
AUTOMATIC TEST CASE GENERATION THROUGH
A COLLABORATIVE WEB APPLICATION

Alessandro Oliveira Arantes1, Nandamudi L. Vijaykumar2, Valdivino Alexandre Santiago3, Adenilson Roberto Carvalho2
1Institute for Advanced Space Studies (IEAv), Aerospace Technological Center (CTA),

P. O. Box 6044 – 12228-970 – São José dos Campos – SP – Brazil
2Associated Laboratory of Computing and Applied Mathematics (LAC)

 3Department of Atmospheric and Space Sciences (CEA)
National Institute for Space Research (INPE),

P. O. Box 515 – 12245-970 – São José dos Campos – SP – Brazil
alessandro.arantes@ieav.cta.br,{vijay,adenilson}@lac.inpe.br,

valdivino@das.inpe.br

ABSTRACT
In order to develop a software product where teams
spread over a country or even over the world can work
together, the distributed development of software is a
natural approach. Therefore, web appears as a valuable
resource enabling the cooperative development.
Collaborative work joins efforts of several members of a
team to coordinate their tasks with an objective of
reaching a specific goal. In particular, for software,
collaborative web applications are powerful resources that
can help different teams to cooperatively address process
activities related to the software development life cycle,
especially those related to testing. This paper presents a
web-based tool, WEB-PerformCharts, to enable test
designers to generate black-box test sequences, remotely
via Internet, based on Statecharts representation of the
specification. WEB-PerformCharts tool enables a reactive
system (software specification) to be modeled in
Statecharts, and generates test sequences according to a
test case generation method using the Web. The paper
describes how a model specified in Statecharts can be
used to generate test sequences (PerformCharts tool),
besides showing the necessary implementations in the
tool to develop a collaborative web application. A case
study is presented in order to demonstrate the usability of
the tool. The paper has a major contribution in providing
support to test processes in a distributed environment
besides discussing the use of a high-level technique,
Statecharts, to model the specification.

KEY WORDS
Interface, Collaborative Systems, Cooperative Work, Web
Application, Statecharts, Software Testing.

1. Introduction

In order to reduce development costs many software
companies are using computer-supported collaborative
tools to overcome the distance for geographically
distributed settings in software development.
Collaborative work is nothing more than joint efforts to
develop a project, and web-based systems offer an
effective possibility among members of a team to
coordinate their tasks in order to reach a major goal.
Collaborative web applications are a powerful resource
and can help different teams to cooperatively address
process activities related to the software development life
cycle.
Verification and Validation [1] is one of the key issues
within software development process, especially when
dealing with complex software applications such as space
applications and nuclear plants monitoring. The validation
process depends heavily on the quality of test sets applied
to the product, which leads to the necessity of generating
proper test sequences. It would be interesting if such a
generation must rely entirely on a scientific basis in order
to avoid their (test sequences) inadequacy in revealing
errors. So, testing activities are essential, and depending
on the software’s complexity, it can involve many
scattered teams working together.
A test sequence can be defined as taking a software being
tested from a given state (or configuration when parallel
activities are considered) to another state or configuration
that is reachable. A technique to derive test sequences
from the specification in design phase is one approach to
generate them since the major advantage is their
availability in the very early phases of the software
development life cycle. Therefore, if software
specification is modeled, methods can be applied to the
model in order to generate test cases. For example, if the
technique to model a software specification were a Finite
State Machine (FSM), some methods that can generate

612-036 27

corinna
EuroIMSA

test sequences are: T, UIO, DS, W and Switch Cover [2],
[3], [4] and [5]. However, features usually present in
complex software, like parallel activities and
encapsulation, are hard to represent using FSMs. Hence,
higher-level techniques that support such features should
be investigated.
This paper presents a tool, WEB-PerformCharts, that
incorporates two main features: a web-based tool so that
test designers can generate and obtain test sequences
remotely via Internet, addressing distributed software
development situations; and, an alternative to FSM by
using Statecharts to generate test sequences.
This paper is organized as follows: Section 2 discusses an
introduction about collaborative systems and their
applications. Section 3 discusses the importance of testing
critical systems and also presents PerformCharts by
explaining how a model represented in Statecharts is
converted into a FSM from which test sequences are
generated. Section 4 presents the WEB-PerformCharts
tool. Section 5 presents a case study with results. Finally
Section 6 concludes the paper.

