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Abstract The stability of the rotational motion of artificial satellites is analyzed con-
sidering perturbations due to the gravity gradient torque, using a canonical formulation,
and Andoyer’s variables to describe the rotational motion. The stability criteria employed
requires the reduction of the Hamiltonian to a normal form around the stable equilibrium
points. These points are determined through a numerical study of the Hamilton’s equations
of motion and linear study of their stability. Subsequently a canonical linear transformation
is used to diagonalize the matrix associated to the linear part of the system resulting in a nor-
malized quadratic Hamiltonian. A semi-analytic process of normalization based on Lie–Hori
algorithm is applied to obtain the Hamiltonian normalized up to the fourth order. Lyapunov
stability of the equilibrium point is performed using Kovalev and Savchenko’s theorem. This
semi-analytical approach was applied considering some data sets of hypothetical satellites,
and only a few cases of stable motion were observed. This work can directly be useful for
the satellite maintenance under the attitude stability requirements scenario.
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1 Introduction

The study of the attitude of artificial satellites is usually divided into control, determination
and propagation. The attitude propagation is associated with the prediction of the attitude at
each instant. Attitude control is the process to command a desired attitude while the attitude
determination is the ability to know the spacecraft attitude using information acquired by
instruments on board of the spacecraft. In controlling a spacecraft the analysis of the stability
is almost mandatory. The stability analysis of the rotational motion of spacecrafts taking into
account external torques is a very important issue in the attitude maintenance to ensure the
success of the spatial missions. Conditions for the existence of equilibrium points and general
form for stability conditions have been studied recently for the attitude motion of artificial
satellites subjected to external torques (Sarychev et al. 2007, 2008). See also Celletti and
Sidorenko (2008).

The gravity gradient torque derivation in the current analysis makes use of canonical
transformations (de Moraes 1989).

The rotational motion of artificial satellites is described through Eulerian angles and the
components of the rotation speed vector in the satellite’s principal system of inertia. In view
of the canonical treatment of the problem, canonical Andoyer variables, related with the
Eulerian angles are used (Kinoshita 1972; Zanardi 1986).

Andoyer’s canonical variables (Kinoshita 1972) are represented by (L1, L2, L3) and
(l1, l2, l3) as described in Fig. 1. The angular variables l1, l2, l3 are angles related to the
satellite system Oxyz (with axes parallel to the system of the spacecraft’s principal axes of
inertia) and the equatorial system OXYZ (with axes parallel to the axes of the Earth equa-
torial system). Andoyer’s metric variables L1, L2, L3 are defined as: L2 is the modulus of
the rotational angular momentum vector �L2, L1, and L3 are, respectively, the projection of
�L2 on the z-axis’ principal axis system of inertia (L1 = L2 cos J2, where J2 is the angle
between z-satellite axis and �L2) and on the Z -equatorial axis (L3 = L2 cos II 2, where II 2

is the angle between Z -equatorial axis and �L2).
The objective of the Hamiltonian, taken here to a fourth order normal form, is to verify

whether linearly stable equilibrium points remain stable under the influence of higher orders,

Fig. 1 Andoyer variables (L1, L2, L3, l1, l2, l3)
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Attitude stability of artificial satellites 339

essentially up to fourth order perturbations according to the criteria established by Kova-
lev–Savchenko theorem (Kovalev and Savchenko 1975). The use of normal forms to analyze
the stability of equilibrium points has been considered for several Hamiltonian dynamical
systems of Space Mechanics (Kovalev and Savchenko 1975; Chudnenko 1981; Elipe and
Ferrer 1985; Elipe and Lopez-Moratalla 2006; Mansilla 2006).

In this work simulations were done for two groups of hypothetical artificial satellites,
classified here as medium or small sized satellites according to their physical and geomet-
rical characteristics. The non-linear stability of the equilibrium points of these satellites is
analyzed using the three necessary conditions of the theorem of Kovalev and Savchenko
(Kovalev and Savchenko 1975).

2 Equations of motion

In this section, the Hamiltonian of the rotational motion of an artificial satellite in a Keplerian
translational motion and under the influence of the gravity torque is introduced. The Ando-
yer variables, as defined in the previous section, are used to characterize the motion of the
satellite around its center of mass and the Delaunay variables to describe the motion of the
center of mass of the satellite around the Earth (Kinoshita 1972). The Delaunay variables

(L ,G, H, l, g, h) are defined as: L = √
µa, G = L

√
1 − e

2
, H = G cos i , l is the mean

anomaly, g is the argument of the perigee, h is the longitude of the ascending node, µ is the
gravitational parameter of the earth, i is the orbital inclination, a and e are respectively the
orbital semi-major axis and eccentricity of the satellite.

In this paper it is assumed that the orbit is known and given by the Keplerian motion.
The expansion of the Hamiltonian associated with the gravity gradient torque is truncated in
the first order of the eccentricity. This simplification was adopted in order to simplify some
analytical and computational efforts.

