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BRAZIL
leandrobaroni@gmail.com
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BRAZIL
hkk@dem.inpe.br

Abstract: The Global Positioning System (GPS) is a satellite-based navigation system which allows the user to
determine position and time with high precision. However, phase measurements has an inherent difficulty, which
is the ambiguity determination in number of signal wavelengths. Once ambiguities are resolved, positioning can
reach sub-meter accuracies. The purpose of this work is to estimate the position coordinates of a GPS receiver
using double differenced phase positioning techniques and evaluate accuracy of the solution. The performance of
ambiguity resolution, with LSAST and LAMBDA methods, and an iterated least-squares estimator are evaluated
and positioning errors are shown with half meter level for static and less than meter level for kinematic positioning.
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1 Introduction
The Global Positioning System (GPS) is a satellite-
based navigation system which allows the user to de-
termine position and time with high precision. GPS
measurements are subject to several error sources. The
combined effects of these errors in the propagation
signal cause a degradation in precision of positioning.
However, using phase measurements, it is possible in
certain cases to increase positioning accuracy up to
100 times, if compared with positioning using code
pseudorange [8].

However, phase measurements has an inherent
difficulty, which is the ambiguity determination in
wavelength number of signal. While signal phase
changes from epoch to epoch can be measured with
high accuracy, cycles integer number along propaga-
tion path (integer ambiguity) remains unknown. Once
the ambiguities are solved, phase measurements can
be used as very precise pseudorange measurements.
Therefore, ambiguity resolution is a fundamental is-
sue for sub-meter positioning.

Sub-meter accuracy is required in many appli-
cations. For aircraft navigation, high accuracy is re-
quired for landing, especially for automatic landings.
GPS antennas and receivers can also be mounted on a
vehicle or spacecraft so that position and attitude in-
formation of the vehicle can be derived [3]. Precise
kinematic differential GPS will also be useful in nav-
igating agricultural vehicles, playing a role in the dis-

tribution of work, navigation of the harvesters, and the
guidance of tractors. Vehicle control flow can also be
improved [4]. Therefore, the objective of this work
is to compare two methods of ambiguity resolution,
LSAST and LAMBDA, in order to achieve sub-meter
accuracies in real time.

In LSAST method (Least Squares Ambiguity
Search Technique), ambiguity parameters are divided
into two groups: primary ambiguities (typically three
double difference ambiguities), and the secondary
ambiguities. Only the primary ambiguities are fully
searched. For each set of the primary ambiguities,
there is a unique set of secondary ambiguities. There-
fore, the search dimension is smaller and the compu-
tation time is significantly shorter than the full search
approach. LAMBDA method (Least-squares AMBi-
guity Decorrelation Adjustment) is a procedure to es-
timate ambiguities based on double difference mod-
els. This method uses a decorrelating transformation
followed by a integer search, reducing computational
time because it is not necessary a search through
whole space. The estimation is carried out in three
steps: float solution, integer solution, and correction
of position from resolved integer ambiguities.

In this work, positioning tests using double differ-
enced carrier phase measurements were carried out.
LSAST and LAMBDA methods were used in am-
biguity resolution process. Two tests were executed:
static and kinematic. Static test data were collected by
two dual frequency Trimble R8 GPS receivers, and the
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kinematic test data were collected by two Ashtech Z12
GPS receivers. The positioning errors in these tests are
shown to remain with magnitude less than half a me-
ter in static case, and with magnitude less than a meter
in kinematic case, using an iterated least-squares esti-
mator for both tests. The results were compared to a
known receiver position (in static test) or a reference
trajectory (in kinematic test). An off-line adjustment,
which leads to smaller errors, is also made for com-
parison.

2 Iterated least-squares with orthog-
onal transformations

In non-linear least-squares method, the cost function
is euclidean weighted norm by a matrix W, and with
a priori information x̂0 and P0:

J = ‖δy −Hδx‖2W + ‖δx̂0 − δx‖2P−1
0

= (δy −Hδx)T W(δy − δHx)

+ (δx̂0 − δx)T P−1
0 (δx̂0 − δx)

(1)

where H is observation design matrix and y is mea-
surements vector. The minimization of cost function
gives:

δx̂ = P̂(P−1
0 δx0 + HT Wδy)

P̂ = (P−1
0 + HT WH)−1

(2)

where x̂ = x̄ + δx̂ is the final estimate, and P̂ is the
covariance matrix.