2. Collaborative Systems

The main idea of collaborative systems is helping people
involved in a common task supporting communication,
coordination and cooperation.
A large distribution of great corporations added to the fast
growth of internet has increased the need for cooperative
applications [6]. These applications have means to
promote any internet user and allows a large cost saving,
time saving, and increasing teamwork and efficiency,
since all manipulated data by one user can be immediately
perceived by all other users at remote locations [6].
Web-based applications have become a common practice
since they offer a low cost solution; therefore, in this
architecture the client can use any operational system and
it requires no other proprietary software. Also, another
advantage in a web-based architecture is the fact that,
nowadays, many people have easy internet access.
Whenever updates are necessary, this is conducted only in
the server where the tool is hosted without any necessity
for the users to reinstall any kind of software. So,
collaborative web-based systems (also known as E-
collaboration) is a reality adopted for many companies to
develop their applications.
There are several categories of collaborative tools such as
Group Document Handling, Real-time conferencing, Non
real-time conferencing, Electronic Meeting Systems
(EMS) and Electronic Workspace. WEB-PerformCharts
tool belongs to category of Electronic Workspace since its
primary idea is to provide a common space to teams to
coordinate and organize their work with documents and
files centralized in an on-line server [7].
Some features that are relevant for collaborative systems
are:
• E-mail notifications: to inform tasks, changes or new

activities;

• Project management: to manage the access level of
users and delegate tasks to members of a group;

• File and document sharing: all sort of documents,
including software requirements specifications and
documents related to the test process are available to
a group of people to access them.

File and document sharing is the most common feature in
such tools, and at the same time most needed
collaboration service [7].
Space research organizations like National Institute for
Space Research (INPE) demand high software quality, for
instance, embedded into satellite on-board computers.
Many a time, the teams involved in satellite missions are
not exactly in one place due to joint collaboration among
space agencies to develop space applications. In this
scenario, an on-line cooperative tool is important to aid
the software testing activities. An example of such a
scenario is shown in Figure 1.

Figure 1. Example of cooperative work

3. Testing Critical Systems

Occurrence of faults in many systems controlled by
software may cause inconvenience, but not serious
damages. However, there are certain categories of
systems where software faults can result in significant
economic losses, physical damages or threats to human
life. These systems, in general, are classified as critical
systems and space software falls into this category. Space
software systems demand high quality and high cost
technologies to execute complex tasks and testing such
systems is essential to guarantee their reliability.
The work described here uses a formal approach to
represent specifications in order to enable automated test
case generation. INPE has been developing data
collecting, remote sensing and scientific satellites since
1979. Satellites usually have complex subsystems with
embedded software that are reactive by nature responding
to events. An adequate method for modeling reactive
systems is using FSMs as they are a natural choice.