The Hamiltonian of the considered problem, expressed in terms of the Andoyer and
Delaunay variables (Zanardi 1986) can be written as:

F(L1, L2, L3, l2, l3, L ,G, H, l, g, h)

= F0(L , L1, L2)+ F1(L1, L2, L3, l2, l3, L ,G, H, l, g, h) (1)

including the gravity gradient torque we have:

F0 = −µ
2 M3

2L2 + 1

2

((
1

C
− 1

2A
− 1

2B

)
L2

1 + 1

2

(
1

A
+ 1

B

)
L2

2

)

+ 1

4

(
1

B
− 1

A

)
(L2

2 − L2
1) cos 2l1 (2)

F1 =
(
µ4 M6

L6

) [
2C − A − B

2
h1(lm, Ln)+ A − B

4
h2(lm, Ln)

]
(3)

with: m = 2, 3 and n = 1, 2, 3; A, B and C being the satellite’s principal moments of inertia;
h1 and h2 are functions of the marked variables, where l2 and l3 appear in the arguments of
cosines. The complete analytical expression for F1 is given in “Appendix”.

The equations of motion associated to the Hamiltonian function F are given by:⎧⎨
⎩

dli
dt

= ∂F
∂Li
,

dLi
dt

= − ∂F
∂li

;
(i = 1, 2, 3). (4)
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The equations (4) are used to determine the equilibrium points of the rotational motion in the
Sect. 5 of this paper. In the current application the satellites will be considered nearly sym-
metrical, that is A ≈ B, and in this case the Hamiltonian do not depend upon the variable l1.

3 Normal form for the Hamiltonian

The normalization of the Hamiltonian system in the neighborhood of a linearly stable position
of equilibrium will be obtained up to fourth order terms so that we can apply the stability
criteria mentioned above. In order to do this, first it is necessary to diagonalize the quadratic
terms of the Hamiltonian.

Since the variable l1 is cyclic, the Hamiltonian is of the form F(L2, L3, l2, l3) and the
Eq. 4 can be written as:

ẇ = J Fw (5)

wherew is the state vector and Fw is the matrix of the derivatives with respect the considered
variables and given by:

w =

⎡
⎢⎢⎣

l2
L2

l3
L3

⎤
⎥⎥⎦ , Fw =

⎡
⎢⎢⎣

Fl2
FL2

Fl3
FL3

⎤
⎥⎥⎦ (6)

and

J =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ (7)

is a symplectic matrix.
Let us consider the Taylor expansion of the Hamiltonian F in the neighborhood of the

equilibrium, viz.:

F(lm, Ln) =
∞∑

k=2

Fk(lm, Ln) = F2(lm, Ln)+ F3(lm, Ln)+ F4(lm, Ln)+ · · · (8)

where n = 1, 2, 3, m = 2, 3, and Fk , k = 2, 3, 4, . . . , are terms of order k.
The Hessian matrix is given by:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂2 F
∂l2

2
= f11

∂2 F
∂l2∂L2

= f12
∂2 F
∂l2∂l3

= f13
∂2 F
∂l2∂L3

= f14

∂2 F
∂L2∂l2

= f21
∂2 F
∂L2

2
= f22

∂2 F
∂L2∂l3

= f23
∂2 F

∂L2∂L3
= f24

∂2 F
∂l3∂l2

= f31
∂2 F
∂l3∂L2

= f32
∂2 F
∂l2

3
= f33

∂2 F
∂l∂3 L3

= f34

∂2 F
∂L3∂l2

= f41
∂2 F

∂L3∂L2
= f42

∂2 F
∂L3∂l3

= f43
∂2 F
∂L2

3
= f44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where the second derivatives are evaluated at the equilibrium point around which the expan-
sion is performed.

If the eigenvalues of the matrix JP are simple and ordered, then JP can be diagonal-
ized. This process is straightforward but laborious so it was calculated with the software
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MAPLE. The automatic normalization of the eigenvectors given by MAPLE does not ensure
a canonical transformation (Stuchi 2002), hence corrections need to be applied.

Considering the linear canonical change:

w = Dz, (10)

with

z = (q1, p1, q2, p2) (11)

and

D = �N (12)

The matrix � has as its four columns the components of the eigenvectors (obtained with
MAPLE) associated to the eigenvalues of the matrix JP . D is a symplectic matrix obtained
with an auxiliary matrix R given by (Stuchi 2002):

R = �T J� =

⎛
⎜⎜⎝

0 r1 0 0
−r1 0 0 0

0 0 0 r2

0 0 −r2 0

⎞
⎟⎟⎠ (13)

and N is given by

N =

⎛
⎜⎜⎝

1/
√

r1 0 0 0
0 1/

√
r1 0 0

0 0 1/
√

r2 0
0 0 0 1/

√
r2

⎞
⎟⎟⎠ . (14)

Therefore, the transformation is now canonical since:

DT JD = J (15)

Up to the second order the system of equations in terms of the variable z = (q1, p1, q2, p2)

is given by:

ż = {H2, z} (16)

where H2 in the normal form expressed as:

H2 (qi , pi ) =
2∑

i=1

υi
(
q2

i + p2
i

)
, (17)

with υi = λi
2 , where λi (i = 1, 2) is the i th purely imaginary eigenvalue of JP .

