
WEB-PerformCharts: A Collaborative Web-based tool for
Test Case Generation from Statecharts

Alessandro Oliveira Arantes1, Nandamudi Lankalapalli Vijaykumar2, Valdivino Alexandre de
Santiago Junior2, Danielle Guimarães2

1Institute for Advanced Space Studies (IEAv) – Aerospace Technological Center (CTA)

P. O. Box 6044 – 12228-970 – São José dos Campos – SP – Brazil
2National Institute for Space Research (INPE)

P. O. Box 515 – 12245-970 – São José dos Campos – SP – Brazil

+55-12-39475301, +55-12-39456549, +55-12-39457166, +55-12-39457179

alessandro.arantes@ieav.cta.br, vijay@lac.inpe.br, valdivino@das.inpe.br,
danielle.guimaraes@cea.inpe.br

ABSTRACT
Distributed development of software has turned into a natural and
modern approach where teams spread over the world cooperate to
develop a software product, and this has become possible due to
the expansion and popularity of global networks as internet.
Collaborative tools coordinate a variety of tasks of several
members of a team with an objective of reaching a specific goal.
One such task that plays a major role, within the software
development life cycle, is testing. In particular this task becomes
more and more important when considering critical software such
as space applications, which is the case of Brazilian Space
Institutions CTA and INPE. The work discussed in this paper has
two objectives: (i) present a web-based tool, WEB-PerformCharts,
that can generate black-box test cases of a space application
software; (ii) show that Statecharts are an excellent option to
model the software specification, from which test sequences can
be generated by applying several methods well known from the
published literature.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Assertion checkers, Class invariants, Correctness proofs, Formal
methods, Model checking, Programming by contract, Reliability,
Statistical methods, Validation.

D.2.12 [Software Engineering]: Interoperability – Data
mapping, Distributed objects, Interface definition languages.

General Terms
Reliability, Verification.

Keywords
Web-based tool, Collaborative Applications, Software Tests, Test
Case, Verification and Validation, Statecharts.

1. INTRODUCTION
Nowadays many software development companies are using
computer-supported collaborative tools overcoming geographical
distances in order to reduce development costs adopting
distributed settings. These collaborative tools enable the
collaborative work, that is nothing more than joint efforts,
coordinating their tasks to conclude a project common to all
members of a team. Thus, a collaborative web-based application
would be an useful tool to help different teams to cooperatively
address process activities related to the software development life
cycle.

Testing activity is the topic discussed in this paper, and maybe,
the most important phase in a Verification and Validation process.
It is the software’s operation with real or simulated inputs from
real situations to demonstrate that software satisfies its
requirements or, if it does not, to identify the differences between
the expected results and obtained results generated by software
under evaluation.

Verification and Validation [1] activity is one of the key issues
within software development life cycle, and in particular, for
critical software this activity is more important dedicating more
time and resources when compared to other phases within the
cycle. Brazilian Institutions such as Aerospace Technological
Center (CTA) and National Institute for Space Research (INPE)
are government bodies responsible to develop the Brazilian Space
Mission involving both satellites and launch vehicles. These
missions involve a significant amount of financial resources
besides considering security issues with respect to avoiding risks
to human lives and damage to environment. Space missions
definitely demand organized and manageable activities related to
software development. And this software is considered as critical
software due to space application's inherent complexity. Besides,
the unmanned aspect of satellite launching and satellite
functioning in the desired orbit turns out to be an additional factor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

iiWAS2008, November 24–26, 2008, Linz, Austria.
(c) 2008 ACM 978-1-60558-349-5/08/0011 $5.00.

Proceedings of iiWAS2008 iiWAS 2008

374

increasing further the complexity. Reliability and safety of critical
software depends heavily on the quality of test sets applied to the
product, which consequently leads to the necessity of generating
proper test sequences. This brings the need to work with an
entirely scientific basis in order to avoid their (test sequences)
inadequacy in revealing errors. So, testing activities can involve
many scattered teams working together and they are essential
depending on the software’s complexity.