The normal equations solution must invert a n×n
matrix, where n is the number of states in x̂. These
inversions are a potential numerical error source, es-
pecially when the matrix is almost singular. However,
literature contains several works which intend to in-
crease numerical performance of least-squares [7; 1].
In this work, a matrix triangularization technique is
used in matrix H. Eq. (1) can be rewritten as:

J = ‖W1/2(δy −Hδx)‖2 + ‖S1/2
0 (δx0 − δx)‖2

=

∥∥∥∥∥
[

S1/2
0 δx0

W1/2δy

]
−

[
S1/2

0

W1/2H

]
δx

∥∥∥∥∥
2

(3)
where S0 = P−1

0 .
As H is m× n, with m > n, be T an orthogonal

matrix m×m which triangularizes H:

TH =
[
H1

0

]
← n× n
←(m− n)× n

Ty =
[
y1

y2

]
← n× 1
←(m− n)× 1

(4)

where H1 is triangular superior (result from triangu-
larization), and m is the number of measurements.

As multiplication by orthogonal matrix does not
change the norm, Eq. (3) can be given by:

J =

∥∥∥∥∥T
[

S1/2
0 δx0

W1/2δy

]
−T

[
S1/2

0

W1/2H

]
δx

∥∥∥∥∥
2

=
∥∥∥∥[δy1

δy2

]
−
[
H1

0

]
δx
∥∥∥∥2

(5)

Therefore, cost function becomes:

J = ‖δy1 −H1x‖2 + ‖δy2‖2 (6)

and whose minimum is J = ‖δy2‖2. The solution
obtained by described method is the least-squares so-
lution. In Eq. (6), the solution δx̂ = H−1

1 δy1 does
not need explicit inverse of H1, because this matrix
is triangular superior. The solution δx̂ is obtained by
backwards substitution. In this work, the Householder
transformation is used. This technique triangularizes
matrix by succession of orthogonal transformations,
which are numerically efficient.

This method is iterative, once current estimative
x̂ can be used as a new reference:

x̂ = x̄ + δx̂, x̂→ x̂0

3 LSAST Method
LSAST method (Least Squares Ambiguity Search
Technique) was proposed in [2]. This method in-
volves a modified sequential least-squares technique,
in which ambiguity parameters are divided into two
groups: primary ambiguities (typically three double
difference ambiguities), and the secondary ambigui-
ties. Only the primary ambiguities are fully searched.
For each set of the primary ambiguities, there is a
unique set of secondary ambiguities. Therefore, the
search dimension is smaller and the computation time
is significantly shorter than the full search approach.
The choice of primary group measurements is based
on GDOP value.

3.1 Potential Solutions

Equations for the three double difference primary
group solution is:φ1 +N1

φ2 +N2

φ3 +N3

 =

C1
i C1

j C1
k

C2
i C2

j C2
k

C3
i C3

j C3
k

δxδy
δz

 (7)

where φ is phase double difference, N is ambiguity,
C represents the direction cosines to the satellites, δx,
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δy and δz are estimated baseline correction, subscripts
i, j and k designate x, y and z directions and super-
scripts designate the satellites.

Rewriting Eq. (7) in matrix form gives:

Mp = BpXp (8)

where M is the measurement vector, B is direction
cosines matrix, X is the solution vector and subscript
p designates primary group.

The solution for Xp is:

Xp = B−1
p Mp (9)

For all potential solutions corresponding to all
different choices ofM due to different combination of
ambiguity N , the value of B−1

p does not change. This
allows the potential solutions to arise from a combi-
nation of three basis vectors:

MT
1 = [1 0 0] , MT

2 = [0 1 0] , MT
3 = [0 0 1]

(10)
Using vectors from Eq. (10) in Eq. (9), the solu-

tions are:

X1 = B−1
p M1, X2 = B−1

p M2, X3 = B−1
p M3

(11)
Thus, the general measurement vector is:

MT
p =

[
α β γ

]
(12)

With solutions from Eq. (11), the solution for the
measurement given by Eq. (12) is:

Xp = αX1 + βX2 + γX3 (13)

Making α, β e γ values vary in loops, it is possi-
ble to generate a set of potential solutions covering an
extended volume of space.

3.2 Eliminating incorrect potential solutions
In order to eliminate unnecessary storing information,
the secondary group could be used to test the potential
solutions as they are formed in the loop. Those which
do not agree with the additional measurements could
be eliminated.

Firstly, the innovation vectors for the secondary
group are calculated:

Ys = Ms −BsXp (14)

where Y is the innovation vector and subscript s refers
to secondary group. The innovations corresponding to
primary group are zero.

∆X = (BcB
T
c )−1BT

s Ys = CYs (15)

where subscript c refers to complete set of double dif-
ferences.