In other words, the second order Hamiltonian (17) is in the canonical form around a
center–center equilibrium point.

According to Stuchi (Stuchi 2002) it is convenient to introduce a complex change of
coordinates, (

qi

pi

)
= 1√

2

(
1

√−1√−1 1

) (
xi

yi

)
, i = 1, 2 (18)

with the inverse (
xi

yi

)
= 1√

2

(
1 −√−1

−√−1 1

) (
qi

pi

)
, i = 1, 2 (19)
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to facilitate the normalization procedure.
Thus, the quadratic part of the Hamiltonian in complex normal form is represented by

HC2 and given by:

HC2 = H2(xi , yi ) =
2∑

i=1

λi xi yi . (20)

as a result of the transformation D, followed by the complexification.
With the Hamiltonian written in terms of the complex variables and the quadratic term

HC2 already in normal form by applying the Lie–Hori method (Hori 1966) to take the higher
order terms H3, H4, . . . , Hn to normal form up to the required order. A normalization up to
fourth order is sufficient (Kovalev and Savchenko 1975). An expansion up to fourth order can
be done using the software MAPLE. If higher order is desired then an automatic procedure
is recommended for the normalization using a code constructed specially for this purpose
(Stuchi 2002; Machuy 2001).

4 Hori–Lie series method

The normal form is obtained from the expansion of the Hamiltonian in terms of the Lie series
given by (Hori 1966; Ferraz-Mello 2007):

Hnew = H +
{

H,G
}

+ 1

2!
{{

H,G
}
,G
}

+ 1

3!
{{{

H,G
}
,G
}
,G
}

+ · · · (21)

where G = G(x, y) is the generating function, H = H(x, y) is the original Hamiltonian

and
{

H,G
}

= ∂H
∂x

∂G
∂y − ∂H

∂y
∂G
∂x is the usual Poisson bracket. We recall that the Poisson

bracket of two homogeneous polynomials of degrees r and s, respectively, is a homogeneous
polynomial of degree r + s − 2 and this fact is very useful in our calculations.

The Hamiltonian Hnew is the result of the application of a near identity canonical transfor-

mation T
G

given by the generating function G(x, y) in H(x, y) through (x, y) = T
G
(q, p)

so that:

Hnew(x, y) = H(T −1

G
(x, y))

Hnew = Hnew
2 + Hnew

3 + Hnew
4 + · · · (22)

Hnew = λ1�1 + λ2�2 +
∑

m1+m2>2

�m1
1 �m2

2

where �k = x̃k ỹk .
The new Hamiltonian, ordered by degree up to fourth order, has the following form (Stuchi

2002; Ferraz-Mello 2007):

Hnew
2 = H2, (23)

Hnew
3 = H3 +

{
H2,G3

}
, (24)

Hnew
4 = H4 +

{
H3,G3

}
+ 1

2!
{{

H2,G3

}
,G3

}
+
{

H2,G4

}
(25)
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Since Hnew
2 has already been put in normal form through the diagonalization procedure.

Following steps eliminate all monomials of Hnew
3 and some of Hnew

4 :

I: As mentioned in Eq. 22, the dependency of the normal form Hamiltonian is usually
expressed in powers of �k = x̃k ỹk, the action variables, is given by:

Hnew = λ1�1 + λ2�2 +
∑

m1+m2>2

�m1
1 �m2

2 , (26)

so that we can easily see that:

Hnew
3 = 0. (27)

Therefore, it is necessary to find G3 so that Hnew
3 is zero. The third degree generating

function G3 is determined from the third order homological equation:{
H2,G3

}
= −H3, (28)

∑ ∂H2

∂x

∂G3

∂y
− ∂H2

∂y

∂G3

∂x
= −

∑
h jx , jy x jx y jy

∑
λy jy g jx , jy x jx y jy−1 − λx jx g jx , jy x jx −1 y jy = −

∑
h jx , jy x jx y jy (29)∑

λ( jy − jx )g jx , jy x jx y jy−1 = −
∑

h jx , jy x jx y jy

where

g jx , jy = −h jx jy∑
λ( jy − jx )

(30)

with the non resonance condition
∑
λ( jy − jx ) �= 0, which is of course satisfied by the

monomials of order three.