In this paper’s context, software is represented as a state-machine
based model, and a path from some given state to another state
that is reachable, can be defined as a test sequence. If a
requirements model is available, then, it is possible to use a
technique to derive test sequences in the very early phases of the
software development life cycle. Therefore, if the technique to
model a software specification were a Finite State Machine
(FSM), some methods that can be applied to generate test
sequences are: T, UIO, DS, W and Switch Cover [2], [3], [4] and
[5]. However, features usually present in complex software
requirements representation, such as parallel activities and
encapsulation, are very hard to represent using FSMs. Therefore
high level techniques must be investigated to support
representation of such features. WEB-PerformCharts tool, which
is being presented in this paper, is a web-based tool that
incorporates two main features for software testers: obtain test
sequences remotely via internet by addressing distributed
development situations; and, uses Statecharts, instead of FSM, for
specifying requirements in order to generate test sequences.

This paper is organized as follows: Section 2 discusses an
introduction about advantages of collaborative systems and their
applications. Section 3 discusses the importance of testing critical
systems and also presents PerformCharts by explaining how test
sequences are generated from a model represented in Statecharts.
Section 4 presents the WEB-PerformCharts tool. Section 5
presents a case study with results from implemented methods.
Finally Section 6 concludes the paper.

2. COLLABORATIVE SYSTEMS
Word wide web offers resources for transmission of data at high
speeds in which geographical distance is no longer a critical factor
in today's world. Thus, the cooperative work among teams located
in different places, geographically distant, has become a common
trend and even necessary both in business and in academics [6].
This trend is further enhanced with the concept of globalization.
The objective of collaborative systems is helping people involved
in a common task supporting communication, coordination and
cooperation. The use of these applications means accessibility for
any internet user, allows a great cost saving, time saving, and
increasing teamwork and efficiency since all manipulated data by
one user can be immediately perceived by all other users at remote
locations [6].

Web-based applications have advantages by offering a low cost
solution, since in this architecture, the client can use any
operating system and it requires no other proprietary software.
Also, nowadays, many people have easy internet access and
whenever updates are necessary, this is conducted only in the
server where the applications are hosted without any necessity for
the users to reinstall any kind of software. So, collaborative web-
based systems (also known as E-collaboration) is a common

practice adopted for many companies to develop their
applications.

Collaborative tools can fall into the following categories: Group
Document Handling, Real-time conferencing, Non real-time
conferencing, Electronic Meeting Systems (EMS) and Electronic
Workspace. In case of the tool WEB-PerformCharts, discussed in
this paper, it belongs to the category of Electronic Workspace due
to its main idea in offering teams a common environment for
coordination and organization of their work centralizing files and
documents in an on-line server [7]. Many features are commonly
found in web-based applications, and those that are relevant for
collaborative systems are:

(i) E-mail notifications: to communicate tasks, changes or new
activities;

(ii) Project management: to control the access level of users and
assign tasks to members of a group;

(iii) File and document sharing: availability of documents.
Particularly in this work, software requirements specifications,
software design documents and documentation related to the test
process must be available to a group of people involved.

The most common feature in such tools, and at the same time
most needed collaboration service, is file and document sharing
[7]. Space research organizations demand high software quality,
for instance, embedded into satellite or launch vehicle on-board
computers. It is usual in this activity, situations where teams
involved in satellite missions are not exactly in one place due to
joint collaborations among space agencies to develop space
applications. The use of an on-line collaborative tool would
definitely aid the software testing activities in this scenario such
as the one shown in Figure 1.

.

Figure 1. Example of cooperative work.

3. TESTING CRITICAL SYSTEMS
Several systems controlled by software may cause inconvenience
when a fault occurs, but in most cases it does not cause serious
damage. However, there is a certain category of systems, which
are critical systems, where software faults can result in significant
economic losses, physical damages or even threats to human lives
[8]. As examples of critical systems one can mention space
applications, navigation systems, banking systems or nuclear plant

iiWAS 2008 Proceedings of iiWAS2008

375

monitoring. The focus of this paper is in space applications. Space
missions deal with the execution of complex tasks using high cost
technologies; consequently, these embedded software demands
high quality and testing such systems is an essential activity to
guarantee their reliability.

