtained if we first use the non-
weighted fuzzy approach proposed here to generate clusters and then apply the weight-
ing algorithm on each cluster, as if it were itself a (smaller) case base. This approach
has been tested in [12] for the same data used in [11], with a choice of parameters for
Sout that generated a single crisp relation. The experiments using clusters behaved in
general better than those without clusters.

5 Conclusions

We extended here an approach to CBR retrieval and reuse, based on the determination
of clusters of similar cases, using a residuated implication operator to create a fuzzy
resemblance relation. In this extension, the resemblance between cases is no longer
necessarily crisp, as in the original approach. To extract clusters from this fuzzy relation,
we propose to first derive its relevant level cuts, thus creating a set of crisp relations,
and then obtaining the clusters therefrom. The approach proposed in [8] is equivalent to
the the gradual rules framework proposed in [7], based on Rescher-Gaines implication
operator, which can be very restrictive when the similarity relations are not properly
tuned. The approach proposed here provides a means to deal with this problem.

Results from the use of this strategy on a real-world experiment using with a single
FCRR led to good results [12], which suggests that the extended approach proposed
here is promising, as it allows a larger choice of reasonable (imprecise) partitioning of
the case base for learning weights, making it possible to learn weight vectors in large
case bases. It is interesting to note that the use of the extended approach for a given
choice of residuated operator does not necessarily increase very much the overall cost
of the procedure, because many clusters are naturally present in several hypergraphs.

The important drawback of using an approach based on a set of similarity relations
is that the number of parameters required to build the relations might be large. On the
other hand, for many applications, similarity relations can be easily obtained from the
experts in the domain of the case base, either directly or by converting a fuzzy sets into
a relation (see [13] for a conversion method). Last but not least, one can use learning
algorithms to find the similarity relations parameters if experts are not available.

In any case, properly tuning parameters may be difficult and for this reason, the as-
sociation of the fuzzy approach proposed here and weighting is promising, by compen-
sating for the improperly tuned parameters. The other drawback is the computational
cost. So far, we have studied the use of taking the clusters as the maximal cliques, a
NP-complete problem. In practical terms, however, this is not usually not significant,
mainly for two reasons. On the one hand, the set of cases compatible with a new prob-
lem is usually small. On the other hand, when a large number of cases is compatible
with the problem at hand, these cases themselves can be clustered around the output
values. Nevertheless, when the set of compatible cases is large, one can reduce it by
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using thresholds in the overall description similarity relation between the problem and
the cases compatible with it.

As future work, we intend to investigate alternative mechanisms to obtain hyper-
graphs, apart from maximal clusters and to study how to reduce the number of crisp
relations derived from the FCRR, so that a smaller number of hypergraphs would have
to be created. We already know that the minimal set of crisp relations should include
the two extreme possibilities, as discussed in Section 5, that can be obtained from any
residuated operator. We believe that analyzing the crisp relations obtained from distinct
residuated operators will allow us to derive a good heuristic to select some of these crisp
relations to derive the associated hypergraph. Finally, we intend to study more deeply
the relation between the approach presented and the mining of fuzzy gradual rules, as
presented in [9].

Acknowledgments. The author is indebted to Marie-Jeanne Lesot for invaluable help
in preparing this manuscript, to the paper anonymous reviewers for useful comments
and suggestions and to FAPES for grant No 2012/02077-8.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations
and system approaches. Al Commun. 7(1), 39-59 (1994)

2. Armengol, E., Esteva, F., Godo, L., Torra, V.: On learning similarity relations in fuzzy case-
based reasoning. Trans. on Rough Sets, 14-32 (2004)

3. Bouchon-Meunier, B., Laurent, A., Lesot, M.-J., Rifqi, M.: Strengthening fuzzy gradual rules
through “all the more” clauses. In: Proc. FuzzIEEE 2010 (WCCI 2010), pp. 2940-2946
(2010)

4. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncer-
tainty. Plenum Press (1988)

5. Dubois, D., Prade, H.: Gradual inference rules in approximate reasoning. Information Sci-
ences 61(1-2), 103-122 (1982)

6. Esteva, F., Garcia-Calves, P., Godo, L.: Fuzzy similarity-based models in case-based reason-
ing. In: Proc. FuzzIEEE 2002, vol. 2, pp. 1348-1353 (2002)

7. Hiillermeier, E., Dubois, D., Prade, H.: Fuzzy rules in case-based reasoning. In: Proc. AFIA
1999, pp. 45-54 (1999)

8. Fanoiki, T., Drummond, I., Sandri, S.: Case-based reasoning retrieval and reuse using case
resemblance hypergraphs. In: Proc. FuzzIEEE 2010 (WCCI 2010), pp. 1-7 (2010)

9. Hiillermeier, E.: Implication-Based Fuzzy Association Rules. In: Siebes, A., De Raedt, L.
(eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 241-252. Springer, Heidelberg (2001)

10. Kolodner, J.: Cased-based reasoning. Morgan Kaufmann (1993)

11. Martins-Bedé, F.T., Godo, L., Sandri, S., Dutra, L.V., Freitas, C.C., Carvalho, O.S.,
Guimaraes, R.J.P.S., Amaral, R.S.: Classification of Schistosomiasis Prevalence Using Fuzzy
Case-Based Reasoning. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.)
IWANN 2009, Part I. LNCS, vol. 5517, pp. 1053—-1060. Springer, Heidelberg (2009)

12. Sandri, S., Mendonga, J., M.-Bedé, F., Guimaries, R., Carvalho, O.: Weighted fuzzy sim-
ilarity relations in case-based reasoning: a case study in classification. In: WCCI 2012 (to
appear, 2012)

13. Sandri, S., Toledo Martins-Bedé, F.: Order Compatible Fuzzy Relations and Their Elicitation
from General Fuzzy Partitions. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 640—
650. Springer, Heidelberg (2011)

14. Torra, V.: On the learning of weights in some aggregation operators: the weighted mean and
OWA operators. Math. and Soft Comp. 6 (2000)