The residuals are necessary in order to quantify
the quality of solutions. The residual vectorR is given
by:

R = Yc −BT
c ∆X (16)

The vector Yc is the innovations for the secondary
group Ys, plus three zeros in elements corresponding
to primary group innovations.

The estimated variance is used for measuring the
quality of potential solutions:

q =
RTR

m− 3
(17)

where m is the total number of double differences.
Only solutions with value of q greater than a selected
threshold are retained as potential solutions.

The greater the number of double differences the
higher the probability that only one solution will re-
main as solution which agrees with all measurement
data. In addition, even when several solutions repeat
as potential solutions, only the true solution will re-
main as the satellite geometry changes.

4 LAMBDA Method
LAMBDA method (Least-squares AMBiguity Decor-
relation Adjustment) is a procedure for integer ambi-
guity estimation in carrier phase measurements. After
applying a decorrelating transformation, a sequential
conditional adjustment is made upon the ambiguities.
As a result, integer least-squares estimates for the am-
biguities are obtained. This method was introduced in
[9]. [5, 6] show computational implementation as-
pects and ambiguity search space reducing.

These double difference observation equations
are appropriate models for short baselines. The lin-
earized equations are given by:

y = Aa+Bb+ ε (18)

where y is observed minus computed double differ-
ences, a is integer ambiguity double difference vector,
b is baseline increments vector, A and B are design
matrix for ambiguity and baseline and ε is an unmod-
eled errors vector.

The LAMBDA method takes as starting point
(18), using least-squares method as estimator for ob-
taining a and b. The minimization criterium for solv-
ing (18) is:

min
b,a
‖y −Aa−Bb‖2

Q−1
y
, with b ∈ Rp and a ∈ Zn

(19)
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where ‖ · ‖2
Q−1

y
= (·)TQ−1

y (·) and Q−1
y is covariance

matrix of double difference observables. The ambigu-
ity number n is equal to the number of satellites minus
one, multiplied by the used frequencies values, and the
number of baseline components b is three, in case of
a static receiver, or a multiple of three, in case of a
moving one.

One can notice that (19) is an integer least-squares
problem, because of the restriction a ∈ Zn. This prob-
lem can be solved in three steps. The first one, or
float solution, consists of solving (19) with a ∈ Rn

by means of a common least-squares method. As re-
sult, we have â e b̂ as real values. The second step, or
integer solution, consists of solving the minimization
problem:

min
a
‖â− a‖2

Q−1
â

, with a ∈ Zn (20)

followed by the third step, which is a correction of
baseline b̂ by difference between â and the result of
minimization (20).

In fact, the second problem consists of minimiz-
ing (20), resulting in an integer estimative of ambi-
guity vector a. In this step is utilized the LAMBDA
method [9]. The two main features of this method
are: (i) ambiguity decorrelation, carried through a
reparametrization (Z-transform); (ii) the actual inte-
ger ambiguity estimation.

With Z-transform, ambiguities and their covari-
ance matrix are transformed according to:

z = ZTa and Qẑ = ZTQâZ (21)

Minimization itself is made upon transformed
ambiguities. The minimization (20) consists of a
search over grid points inside the n-dimensional am-
biguity hyper-ellipsoid, defined by:

(ẑ − z)TQẑ(ẑ − z) ≤ χ2 (22)

The volume of the ellipsoid and the number of
candidates can be controlled by setting the value for
χ2. Prior to the integer estimation, the ambiguities are
decorrelated by application of the Z-transform: Min-
imization is then carried through transformed ambi-
guities. The output consists of ž together with their
respective norms. Using the Z-transform, they can be
transformed back to the original ambiguities:

ǎ = Z−T ž (23)

Estimative of b̌ and its covariance matrix Qb̌ are
obtained from:

b̌ = b̂−Qb̂âQ
−1
â (â− ǎ)

Qb̌ = Qb̂ −Qb̂âQ
−1
â Qâb̂

(24)

The least-squares estimates b̌ and ǎ are the solu-
tion to the constrained minimization (19).

5 Results

The first data set was collected by static receivers,
which remain stationary at precisely known positions,
to verify the quality of the proposed algorithm. The
data were collected by two Trimble R8 receivers,
and 1 Hz of sampling rate. Base receiver was placed
on a reference landmark with coordinates N 51◦ 04’
45.94126”, W 114◦ 07’ 58.29947” and 1116.617 m,
in ECEF coordinates of WGS-84 system, and user re-
ceiver was placed in another landmark, 2.944 m from
base. The solution was attained through a iterated
least-squares method with a priori information (sec-
tion 2), processing code and carrier phase measure-
ments. The standard deviation for code measurement
was set to 1.0 m, and phase, 0.005 m.