Tests can be applied in different phases of a system development
process; even in modeling phases before implementation, it is
already possible to fix errors testing a formal specification. These
tests based on the software’s specification without any knowledge
on its internal structure are Functional Tests, also known as
“black box tests”. Therefore, there is a need to have a formal
specification of the software to be tested, and this adds to the need
of exploring techniques to represent complex reactive systems,
like software embedded into satellite on-board computers. A
natural choice for representing reactive systems is state-transition
based techniques such as FSM, but features as depth and
parallelism (usually common in modern complex reactive
systems) are very hard to specify using FSM. So, a formal higher-
level technique that can also be handled computationally for test
case generation must be studied. There are some alternatives as
Petri Nets [9], SDL [10], Statecharts and others. The scope of this
paper explores Statecharts alternative.

Statecharts have a graphical language to specify reactive systems
in a formal manner ([11] and [12]). They have been originally
developed to represent and simulate real time systems. They have
an added value of being formal and their visual appeal along with
the potential features enable considering complex logic to
represent the behavior of reactive systems. They originated from
state-transition diagrams and these diagrams have been extended
with notions of hierarchy (depth), orthogonality (parallel
activities) and interdependence (broadcast-communication).
Statecharts depend on the following elements in order to represent
a reactive system: states, events, conditions, actions and
transitions [11], [12], [13] and [14]. It is also possible to define
variables and expressions.

States are clustered to represent depth, thus enabling to combine a
set of states with common transitions into a super-state. Super-
states are usually refined into further sub-states in a top down
approach. State refinement can be achieved by XOR and AND
decompositions. The former decomposition is employed whenever
an encapsulation is a must to improve the clarity of the
visualization. When an XOR super-state is active, one (and only
one) of its sub-states is indeed active. The latter approach, AND
decomposition, is used to represent concurrency and when active,
all of its sub-states are active. The state that contains no more
further refinements is known as BASIC.

In Statecharts the global state of a given model is referred to as a
configuration that is the active basic states of each orthogonal
component. In Statecharts, by definition, when modeling a given
system, there must always be an initial state also known as default
state. This is the entry point of the system. Another way to enter a
system is through its history, i.e. when a system is entered the
state most recently visited is activated, thus bypassing the initial
state. In order to indicate that history is to be used instead of entry
by default, the symbol H is provided. It is also possible to use the
history all the way down to the lowest level as defined in the
Statecharts formalism by applying the symbol H*. Transitions are
generally represented by this notation event[condition]/action,
which means that, once event is enable and condition satisfied,

transition is executed. So, when transition is done, a reaction
continues by executing the action, which is another reaction.

PerformCharts tool was initially created to be used to evaluate
performance of reactive systems by associating them to Markov
Chains, also represented as FSM [15]. In PerformCharts, events
are divided into two categories: external and internal or
immediate. External are those that have to be explicitly stimulated
whereas internal are those that are automatically sensed by
Statecharts dynamics and reaction takes place [15]. This is the
same as defined in Statecharts. Actions, are considered as internal
events that affect other orthogonal components. It is important to
remember that a Markov chain is generated for performance
evaluation, as long as the external events follow an exponential
distribution. Also, it is possible to associate probability to
transitions in situations where a same event takes a source state to
more than one destination resulting in a conflict or non-
determinism. Therefore, the original notation for transitions was
changed in PerformCharts to:
event[condition]{probability}/action [16]. This tool was written
in C++ language.

In order to reach the objective of generating test sequences,
PerformCharts was adapted to convert Statecharts representation
of reactive systems into an FSM. This FSM had to be prepared
and preprocessed so that it could be converted into an appropriate
input to be used by another tool Condata [3] from which test
sequences used to be generated. Condata implemented Switch
Cover method [5]. As Condata was written in Prolog language, it
takes the input of a state machine as a base of facts.

In PerformCharts, calls to methods for specifying the model in
Statecharts as well as calls to methods to generate the
corresponding FSM has to be written in C++. In order to provide
a better interface, PerformCharts Markup Language (PcML) [17],
an XML based interface has been developed in order to support
Statecharts specifications.

