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ABSTRACT: This work shows very preliminary results achieved by the CPTEC Ocean Data 
Assimilation System - CODAS. This scheme is based on the Ensemble Transform Kalman Filter 
(LETKF) method. The first investigated area is the Brazil-Malvinas confluence. The analyses from 
the CODAS ensemble experiments using both 8 and 12 members exhibit all of the major oceanic 
features of the truth state. However, using twelve ensemble members, an excellent analysis, which 
nearly mirrors the shape of the truth, is achieved. 
 
RESUMO: Este trabalho mostra os primeiros resultados obtidos com o esquema de assimilação de 
dados oceânicos do CPTEC denominados CODAS. Este esquema baseia-se na metodologia do 
Ensemble Transform Kalman Filter (LETKF). A primeira área analisada foi a Região da 
Confluência Brasil-Malvinas. Os experimentos realizados com o CODAS, tanto com 8 quanto com 
12 membros do conjunto, mostraram as principais características da circulação e da 
termodinâmica desta região. O CODAS produziu análises que são muito parecidas com os campos 
que são considerados a verdade. 
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1 Introduction 
 

While data assimilation has been performed on ocean models for many years, the schemes 
used have usually not been as sophisticated as those used on their atmospheric counterparts. 
Among the reasons that ocean data assimilation has lagged behind that of the atmosphere are that 
observational data is much sparser in the ocean, the ocean is, in general, more stable than the 
atmosphere over similar time scales, and that weather prediction has a much more visible daily 
human impact. For these reasons, implementing an operational oceanic data assimilation scheme 
is still a big challenge for many operational weather and climate forecast centers around the world. 
This is the case at the Center for Weather Forecast and Climate Studies (CPTEC) where, up to 
now, the center does not have an oceanic data assimilation scheme. This is a work in progress 
which intends to show the very first results of the CPTEC Ocean Data Assimilation System 
(CODAS). 
 
2 Methodology 
 

Despite the problems described above, accurate forecasts can be made over reasonable time 
intervals and are very valuable. Improvements to forecasting skill can be made in a number of ways 
and serve to both improve the forecast on a particular day and to increase the length of usable 
forecasts. Data assimilation methods, such as the Local Ensemble Transform Kalman Filter 
(LETKF), attempt to improve forecasts by improving the accuracy of the current state estimate 



(which is the initial condition) (Hunt, 2007, Houtekamer, 1998). In a data assimilation scheme, an 
estimate of the current state is derived by combining current observations and a previous forecast, 
which is referred to as the background. This state estimate, hereafter called the “analysis”, is then 
used as the initial condition for the model, which, in turn, creates a new forecast. Data 
assimilation proceeds in this iterative manner, alternating between a forecast step, where the 
model predicts the future state of the system, and an analysis step, where observations taken at this 
future time are incorporated and the analysis is created. 

Both the background and the observations have errors and the analysis step consists of a 
statistical procedure that takes these errors into account in determining the analysis state. In the 
LETKF, developed at the University of Maryland, this synthesis of background and observations is 
accomplished using a maximum likelihood estimate (Hunt,2007). Since the estimate takes into 
account the observations and the background state in addition to the relative covariances of each 
state, approximations of the covariances must be derived. In most of the currently used data 
assimilation techniques, such as 3D-VAR and 4D-VAR, the background error covariance is 
assumed to be constant in time and is approximated using a climatological average. While this is a 
reasonable approximation, it does not account for the day-to-day variations in the background 
error covariance that naturally occurs. In contrast, the LETKF and other ensemble filters estimate 
the background covariance using the sample covariance of an ensemble of forecast states (Hunt, 
2007, Houtekamer, 1998, Whitaker, 2002). One of the significant advantages of the ensemble 
methods over variational schemes is that ensemble methods account for ”errors of the day” much 
more effectively by allowing the background covariance to change at each step (Kalnay, 2003, 
Hunt, 2007). 

In this work, the LETKF framework is applied to a global implementation of the Modular 
Ocean Model, version 4 (MOM4). Details of the model numerics and physics can be found in 
Griffies et al (2004). The ocean model used here has a horizontal resolution of approximately 1° x 
1°and 50 vertical levels, with 30 of them confined in the first 1000 meters. The ocean model was 
spun-up for 10 years using climatological fluxes of momentum, heat and water to generate the 
initial restart used. 

The LETKF code being used was written by Eric Kostelich of Arizona State University and 
was originally modified for the ocean by Ross Hoffman of AER Inc. (Hoffman, 2008). While 
originally written for an atmospheric model, the atmospheric assimilation variables of temperature, 
humidity, and zonal and meridional wind variables map one to one onto the oceanic variables of 
temperature, salinity, and zonal and meridional currents [2]. In addition, surface pressure in the 
atmosphere can be mapped to sea surface height.  To test the feasibility of the LETKF on MOM4, 
we began by running identical twin experiments where the truth is given by a model run. In our 
initial experiments, the observations are simulated by sampling the truth and adding random 
errors based on a prescribed error covariance. 
 