II: A similar process is repeated for Hnew
4 and G4 computing the Poisson brackets of the

Eq. 25. The terms that remain in Hnew
4 (x̃k, ỹk), (x̃k, ỹk) being the normal complex variables,

are denominated resonant monomials (Machuy 2001). Equation 25 is deduced in the follow-
ing form: {

G4,H2

}
+ Hnew

4 = H4 +
{

H3,G3

}
+ 1

2

{{
H2,G3

}
,G3

}
{

G4,H2

}
+ Hnew

4 = F4

(31)

The last equation is the homological equation of fourth order. The resonant terms, i.e., the
ones which cannot be eliminated, are grouped as

R4 = F4 − Hnew
4 (32)

so that the terms of fourth order in the generating function are:

G jx jy = r jx jy∑
λ( jx − jy)

(33)

with
∑
λ( jy − jx ) �= 0, otherwise they constitute the fourth order terms of the normal form.
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III: For higher orders (>4) the procedure is the same but the construction of a specialized
code is recommended for the normalization as already mentioned.

5 Computational algorithm for normal form of the Hamiltonian of the rotational
motion

A semi-numeric algorithm to compute the normal form of a Hamiltonian system is presented
in four steps. This procedure, developed with the MAPLE software, will be applied to the
Hamiltonian associated with the rotational motion of an artificial satellite under the influence
of the gravity gradient torque, given by Eq. 1.

Step I
The first step is the computation of the equilibrium points of the given dynamical system

taking as parameters the initial conditions for the rotational and translational motion and the
geometrical and physical characteristics of the satellite in study. These equilibrium points
are numerically obtained annulling the gradient of the Hamiltonian F in the right side of
the Eq. 4. In order to calculate the equilibrium points from Eq. 4, a procedure was developed
using the software MATHEMATICA for each satellite. This procedure involves the deriva-
tions of Eq. 4, the substitution of the numerical values of the satellite’s parameters and finally
the numerical resolution of the resulting algebraic system of equations. Several equilibrium
points are obtained for each case under consideration. However, we note that it is not possible
to guarantee that all equilibrium points were found.

Step II
For each case and for each equilibrium point the Hamiltonian is expanded in the neigh-

borhood of the equilibrium point and the Hessian is evaluated through Eq. 9.
Subsequently the Hessian is multiplied by the simplectic matrix J to get the matrix JP to

be diagonalized. The eigenvalues and eigenvectors of the matrix JP are found to construct
the matrix � that diagonalizes JP with the default MAPLE normalization. The simplectic
matrix D, given by Eq. 12, is then obtained.

The resulting Hamiltonian is:

H2 = λ1

2

(
q2

1 + p2
1

)+ λ2

2

(
q2

2 + p2
2

)
(34)

Introducing complex variables x , px , y, and py :(
q1

p1

)
= 1√

2

(
1

√−1√−1 1

) (
x
px

)
,

(
q2

p2

)
= 1√

2

(
1

√−1√−1 1

) (
y
py

)
(35)

the quadratic part of the Hamiltonian is expressed in complex variables as:

Hnew
2 = hxpy xpy + h px py px py + hxy x y + h px y px y

+ hy y2 + h px p2
x + hx x2 + h py p2

y + λk ypy + λk xpx (36)

Since the coefficients hxy , hx , hy , h px py , hxpy
, h px , h py , h pxy are null within the required

precision we get

Hnew
2 = iλ1(x px )+ i λ2(y py). (37)
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Step III
Extending the complexification procedure to the terms of higher orders, we get H3, and the

generating function G3 necessary to make Hnew
3 = 0. The third order Hamiltonian H3 has 20

monomials and consequently G3 has same number of monomials. These 20 coefficients are

determined from the third order homological Eq. 28 and the generating function G3 assumes
the form:

G3 = 1

12

⎧⎨
⎩120 + √

2

×
⎡
⎣ x3 + (12 + 3i)x2 px − (3 − 12i)x p2

x − i p3
x + y py (12 + 12i) (x − px )

ω1

+ (3 + 3i)

⎡
⎣−y2 px + x p2

y

ω1 − 2ω2
+

4
(

y − p2
y

) (
x px + y p2

y

)
ω2

+
(
y p2

x − x2 py
)

ω2 − 2ω1

+
(
x2 y − py p2

x

)
ω2 + 2ω1

+
(

x y2 − p2
y px

)
ω2 + 2ω1

⎤
⎦
⎤
⎦
⎫⎬
⎭ (38)

where ω1 and ω2 are the linear frequencies, so that λ1 = iω1 and λ2 = iω2.
The same procedure described in step II is used for the fourth order terms leading to

H4 in normal form and the respective generating function G4. The Hamiltonian H4 has 35
monomials and some of these monomials cannot be eliminated and can be expressed in terms
of the variables �1 and �2.