28

However, a complex software with several states
requiring explicit representation of parallel activities in
order to understand its behavior is hard to be represented
by an FSM. A technique that could overcome these
drawbacks are Statecharts.
Statecharts can be used to specify reactive systems [8].
They are formal ([9] and [10]), can be handled
computationally, and consists of the following elements:
states, events, conditions, actions, and transitions [8], [9],
[10] and [11]. When considering parallel components, one
must use the global state of the specified system known as
configuration in Statecharts. The definition of an initial
configuration is mandatory. However, it can be bypassed
through entry by history, in which the last visited state
must be “remembered” while returning to the component.
In several practical situations the state change can occur
continuously at any instant of time. Statecharts classify
events as external (explicitly stimulated) and internal
(automatically sensed and stimulated) [12]. Statecharts
already inlay in its formalism the following internal
events: true[condition], false[condition], entered[state],
exit[state]. Events can be guarded by using conditions.
One such condition, very much used in Statecharts, is
in(state s) which becomes true if state s is active.
Composed conditions involving operators and, not and or
can also be used. Action, another basic element of
Statecharts, is considered as an internal event and it is
stimulated automatically in other orthogonal components.
The general notation of a transition is:
event[condition]/action, meaning once the event is
enabled and the condition satisfied the transition is
executed. After the transition has occurred the reaction
continues by executing the action, which is another
reaction. Statecharts where first used to evaluate
performance of reactive systems by associating them to
Markov chains, which are in fact FSM [12] with the
exception that the events have to follow an exponential
distribution. Thus a tool PerformCharts was created.
It is also possible to associate probability to a transition in
situations where a same event takes a source state to more
than one destination state considered as a conflict
resulting in non-determinism. Therefore, the original
notation was changed to:
event[condition]{probability}/action in the PerformCharts
tool [13].
PerformCharts tool has been adapted to use Statecharts to
represent a reactive system with the objective of
generating test sequences by converting the representation
into a FSM.
A text-based interface PcML (PerformCharts Markup
Language) [14], based on XML (Extensible Markup
Language) [15], has been developed. PcML may be edited
through any text editor and it is parsed by a code in Perl
language that converts it into the main program of
PerformCharts. This code, in C++, is compiled and linked
with other classes to obtain the performance measures or
an FSM also specified in XML format. This FSM is the
basis to generate test sequences by associating with a test
case generating method. The method being used at the

moment is switch cover [5] implemented within yet
another tool CONDADO [3].

4. WEB-PerformCharts

As already mentioned, WEB-PerformCharts tool has been
developed in order to enable different teams working in
software testing by creating, storing and sharing projects
in a database through Internet access. It is a web
application idealized to aid software testers that work in
different places cooperating in a common project. The
objective of WEB-PerformCharts is to approach teams
combining their expertise and know-how in order to
benefit software’s quality.
In order to achieve this objective, PerformCharts tool has
been adapted to run remotely through a web-based
interface and to be completely functional hosted in a web
server. An on-line database has been made available in
order to allow testers to load and save testing data from
anywhere, instead of using only local files to store data.
All involved technologies such as HTML, PHP, MySQL
and Apache server software are free. Thus, the web-based
system can be entirely free of costs when considering
software packages. At the moment, PerformCharts can be
installed in servers based on Windows platform, but a
Linux version is under development.
When logged in, the user can create, edit or delete
projects with their PcML specifications associated. Users
can manipulate one project at a time and when a project is
selected to be used (from a list with all available projects)
it can be modified and run as many times as required,
which is an interesting feature if the software was
incorrectly modeled in Statecharts and requires changes in
its specification. These changes can be seen by anyone
who can access the same project. Projects created by any
user can be shared between users and the implementation
of workflow routines is under study acting like a
“production line” of software testing. Also,
communication between users can be done through the
integration with their e-mail and the idea of split users
into workgroups seems very useful and will be studied for
implementation.
In theory there is no limit for the number of users to
access WEB-PerformCharts; it just depends on the server
capacity to support on-line workload as well as on the
storage capacity. Since the number of users working can
be huge, they must be organized according to their
responsibilities (e.g. Administrator, User, Guest, Project
Manager, General Manager, etc.) and this requires a
secure and a robust management. The solution adopted
for WEB-PerformCharts is an access level for different
types of users. At the moment only two levels are set:
Administrator that can work in any project and can create
user accounts, and User that has authorization to work
only in projects created by her or him. Through the web-
based interface the test designer can manage her or his
projects creating a new one, deleting, or modifying an
existing project in order to obtain new test cases. All the

29

test cases are stored in a database in the server to be
accessed in the future by those who have the proper
authorization. WEB-PerformCharts uploads a PcML
specification to a web server using a web-based interface
implemented in HTML and PHP. The upload interface is
shown in Figure 2.

Figure 2. Web server upload interface.