PcML code is edited by any text editor and parsed by a Perl script
that converts it to a main program in C++ of PerformCharts. Thus,
this main program is linked and compiled with other classes and
obtains performance measures or FSM. This FSM is the basis to
generate test sequences.

4. WEB-PERFORMCHARTS
In order to enable different teams, distributed geographically in
different locations, working in software testing sharing projects
through Internet access, PerformCharts was modified to become a
new tool named WEB-PerformCharts [18]. It is a web-based tool
idealized to help software testers working in different places for
cooperating in common projects, and approaching their expertise
and know-how in order to benefit software’s quality [18].

In order to reach this objective, PerformCharts tool has been
modified to run remotely through a web-based interface and to be
hosted in a web server using database access. This on-line
database has been implemented in order to promote testers to load
and save projects from anywhere to the server, instead of
manipulating just local files spread in many computers.

Internet development technologies were required for
implementation besides the traditional HTML, and the preference
was for technologies free of costs as PHP, MySQL for databases

Proceedings of iiWAS2008 iiWAS 2008

376

and Apache web server software. Thus, except for hardware costs,
the system is entirely free of software packages costs. At the
moment, WEB-PerformCharts is installed in Windows based
platform servers; however, a Linux version is under development
and will be available very soon.

Once logged into the system, testers are able to create, edit or
delete projects and their associated PcML specifications. Each
user can manipulate just one project at a time, and when a project
is selected (from a list of all available projects) it can be modified
and run the test case generation method as many times as
required. It is an interesting feature since the software can be
incorrectly modeled in Statecharts and may require changes in its
specification. These changes can be perceived by anyone who can
access the same project.

Specifications are distributed in projects, that can be created by
any user and can be shared among users. The implementation of
workflow routines is under study and the communication between
them can be done through integration with their e-mail. The idea
of group users into workgroups seems very useful and will be
studied for implementation also.

The number of users who can access WEB-PerformCharts is not
limited in theory. It depends directly on the server capacity to
support on-line workload as well as on the storage memory.

In case of a huge number of users accessing the same server, they
could be organized hierarchically according to their functions
(e.g. Administrator, User, Guest, Project Manager, General
Manager, etc.) providing an easier management. In fact, in its
preliminary version, WEB-PerformCharts has two access levels
for users: Administrator: full access for any project, and can create
another user accounts; User: access just for projects created by her
or him.

The web-based interface provides the user features to manage her
or his projects creating a new one, deleting or modifying an
existing project in order to obtain new test cases running the test
case generator method again. These test cases are stored in an on-
line database in the server, and can be accessed anytime by those
who have the proper authorization. WEB-PerformCharts
automatically uploads a PcML specification to web server when
user selects it using web-based interface, which is implemented in
HTML and PHP. When uploaded, the PcML contents are
automatically parsed by a PHP script which extracts any
specification data and store them into a MySQL database. Data
inserted in this database is read and used to invoke proper
structures holding the encapsulation, states, events, conditions,
parallel components and transitions. It calls appropriate methods
from PerformCharts and generates the FSM from its Statecharts
specification. If performance evaluation is required, a Markov
chain is the result instead of FSM; but in either case, they
(Markov chain or FSM) are stored in the database and can be
extracted in XML format for any other use.

However, once FSM is available, methods can be applied in order
to generate test sequences. WEB-PerformCharts is not limited to a
single method. Besides its own embedded T-Method (Transition
Tour) and the integration with Switch Cover (implemented in yet
another tool, Condata), WEB-PerformCharts is opened for
implementing any other method as long as the method can be
applied on an FSM representation. The idea is to make these

methods as independent cartridges within the system, and as an
experiment, Switch Cover method was also implemented
following this concept enabling its use without the need of
Condata tool. Methods DS (Distinguishing Sequence) and UIO
(Unique Input Output) are being implemented at the moment.

Recollecting, in test sequence generation, users have two
alternatives within the WEB-PerformCharts tool. They can use
one of the cartridges from WEB-PerformCharts, or they can
export a base of facts which are input for Condata tool run its own
method. This conversion is automatically achieved by using a
parser written in XSLT. Figure 2 describes all basic steps to
generate test sequences using WEB-PerformCharts. The
generation using any of the cartridges methods is named as “Path
A”, and integration with Condata tool is “Path B”.