Preliminary Results 
 

In perfect model experiments, the global RMS error is greatly reduced by the data 
assimilation.  Here the RMS error is the difference between the given field and the “truth,” which 
is known because we are assuming a perfect model.  Model initialization is accomplished using 
model states from previous months.  Analyses were performed every day using observations that 



were simulated in random locations representing a specified percentage of the entire grid.  In 
experiments using 10% data coverage, the LETKF quickly reduces both the analysis and forecast 
errors below the specified observational errors, which are 0.5°C, 0.08psu, and 0.04m/s for zonal 
velocity and 0.02m/s for meridional velocity. This reduction below the observational errors is 
observed in a few days for a four member ensemble and in one day for a twelve member ensemble.  
Moreover, the errors remain below the observational errors for the duration of the simulation. At 
1% data coverage, the analysis error converges slower than at 10% coverage, but the analysis error 
still drops below the observational error in couple of days [need to check] using a twelve member 
ensemble. 

 
Figure 1- Meridional velocity at Brazil-Malvinas Confluence. Panels showing the Background state, 
Analysis and Truth from 8 members simulations. All simulations refer to a climatological January. 

 
In addition to the global improvement, local improvements can also be seen. The LETKF 

not only reduces the global error, but it allows the analysis to capture local shapes as well.  The 



Figures 1 and 2 show the analysis, background, and truth of meridional sea surface currents in the 
Brazil-Malvinas confluence. 
 

 
Figure 2- Meridional velocity at Brazil-Malvinas Confluence. Panels showing the Background state, 
Analysis and Truth from 12 members simulations. All simulations refer to a climatological 
January. 
 

In the first analysis step, the improvement from the LETKF is evident even with only eight 
ensemble members.  The truth shows a strong, narrow tongue of northward velocity around 40°S 
latitude, while the background shows only weak, more dispersed velocity in the same area.  After 
one LETKF step, the analysis exhibits a narrower area of strong velocity around 40°S that more 
closely resembles the truth.  There is also increased southward velocity right off the coast between 
30°S and 40°S which is in agreement with the truth. Moreover, after a few LETKF steps, the 
analysis very accurately represents the shape of the meridional velocity field in the Brazil-Malvinas 
confluence. Even using only four ensemble members, the analysis after seven steps shows all of the 



major features of the truth. Using twelve ensemble members, an excellent analysis, which nearly 
mirrors the shape of the truth, is achieved. Similar results are seen in all of the analysis fields. 

 
Final Remarks 
 
This work shows the very first CODAS results, which is an implementation of an oceanic data 
assimilation framework based on the LETKF at CPTEC. Preliminary results show that, even for 
relatively small ensembles, the LETKF reduces global errors and also accurately recreates the shape 
of the true ocean state in the Brazil-Malvinas confluence region. In the first stage of this initiative, 
the implementation is being conducted as a research topic. In the next step, however, CODAS will 
be implemented as an operational routine at CPTEC. 
 
Acknowledgments 
 
We would like to thank the Brazilian Ministry of Science and Technology (MCT) and National Brazilian 
Research Council (CNPq) for funding Mr. Matthew Hoffman’s visit to CPTEC. We’d also like to thank Dr. 
Eugenia Kalnay and Dr. James A. Carton for their guidance. 

 
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive Sampling with the Ensemble Transform 

Kalman Filter.  Part I: Theoretical Aspects. Monthly Weather Review, 129, 420-436. 
Griffies, S.M., M.J. Harrison, R.C. Pacnowsky and A. Rosati., 2004 A Technical Guide to MOM4. GFDL 

Ocean Group Technical Report No. 5. NOAA/Geophysical Fluid Dynamics Laboratory. 
Hoffman, R. N., R. M. Ponte, E. J. Kostelich, A. Blumberg, and I. Szunyogh, S. V. Vinogradov, J. M. 

Henderson  2008: A Simulation Study Using a Local Ensemble Transform Kalman Filter for Data 
Assimilation in New York Harbor. JAOTO, Accepted. 

Houtekamer, P.L. and H. L. Mitchell, 1998: Data assimilation using an Ensemble Kalman Filter 
Technique, 1998. Monthly Weather Review, 126, 796-811. 

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient Data Assimilation for Spatiotemporal Chaos: 
a Local Ensemble Transform Kalman Filter.  Physica D 

Kalnay, E.: Atmospheric Modelling, Data Assimilation and Predictability, Cambridge University Press, 
2003. 

Kalnay, E., H. Li, T. Miyoshi, S.C. Yang, and J. Ballabrera-Poy, 2007: 4D-Var or Ensemble Kalman Filter. 

Tellus 
Ott, E., B.R. Hunt, I. Szunyogh, A.V. Zimin, E.J. Kostelich, M. Kostelich, M. Corazza, T. Sauer, E. Kalnay, 

D.J. 
Patil, and J.A. Yorke, 2004: A Local Ensemble Kalman Filter for Atmospheric Data Assimilation. Tellus, 

Vol. 56A, 415-428. 
Patil, D. J., B.R. Hunt, E. Kalnay, J.A. Yorke, and E. Ott, 2001: Local Low Dimensionality of Atmospheric 

Dynamics. Physical Review Letters, 86(26), 5878-5881. 
Szunyogh, I., E.J. Kostelich, G. Gyarmati, D.J. Patil, B.R. Hunt,E. Kalnay, E. Ott and J.A. Yorke, 2005: 

Assessing a Local Ensemble Kalman Filter: Perfect Model Experiments with the NCEP Global 
Model. Tellus, Vol. 57A, 528-545. 

Whitaker, J. S. and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. 

Wea. Rev., 130, 1913-1924. 