The server hosts PHP scripts which parse PcML file and
extract all Statecharts data that is stored in a MySQL
database from which the necessary data structures (to hold
the encapsulation, states, events, conditions, parallel
components and transitions) are created as well as the
calls to appropriate methods to generate the FSM. When
performance evaluation is required, a Markov chain is the
result.
The output of the state-transition diagram is stored in the
database and can be extracted in XML format for any
other use. Steps to generate test sequences using WEB-
PerformCharts are shown in Figure 3. The sequence
diagram of WebPerformCharts is shown in Figure 4.
CONDADO tool accepts an FSM specified as a base of
facts. Therefore, the FSM in XML format has to be
converted into this base of facts. This conversion is
achieved by using a parser written in XSLT.
Also, Transition Tour method (T-method) has already
been implemented embedded in WEB-PerformCharts,
allowing the complete test sequence generation on the
web in a straight forward manner.

5. Results

In order to show the use of WEB-PerformCharts, a
protocol specification [16] developed for the
communication between a scientific experiment and the
On-Board Data Handling Computer (OBDH) of a
Brazilian scientific satellite has been chosen. The
Implementation Under Test (IUT) is the command

recognition component of the on-board software for an
astrophysical experiment [17]. The FSM generated from
WEB-PerformCharts can be converted by an integrated
XSLT parser into the base of facts required by
CONDADO which generates all input combinations
based on switch cover method or, in other words,
generates test cases for the system initially specified in
PcML. If T-method is chosen, instead of switch cover
from CONDADO, test sequences are generated directly in
the web-based tool and can be extracted in XML format
to be applied into the test execution tool.
Major advantage observed in this implementation is the
importing and exporting of XML data. This has provided
a huge benefit by opening doors to consider integrating
other test case generation methods in the future since
XML is a standard language and relatively easy to learn.

6. Conclusion

Sharing information in a collaborative work is, without
any doubt, a necessity. The widely dispersed and
decentralized mobile work is a very common trend and
these features can result in great time and cost savings
decreasing travel and infrastructure requirements for
huge, centralized and expensive buildings.
As the name suggests, WEB-PerformCharts offers a
multi-user web-based interface. The tool uses an on-line
database system to allow test designers to generate test
sequences from Statechart-based software specification.
WEB-PerformCharts has several advantages when
compared to a conventional local system. It can be
accessed in real time conditions from any place in the
world at anytime. Its use is not restricted to a single
computer and can be used from anywhere with a
computer or laptop, an internet connection and a web
browser. In addition, the tool is based on a high-level
specificaton technique, Statecharts.
It has been shown that depending on the complexity of the
reactive system, it is worth investing techniques that cater
explicit representation of hierarchy and parallel activities
in modeling software specifications for test sequence
generation. In this respect, Statecharts come into picture.
However, one must bear in mind that dealing with higher-
level techniques leads to more complexity in developing
an automated environment and hence more computational
effort. The paper did not discuss some aspects on test case
explosion as this might occur depending on the number of
states and the number of arcs of the generated FSM.
Some test sequence generating methods may really cause
this explosion. Therefore, a simple pruning of a selected
arc right in the Statecharts specification has been
implemented and this enables to generate a partial FSM.
On one hand, this has a drawback that a complete
machine cannot be tested. On the other hand, it enables
test case generation methods to deal with the machine.

30

Figure 3. WEB-PerformCharts architecture.

Figure 4. WEB-PerformCharts sequence diagram.

31

There are several other suggestions of minimizing the
FSM from Graph Theory as well as from Model
Verification and some of them will be considered for
implementation within the tool. Future plans also include
implementing other test sequence generation methods (for
example Transition Tour) and these will be considered as
cartridges to the system. With this, the user will be
enabled with an option to apply the desired method to the
resulting FSM. The main contribution of this paper is to
enable PerformCharts for remote access with the objective
of supporting test process in a distributed development
environment. Another major contribution is the use of
XML formatted documents which represent an important
step in the standardization of the test data and distributed
work. When other test case generation methods are
implemented, the tool may be used to compare results
from different methods. Also, in future, the WEB-
PerformCharts is intended to be integrated to tools that
perform automatic test execution allowing a further step
towards the automation of the test process activities.