Step IV
The last step consists of expressing the Hamiltonian in terms of the real normal variables

p̃i e q̃i , through the inverse transformation (18), with Hnew
2 and Hnew

4 given by:

Hnew
2 = υ1

(
q̃2

1 + p̃2
1

)+ υ2
(
q̃2

2 + p̃2
2

)
(39)

Hnew
4 = δ11

(
q̃4

1 + p̃4
1 + 2q̃2

1 p̃2
1

)+ δ12
(
q̃2

1 q̃2
2 + q̃2

1 p̃2
2 + p̃2

1 q̃2
2 + p̃2

1 p̃2
2

)
+ δ22

(
q̃4

2 + p̃4
2 + 2q̃2

2 p̃2
2

)
(40)

where υi = λi
2 , i = 1, 2, δi j are combinations of the eigenvalues (λ1, λ2), and numerically

computed coefficients from Eqs. 24 and 25.
Normal form for the Hamiltonian corresponding to second and fourth orders are given

respectively by the Eqs. 39 and 40, is then used in the next section to apply the Kovalev and
Savchenko theorem (Kovalev and Savchenko 1975) to analyze the stability of the rotational
motion of artificial satellites under the influence of the gravity gradient torque.

6 Stability analysis

Section 7 deals with the analysis of stability of the rotational motion based on Kovalev and
Savchenko theorem. Therefore, a brief synopsis of the theorem is presented below.
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Let the Hamiltonian H̄ be an analytic function of coordinates and impulses at the point P̄
corresponding to a steady motion, and let the Hamiltonian H̄o of the reduced system (normal
form) satisfy the following conditions at this point:

1: The eigenvalues of the linear reduced system are pure-imaginary and are ±iα1 and ±iα2;
2: The condition k1α

o
1 + k2α

o
2 �= 0 holds for all integers k1 and k2 satisfying the inequality

|k1| + |k3| ≤ 4;
3: Do = −(βo

11α
o2
2 −2βo

12α
o
1α

o
2 +βo

22α
o2
1 ) �= 0, where βo

νµ are the coefficients of the fourth

form of the Hamiltonian H̄o, written in the following manner:

H̄o =
2∑
ν=1

αo
ν

2
Rν +

2∑
ν,µ=1

βo
νµ

4
RνRµ + O5, Rν = ξ2

ν + η2
ν (41)

where O5 is a power series with minimum fifth order terms. Then the steady motion is
Lyapunov stable.

This theorem will be applied using the normal form of the Hamiltonian

H̄o = Hnew
2 + Hnew

4 (42)

where, Hnew
2 and Hnew

4 are given respectively by Eqs. 39 and 40.

7 Numerical simulations

Two types of satellites have been considered: M (medium) and S (small) types, whose orbital
characteristics are similar to the American satellite PEGASUS (Crenshaw and Fitzpatrick
1968) and to the Brazilian data collecting satellites SCD1 and SCD2 (Kuga et al. 1999):

(a) Type M:

m (mass): 11,550 kg
a (orbital semi-major axis): 6959.64 km
e (orbital eccentricity): 0.0167
i (orbital inclination): 31.70◦

(b) Type S:

m (mass): 100 kg
a (orbital semi-major axis): 7133.67 km
e (orbital eccentricity): 0.00178
i (orbital inclination): 24.99◦

Several sets of parameters (combinations of values for the moments of inertia A, B, and
C) were considered: one combination for the satellites of type M and six combinations for
the satellites of type S.

For the simulations performed with the M type satellites, three equilibrium points were
found (Table 1) and just one is found to be Lyapunov stable and it is described in Table 2.
In this table L2 is the modulus of the rotational angular momentum; J2 is the angle formed
by �L2 and he component of �L2in the Z axis of the satellite; W is the rotational speed of the
satellite and T is the period of the rotation of the satellite.

For the simulations performed with the S type satellites 14 equilibrium points (Tables 3,
4, 5, 6, 7, 8), were found with only one stable solutions. The stable solutions found are given
in Table 9. Table 10 gives a quantitative summary of the simulations performed.
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Table 1 Satellite M type: A = B = 3, 9499 × 10−1 kg km2, C = 1, 0307 × 10−1 kg km2

Equilibrium points Stable Unstable Unstable

L1 (kg km2/s) −5.16995 × 10−2 7.52494 × 10−7 2.22282 × 10−5

L2 (kg km2/s) 7.51908 × 10−4 1.09457 × 10−6 5.88142 × 10−5

L3 (kg km2/s) 5.40662 × 10−4 −8.84834 × 10−7 1.91982 × 10−4

l2 (
◦) 45.01 −0.136 11.79

l3 (
◦) −31.74 28.25 271.83

Table 2 Lyapunov stable solution for M type satellites: A = B > C

A/B A/C A (kg km2) B (kg km2) C (kg km2)