5. RESULTS
In order to show the use of WEB-PerformCharts for test sequence
generation, consider the example in Figure 3. This software
behavior model was specified in the scope of the Qualidade do
Software Embarcado em Aplicações Espaciais (QSEE - Quality of
Space Application Embedded Software) research project [19].
This project is an experience at INPE in outsourcing the
development of satellite payload embedded software. The
software, SWPDC, is in charge of collecting and formatting data
from Event Pre-Processors (EPPs), receiving and executing
commands from the On-Board Data Handling (OBDH) computer,
transmitting telemetry data to the OBDH, generating
housekeeping information, accomplishing data memory
management, implementing fault tolerance mechanisms and
supporting loading of new programs on the fly. EPPs are front-
end processors in charge of fast data processing of X-ray cameras
signals of an astrophysical scientific experiment under
development at INPE and the OBDH is the satellite platform
computer [19].

A project like QSEE fits a collaborative systems approach. Taking
into account only the on-board computers, it is perfectly possible
that different organizations might be in charge of distinct
computing subsystems development. For instance, one
organization may be responsible for developing the OBDH, and
its related software, another for the SWPDC computer, and the
SWPDC itself, and even another for the EPPs and associated
software. A completely distinct organization may be in charge of
Verification and Validation of these software in an Independent
approach, known as Independent Verification and Validation
(IVV) [19]. In such scenario, WEB-PerformCharts comes into aid
IVV’s test designers to generate test cases remotely via web.

Statecharts shown in Figure 3 is just a small part of the entire
SWPDC modeling. It deals only with some state management of
the software. Managing State is an AND state composed of four
XOR states, denoted A, B, C and D. A and B are sub-states
wondering if EPPs are active and able to send data collected
during their operation or if they are inactive. Sub-state C models
event report generation to be included in Housekeeping data to be
sent to the OBDH. Housekeeping data have status information
related to the health not only of SWPDC but also of the hardware
of the computing subsystem. Sub-state D is related to data
acquisition from EPPs by SWPDC computer. EPPs can generate
three type of data known as Scientific, Diagnosis and Test data.

iiWAS 2008 Proceedings of iiWAS2008

377

Figure 2. WEB-PerformCharts architecture.

So, SWPDC shall be able to interact with EPPs in order to request
these data. In Figure 3, DD stands for Data – Diagnosis type, DT
means Data – Test type, HK means Data – Housekeeping type and
DM means Data – Dump type. For instance, prepare_DT event
instructs SWPDC to acquire Test data from EPPs to be
transmitted later to the OBDH. The methodology to generate test
cases follows [20]:

1st step: The system specification is written in PcML. A part of
such specification is shown in Figure 4.

2nd step: WEB-PerformCharts is accessed and PcML file is
uploaded to Web server through the user interface shown in
Figure 5.

3rd step: PcML file is automatically parsed by PHP and data are
inserted into a MySQL database. “Run PerformCharts” option is
enabled and generates a FSM from Statecharts specification.

4th step: FSM data is included into database and can be extracted
as an XML file. Part of this file can be seen in Figure 6. Once
FSM is obtained, tester can generate test sequences using
Transition Tour or Switch Cover which are methods available
within WEB-PerformCharts (Path A), or export a file suitable as
input for Condata tool to run independently (Path B) from the
WEB-PerformCharts tool. Both paths have been tested.

5th step (A): Transition Tour method was applied to the
generated FSM and, this graph consisting of 40 states and 304
transition arcs was entirely covered using 1046 steps. The set of
test sequences (with first and last steps) is shown in Table 1.

5th step (B): WEB-PerformCharts has an option “Get base of
facts” that must be accessed in order to call an integrated XSLT
parser. This parser is responsible in converting the XML data of
FSM into the required input for Condata tool to generate test
sequences. A part of this input is in Figure 7. Condata tool is
implemented in Prolog and hence it requires the input as a base of
facts.