Acknowledgement

The authors would like to acknowledge the financial grant
provided by CNPq/Edital Universal (Project N.
474031/2006-3)

References

[1] R.S. Pressman, Software engineering - a practitioner's
approach (5th edition, McGraw-Hill International
Editions, 2000).

[2] D. Lee, M. Yannakakis, Principles and Methods of
Testing Finite State Machines – A Survey. In:
Proceedings of the IEEE, 1996, 84(8).

[3] E. Martins, S.B. Sabião, A.M. Ambrósio, Condata: a
tool for automating specification-based test case
generation for communication systems”. 33rd Hawaii
International Conference on System Sciences, 2000.

[4] G. Myers, The art of software testing (John Wiley &
Sons, 1979).

[5] S. Pimont, J.C. Rault, An approach towards reliable
Software. Proceedings of the 4th International
Conference on Software Engineering, Munich, Germany,
1979, pp.220-230.

[6] G.Y. Tian, D. Taylor, Design and Implementation of a
Web-based Distributed Collaborative Design
Environment, IEEE Fifth International Conference on
Information Visualisation, London, UK, 2001, pp. 703-
707.

[7] G. Bafoutsou, G. Mentzas, A Comparative Analysis of
Web-based Collaborative Systems, Database and Expert
Systems Applications, Proceedings of the 12th
International Workshop on Database and Expert Systems
Applications, 2001, pp. 496-500.

[8] D. Harel, Statecharts: a visual formalism for complex
systems, Science of Computer Programming, Vol.8.,
1987, pp. 237-274.

[9] D. Harel, A. Pnueli, J. Schmidt, R. Sherman, On the
formal semantics of Statecharts, IEEE Symposium on
Logic in Computer Science, Ithaca, USA, 1987.

[10] D. Harel, M. Politi, Modeling Reactive Systems with
Statecharts: the Statemate Approach (McGraw-Hill,
USA, 1998).

[11] D. Harel, A. Naamad, The STATEMATE Semantics
of Statecharts, ACM Transactions on Software
Engineering, 5(4), 1996, pp. 293-333.

[12] N.L. Vijaykumar, S.V. Carvalho, V. Abdurahiman,
On proposing Statecharts to specify Performance Models,
International Transactions in Operational Research, 9(3),
2002, pp. 321-336.

[13] N.L. Vijaykumar, S.V. Carvalho, V. Abdurahiman,
Introducing probabilities in Statecharts to specify reactive
systems for Performance Analysis. Computers &
Operation Research, 33(8), 2006, pp. 2369-2386.

[14] A.S.M.S. Amaral, R.R. Veloso, N.L. Vijaykumar,
C.R.L. Francês, E. Oliveira, On proposing a Markup
Language for Statecharts to be used in Performance
Evaluation, International Journal of Computational
Intelligence, 1(3), 2004, pp. 260-265.

[15] W3C, Extensible Markup Language (XML), 2002.
http://www.w3.org/XML/Activity.

[16] National Institute for Space Research (INPE), EXP-
OBDH Communication Protocol Definition: a case study
for PLAVIS. São José dos Campos: INPE/QSEE Project,
1998, p. 9 (INPE Internal Publication/QSEE Project).

[17] V. Santiago, A.S.M. Amaral, N.L. Vijaykumar, M.F.
Mattiello-Francisco, E. Martins, O.C. Lopes, A Practical
Approach for Automated Test Case Generation using
Statecharts, Second International Workshop on Testing
and Quality Assurance for Component-Based Systems
(TQACBS 2006) in the IEEE International Computer
Software and Applications Conference (COMPSAC
2006), 17 – 21 de September/2006, Chicago, EUA– Vol.
II, pp. 183- 188.

32

http://www.w3.org/XML/Activity

	ABSTRACT
	KEY WORDS