1 3.832249 3.9499 × 10−1 3.9499 × 10−1 1.0307 × 10−1

L2 (kg km2/s) J2(
◦) W (rpm) T (s) Stability

7.519081 × 10−4 −39.4 0.07003316 86.128608 Stable

Table 3 Satellite S type: A = B = 1.067 × 10−5 kg km2, C = 1.3 × 10−5 kg km2

Equilibrium points Unstable Unstable Unstable

L1 (kg km2/s) −1.08994 × 10−5 6.4457 × 10−6 −2.25111 × 10−6

L2 (kg km2/s) 9.82443 × 10−5 4.7773 × 10−5 1.64074 × 10−5

L3 (kg km2/s) −8.32162 × 10−5 1.43643 × 10−5 −4.90488 × 10−6

l2 (
◦) 1.055 −0.269 0.772

l3 (
◦) 3671 4384.4 4204.9

Table 4 Satellite S type:
A = 1.067 × 10−5 kg km2,
B = 9.855 × 10−6 kg km2,

C = 1.3 × 10−5 kg km2

Equilibrium points Stable

L1 (kg km2/s) 3.82102 × 10−6

L2 (kg km2/s) 4.45568 × 10−6

L3 (kg km2/s) 4.25629 × 10−6

l2 (
◦) −49.44

l3 (
◦) 209.6

8 Conclusions

In this work the Lyapunov stability of rotational motion of artificial satellites under the effects
of the gradient torque is analyzed for nearly symmetrical satellites in near circular orbits. The
canonical Andoyer variables are used to describe the rotational motion and they are shown
to be appropriate for the application of the theorem of Kovalev and Savchenko. To apply this
theorem, we first search for each satellite the equilibrium points numerically, their eigen-
values and select the stables ones. Secondly, the Hamiltonian F is expanded in Taylor series
around each linear stable equilibrium. Subsequently, we apply a linear canonical transfor-
mation of variables followed by a complexification of these variables. Finally, the Lie–Hori

123



348 R. V. de Moraes et al.

Table 5 Satellite S type: A = B = 1.233 × 10−5 kg km2, C = 1.450 × 10−5 kg km2

Equilibrium points Unstable Unstable Unstable

L1 (kg km2/s) 2.11108 × 10−4 −3.97028 × 10−5 6.47819 × 10−6

L2 (kg km2/s) 2.13833 × 10−4 1.40829 × 10−4 4.04328 × 10−5

L3 (kg km2/s) 2.10534 × 10−4 −1.07817 × 10−4 9.07626 × 10−6

l2 (
◦) −0.958 0.301 0.108

l3(
◦) −2234.4 2260.4 2253.4

Table 6 Satellite S type: A = 1.233 × 10−5 kg km2, B = 1.206 × 10−5 kg km2, C = 1.05 × 10−5 kg km2

Equilibrium points Unstable Unstable Unstable

L1 (kg km2/s) 7.14211 × 10−7 8.14211 × 10−7 −6.69303 × 10−7

L2 (kg km2/s) 5.08332 × 10−6 5.08332 × 10−6 9.78378 × 10−7

L3 (kg km2/s) 1.14306 × 10−6 1.14306 × 10−6 7.15488 × 10−7

l2 (
◦) −1.464 −1.464 32.87

l3(
◦) −264.6 −264.6 9.276

Table 7 Satellite S type:
A = 1.233 × 10−5 kg km2,

B = 1.204 × 10−5 kg km2,

C = 1.05 × 10−5 kg km2

Equilibrium points Unstable Unstable

L1 (kg km2/s) 3.1441 × 10−7 2.709 × 10−7

L2 (kg km2/s) 1.7382 × 10−6 5.16 × 10−7

L3 (kg km2/s) −6.587 × 10−7 3.7601 × 10−7

l2 (
◦) 22.15 36.33

l3 (
◦) 1.746 244.4

Table 8 Satellite S type:
A = B = 1.5 × 10−6 kg km2,
C = 1.24 × 10−6 kg km2

Equilibrium points Unstable Unstable

L1 (kg km2/s) 2.28744 × 10−6 2.77579 × 10−7

L2 (kg km2/s) 2.35365 × 10−6 6.35354 × 10−7

L3 (kg km2/s) 2.29794 × 10−6 −4.23853 × 10−7

l2 (
◦) 187.3 −86.97

l3 (
◦) 10.26 −13.71

algorithm is applied to obtain a normal form of order four and then the Lyapunov stability is
examined.

Simulations are performed for two groups of artificial satellites, classified as medium
and small satellites in agreement with their physical characteristics. It is considered that the
satellites are in the perigee of their orbits. Equilibrium points are obtained for several initial
conditions for each group of satellites. A normal form for the Hamiltonian is determined for
each point and the three necessary conditions for Lyapunov stable motion are analyzed.