Baseline components were calculated epoch by
epoch, applying both LSAST and LAMBDA method-
ologies, using float ambiguity values from measure-
ment processing in each epoch by the least-squares
method. Graphics in Fig. 1 show user position er-
ror component behavior related to the base when
LSAST was applied. The error statistics for each
baseline component were -0.009±0.400 m on south,
-0.063±0.562 m on east, and 0.080±0.709 m on ver-
tical directions. Graphics in Fig. 2 show user po-
sition errors when using LAMBDA method, and
the error statistics were 0.228±0.555 m on south, -
0.015±0.387 m on east, and 0.294±1.154 m on ver-
tical directions.

The second data set was collected by an aircraft
during a flight test. These data were collected by a re-
ceiver installed on an aircraft and a fixed receiver as
base. The base position coordinate are given by S 23◦
13’ 42.9859”, W 45◦ 51’ 23.4615” and 686.227 m,
in ECEF coordinates of WGS-84 system, and sample
rate was 2 Hz. For analysis purposes, the results were
compared to a trajectory obtained post processing the
data, which were considered precise enough for this
purpose.

Graphics in Fig. 3 show positioning error in each
direction (south, east, and vertical), compared to the
reference trajectory, using LSAST method. The errors
for each component were -0.399±0.735 m on south,
-0.472±0.720 m on east, and -0.446±1.928 m on ver-
tical directions. With LAMBDA method, these errors
were -0.650±0.646 m on south, 0.124±0.321 m on
east, and -1.553±1.174 m on vertical directions.

Compared to static, the kinematic test showed
larger errors due to the aircraft motion and maneu-
vers, and distance to base (up to 25 km). These as-
pects may lead to ambiguities values within±4 cycles
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(a) (b) (c)

Figure 1: Error components using LSAST method for static data: (a) south; (b) east; (c) vertical.

(a) (b) (c)

Figure 2: Error components using LAMBDA method for static data: (a) south; (b) east; (c) vertical.

(∼0.8 m) from correct ones. It is expected, with fur-
ther improvements, these values remains within ±1-2
cycles.

In order to evaluate the maximum accuracy which
this method can reach in real time when all fea-
tures are implemented, an off-line adjustment of am-
biguities based on LAMBDA results was carried
out. Graphics in Fig. 5 show error with this adjust-
ment for each direction: -0.244±0.339 m for south, -
0.015±0.183 m for east, and -0.655±0.899 m for ver-
tical directions.

6 Conclusions and Future Works
The positioning techniques were carried out through
phase measurements processing, using the LSAST
and LAMBDA approach.

In static case, base receiver was placed on a
landmark, and user receiver was on another land-
mark at 2.944 m from base, both with known posi-
tions. Measurements were processed at each epoch,
through an iterated least-squares algorithm. Base-
line error were, in each direction, -0.009±0.400 m on
south, -0.063±0.562 m on east, and 0.080±0.709 m
on vertical directions for LSAST method and
0.228±0.555 m on south, -0.015±0.387 m on east,
and 0.294±1.154 m on vertical directions for
LAMBDA method.

In kinematic test, user receiver was mounted on
an aircraft during a test flight. The baseline error val-
ues were -0.399±0.735 m on south, -0.472±0.720 m
on east, and -0.446±1.928 m on vertical direc-
tions with LSAST and -0.650±0.646 m on south,
0.124±0.321 m on east, and -1.553±1.174 m on ver-
tical directions with LAMBDA method. These values
were obtained through a iterated least-squares algo-
rithm, in each epoch. An off-line ambiguity adjusted
result showed the level of accuracy which can be at-
tained, with the improvements to be implemented in
real time. In both tests, LAMBDA is about 100 times
faster than LSAST in computer processing.

This work is part of a investigation to develop a
differential GPS, using carrier phase measurements in
real time. Further developments consider: (i) include
better dynamics in the estimation process; (ii) a bet-
ter filter tunning for carrier phase measurements; (iii)
add other measurements combination, such as L2 fre-
quency and widelane combination; (iv) validate am-
biguities after resolving; (v) cycle slips detection and
correction.
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(a) (b) (c)
Figure 3: Error components using LSAST method for kinematic data: (a) south; (b) east; (c) vertical.

(a) (b) (c)
Figure 4: Error components using LAMBDA method for kinematic data: (a) south; (b) east; (c) vertical.

(a) (b) (c)
Figure 5: Error components for adjusted data: (a) south; (b) east; (c) vertical.
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