6th step: Condata tool runs the input and applies Switch Cover
method to obtain test sequences. But, for this case study the tool
executed for some minutes without being able to finish due to the
excessive number of combinations to be generated by this method.
However, test sequences are still possible to be obtained by
pruning a given transition

Except for Condata test cases that are generated locally, all other
information presented are shared by any logged user in WEB-
PerformCharts since they are totally stored into an on-line
database and can be accessed in real-time conditions.

Proceedings of iiWAS2008 iiWAS 2008

378

Figure 3. A small piece of a satellite computer embedded software modeling.

iiWAS 2008 Proceedings of iiWAS2008

379

Figure 4. PcML specification of modeling in Figure 3.

Figure 5. Web server upload interface.

Figure 6. FSM specified in XML.

Table 1. Results obtained by T-Method

STEPS EVENTS

1 Generate_Data

2 Initiate_Acquisition

3 Activate_EPP1

4 Deactivate_EPP1

5 Activate_EPP2

.

. . . .

. .

1043 Prepare_DM

1045 Deactivate_EPP1

1046 Enclosed_Report

trans(InactiveEPP1InactiveEPP2IdleIdle1,t1,
ActiveEPP1InactiveEPP2IdleIdle1,L0,Ln)
receivel('Activate_EPP1',L0,L1)
transmit(L1,Ln)

trans(InactiveEPP1InactiveEPP2IdleIdle1,t2,
InactiveEPP1ActiveEPP2IdleIdle1,L0,Ln)
receivel('Activate_EPP2',L0,L1)
transmit(L1,Ln)

. . .

. .

.

Figure 7. Base of facts for Condata tool.

6. CONCLUSIONS
Decentralized work is a very common trend for widely dispersed
companies in modern days, since it can result in time and cost
savings decreasing travel and infrastructure requirements, instead
of maintaining huge, centralized and expensive buildings.

The decision for using an on-line database as storage method
allow test designers to share their projects, and facilitates control
of versions since its management is easier than copying multiple
local files from multiple computers. Also, WEB-PerformCharts
has other advantages when compared to conventional local
systems, since it can be accessed from any place in the world at
anytime with a computer or laptop, an internet connection and a
web browser.

Complex software modeling requires features as explicit
representation of hierarchy and parallel activities. Therefore, a
higher-level technique based on state-transitions diagrams is
recommended. In this respect, Statecharts come into picture.
However, dealing with higher-level techniques increases
complexity in developing an automated environment and demands
more computational effort.

Proceedings of iiWAS2008 iiWAS 2008

380

Depending on the number of states and arcs of the generated
FSM, common sense says that the problem can be unfeasible. This
could be seen by Switch Cover method from Condata tool that
resulted in state explosion with this relatively complex example.
Now, once the modeling issue is decided, a test sequence
generation method has to be selected. In the example shown,
Switch Cover method by using Condata tool resulted in state
explosion and was unable to generate test sequence. For such
cases, a simple pruning of a selected arc right in the Statecharts
specification has been implemented and this enables to generate a
partial FSM. On one hand, this has a drawback that a complete
machine cannot be tested. On the other hand, it enables test case
generation methods to deal with the machine. However,
Transition Tour method reached much better results covering full
graph.

The task of incorporating test sequence generation methods in
WEB-PerformCharts allows its use without depending on another
tool besides enabling efficiency comparison of different methods.
Beyond Transition Tour and Switch Cover, other methods are
under development and should be available as cartridges of the
system. The main contribution of this paper is to enable a tool to
support test process in a distributed environment through
development of a web-based tool. Also, the use of XML formatted
documents represents an important step bringing another major
contribution in standardization of test data. In future, studies will
be made for integration between WEB-PerformCharts and tools
that perform automatic test execution in order to improve the
automation of test process activities.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the financial grant
provided by CNPq/Edital Universal (Project N. 474031/2006-3).

8. REFERENCES
[1] Pressman, R.S. 2000. Software engineering - a practitioner's

approach, 5th edition, McGraw-Hill International Editions.