A restricted number of stable motions are observed in the simulations. This can be justi-
fied by the presence of several periodic terms considered in the Hamiltonian of the gravity
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Table 9 Stable solutions for S type satellites: B ≈ A < C

A/B A/C A (kg km2) B (kg km2) C (kg km2)

1.08299 0.820769 10.67 × 10−6 9.855 × 10−6 13 × 10−6

L2 (kg km2/s) J2(
◦) W (rpm) T (s) Stability

4.455682 × 10−6 49.14 3.290348 1.909581 Stable

Table 10 Quantitative summary of the simulations realized for each group of satellites associated to medium
type satellite (M) and small type satellites (S)

Type of the
satellite

Number of
data Sets

Number of
equilibrium points
generated by the
simulations

Number of
stable
motions

Number of unstable motions

M 1 3 1 2

Failure in
the 1st
condition
of the
theorem

Failure in
the 3rd
condition
of the
theorem

2 0

S 6 14 1 13

Failure in
the 1st
condition
of the
theorem

Failure in
the 3rd
condition
of the
theorem

11 2

gradient torque or by the fact that the stable points found would be associated with the equilib-
rium points that are excluded due to singularities of the Andoyer variables. In fact, the small
satellites possess orbital and physical characteristics similar to the Brazilian data collecting
satellites that are stabilized by rotation corresponding to an inclination (Kuga et al. 1999;
Orlando et al. 1997) angle J2 = 0. Also, the considered medium type satellites have orbital
and physics characteristics similar to the American satellite PEGASUS, which possesses a
rotational tumbling motion (Crenshaw and Fitzpatrick 1968).

This work contributes for some mission’s analysis of artificial satellites, pointing regions
where the rotational motion is stable. This could be used to minimize attitude maneuvers to
maintain a required attitude and thus leading to less fuel consumption, if the control uses a
chemical propulsive system.

Acknowledgments The authors wish to express their appreciation for the support provided by CAPES,
CNPq (under the contracts No. 308111/2006-0, 304841/2002-1, and 305147/2005-6).

Appendix

Disregarding the influence of the non-uniform mass distribution of the Earth, the potential of
the translational-rotational motion of an artificial satellite under the influence of the gravity
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torque, truncated in the second order and degree of the associated Legendre polynomials,
can be given by (Zanardi 1983; Kinoshita 1972):

U = −µM

r
+ µM

r3

[
2C − A − B

2M
P2(sin β)+ A − B

4M
P2

2 (sin β) cos 2 λ

]
(A.1)

where r is the distance of the center of mass of the satellite from the Earth’s center, A, B,
and C are the principal moment of the inertia of satellite, M is the mass of the satellite, β
and λ are the latitude and the longitude of the mass center of the Earth referred to the system
of principal axis of inertia of the satellite.

The development of the Legendre polynomial P2(sin β) and P2
2 (sin β), and of cos 2λ in

terms of the Andoyer and Delaunay variables (except for the mean anomaly) were presented
by Hori (1971) and Kinoshita (1972). Cayley tables were used by Zanardi (1983) to express
the true anomaly in terms of the mean anomaly.

The kinetic energy of the motion is given by translational kinetic energy (Tt) and rotational
kinetic energy (Tr) (Hori 1971):

T = Tt + Tr (A.2)

with

Tt = 1

2M
( �p)2

Tr = 1

2

(
Aw2

x + B w2
y + C w2

z

)
(A.3)

where �p is the moment associated to the position vector �r , wx , wy , wz are the components
of the rotational angular velocity in the satellite’s principal moment of inertia system. The
components wx , wy , wz are expressed in terms of the Euler angles φ, θ, ψ (which specify
the relation between the satellite’s principal moment of inertia system and the equatorial sys-
tem) and their conjugate momenta pφ, pθ , pψ . It is possible to prove that the transformation
(φ, θ, ψ, pφ, pθ , pψ) → (l1, l2, l3, L1, L2, L3) is canonical (Zanardi 1983; Hori 1971), with
the momentum variables defined by:

L1 = pψ = L2 cos J2 (A.4)

L2 =
(

p2
θ + p2

ψ +
(

pφ − pψ cos θ

sin θ

)2
)1/2

(A.5)

L3 = pφ = L2 cos I I2 (A.6)

it means that the L2 is the modulus of the rotational angular moment �L2, L1 is projection of
�L2 on the z-axis’ principal axis system of inertia and L3 is projection of �L2 on the Z -equato-
rial axis, and the angular variables l1, l2, l3 are angles, shown in the Fig. 1, which are related
to the satellite system Oxyz (with axes parallel to the system of the spacecraft’s principal
axes of inertia) and the equatorial system OXYZ (with axes parallel to the axes of the Earth
equatorial system).