[2] Lee, D., and Yannakakis, M. 1996. Principles and Methods
of Testing Finite State Machines – A Survey, In: Proceedings
of the IEEE, 84(8).

[3] Martins, E., Sabião, S. B., and Ambrósio, A. M. 2000.
Condata: a tool for automating specification-based test case
generation for communication systems, 33rd Hawaii
International Conference on System Sciences.

[4] Myers, G. 1979. The art of software testing, John Wiley &
Sons, 1979.

[5] Pimont, S., and Rault, J. C. 1979. An approach towards
reliable Software, Proceedings of the 4th International
Conference on Software Engineering, Munich, Germany,
pp.220-230.

[6] Tian, G. Y., and Taylor, D. 2001. Design and
Implementation of a Web-based Distributed Collaborative
Design Environment, IEEE Fifth International Conference
on Information Visualisation, London, UK, pp. 703-707.

[7] Bafoutsou, G., and Mentzas, G. 2001. A Comparative
Analysis of Web-based Collaborative Systems, Database and
Expert Systems Applications, Proceedings of the 12th

International Workshop on Database and Expert Systems
Applications, pp. 496-500.

[8] Sommerville, I. 2003. Software Engineering, Addison
Wesley.

[9] Peterson, J. L. 1981. Petri net theory and modeling of
systems, Prentice-Hall International, London.

[10] Ellsberger, I., Hogrefe, D. and Sarma, A. 1997. SDL: Formal
Object-oriented Language for Communicating Systems,
Prentice Hall Europe.

[11] Harel, D., Pnueli, A., Schmidt, J., and Sherman, R. 1987. On
the formal semantics of Statecharts, IEEE Symposium on
Logic in Computer Science, Ithaca, USA.

[12] Harel, D., and Politi, M. 1998. Modeling Reactive Systems
with Statecharts: the Statemate Approach, McGraw-Hill,
USA.

[13] Harel, D. 1987. Statecharts: a visual formalism for complex
systems, Science of Computer Programming, Vol.8., pp.
237-274.

[14] Harel, D., and Naamad, A. 1996. The STATEMATE
Semantics of Statecharts, ACM Transactions on Software
Engineering, 5(4), pp. 293-333.

[15] Vijaykumar, N. L., Carvalho, S. V., and Abdurahiman, V.
2002. On proposing Statecharts to specify Performance
Models, International Transactions in Operational Research,
9(3), pp. 321-336.

[16] Vijaykumar, N. L., Carvalho, S. V., and Abdurahiman, V.
2006. Introducing probabilities in Statecharts to specify
reactive systems for Performance Analysis, Computers &
Operation Research, 33(8), pp. 2369-2386.

[17] Amaral, A. S. M. S., Veloso, R. R., Vijaykumar, N. L.,
Francês, C. R. L., and Oliveira, E. 2004. On proposing a
Markup Language for Statecharts to be used in Performance
Evaluation, International Journal of Computational
Intelligence, 1(3), pp. 260-265.

[18] Arantes, A., Vijaykumar, N., Santiago, V., and Carvalho, A.
2008. Automatic Test Case Generation Through a
Collaborative Web Application, Accepted for presentation at
The IASTED International Conference on Internet and
Multimedia Systems and Applications (EuroIMSA 2008),
Innsbruck, Austria, 17 – 19 March.

[19] Santiago, V., Mattiello-Francisco, M. F., Costa, R., Silva, W.
P., and Ambrosio, A. M. 2007. QSEE Project: An
Experience in Outsourcing Software Development for Space
Applications, In: The 19th International Conference on
Software Engineering & Knowledge Engineering (SEKE),
Boston, EUA, p. 51-56.

[20] Santiago, V., Amaral, A. S. M., Vijaykumar, N. L.,
Mattiello-Francisco, M. F., Martins, E., and Lopes., O. C.
2006. A Practical Approach for Automated Test Case
Generation using Statecharts, In: 2nd International
Workshop on Testing and Quality Assurance for
Component-Based Systems, IEEE COMPSAC Conference,
Chicago, EUA, v. 2, p. 183-188.

iiWAS 2008 Proceedings of iiWAS2008

381