Then the rotational kinetic energy can be expressed by:

Tr = 1

2

(
1

C
− 1

2A
− 1

2B

)
L2

1 + 1

4

(
1

A
+ 1

B

)
L2

2

+ 1

4

(
1

B
− 1

A

) (
L2

2 − L2
1

)
cos 2l1 (A.7)
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It was considered also that through a canonical transformation of the variables of the
orbital motion (�r , �p), where we get (Thiry 1970):

− µM

r
+ ( �p)2

2M
= −µ

2 M3

2L2 (A.8)

The Hamiltonian of the translational–rotational motion can be taken the form:

F = F0 + F1, (A.9)

where F0 is the non disturbed Hamiltonian given by

F0 = −µ
2 M3

2L2 + 1

2

((
1

C
− 1

2A
− 1

2B

)
L2

1 + 1

2

(
1

A
+ 1

B

)
L2

2

)

+ 1

4

(
1

B
− 1

A

) (
L2

2 − L2
1

)
cos 2l1 (A.10)

and F1 is the disturbance Hamiltonian due to the gravity gradient torque given by:

F1 = µ4 M7

L6

{
2C − A − B

2M

{
{1 + 3e cos l}

[
P2

(
L1

L2

) [
−1

2
+ 3

8

(
1 + θ2 + θ2

2 − 3θ2θ2
2

)

−3

8
sin 2i sin 2II2 cos(h − l3)− 3

8
sin2 i sin2 II2 cos(2h − 2l3)

]

− 3

16
(1 − 3θ2) sin 2 II2 sin 2J2 cos l2 + 3

16
(1 − 3θ2) sin2 II2 sin2 J2 cos 2l2

+
∑
ε

3

16
sin 2i(1 − εθ2)(1 + 2εθ2) sin 2J2 cos(h − l3 − εl2)

+
∑
ε

ε
3

16
sin2 i sin II2(1 − εθ2) sin 2J2 cos(2h − 2l3 + εl2)

−
∑
ε

ε
3

16
sin 2i sin II2(1 − εθ2) sin2 J2 cos(h − l3 + 2εl2)

−
∑
ε

3

32
sin2 i(1 − εθ2)

2 sin2 J2 cos(2h − 2l3 + 2εl2)

]
+ P2

(
L1

L2

)

×
{

3

8
sin2 i(1 − 3θ2

2 )

[
cos(2l + 2g)+ e

[
−1

2
cos(l + 2g)+ 7

2
cos(3l + 2g)

]]

+
∑
ε

ε
3

8
sin i(1 + εθ) sin II2

×
[

cos[2l + 2g + ε(h − l3)
′] + e

[
−1

2
cos[l + 2g + ε(h − l3)]

+ 7

2
cos [3l + 2g + ε(2h − 2l3)]

]]

−
∑
ε

3

16
(1 + εθ)2 sin2 II2 [cos[2l + 2g + ε(2h − 2l3)]

+ e

[
−1

2
cos[l + 2g + ε(2h − 2l3)] + 7

2
cos[3l + 2g + ε(2h − 2l3)]

] ]}
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+
∑
ε

9

32
sin2 i sin 2 II2 sin 2J2

{
cos [2l + 2g + εl2] + e

[
−1

2
cos[l + 2g + εl3]

+ 7

2
cos[3l + 2g + εl3]

]]}
−
∑
εδ

ε
3

16
sin i(1 + εθ) (−δθ2) (1 + 2δθ2)

× sin 2J2

{
cos[2l + 2g + ε(h − l3)+ εδl2] + e

[
−1

2
cos[l + 2g + ε(h − l3)+ εδl2]

+ 7

2
cos[3l + 2g + ε(h − l3)+ εδl2]

]}
+
∑
εδ

δ
3

32
sin II2(1+εθ)2(1−δθ2) sin 2J2

{
cos[2l + 2g + ε(2h − 2l3)+ εδl2] + e

[
−1

2
cos[l + 2g + ε(2h − 2l3)+ εδl2]

+ 7

2
cos[3l + 2g + ε(2h − 2l3)+ εδl2]

]}
−
∑
ε

9

32
sin2 i sin2 II2 sin2 J2

×
{

cos[2l + 2g + 2εl2] + e

[
−1

2
cos[l + 2g + 2εl2] +7

2
cos[3l + 2g + 2εl2]

]}

+
∑
εδ

εδ
3

16
sin i(1 + εθ)sin II2(1 − δθ2) sin2 J2

{
cos[2l + 2g + ε(h − l3)+ 2εδl2]

+ e

[
−1

2
cos[l + 2g + ε(h − l3)+ 2εδl2 ] +7

2
cos[3l + 2g + ε(h − l3)+ 2εδl2]

]}

−
∑
εδ

3

64
(1 − εθ)2(1 − δθ2)

2 sin2 J2

{
cos[2l + 2g + ε(2h − 2l3)+ 2εδl2]

+ e

[
−1

2
cos[l + 2g + ε(2h − 2l3)+ 2εδ l2]

+ 7

2
cos[3l + 2g + ε(2h − 2l3)+ 2εδl2]

]}}}
(A.11)

where:

θ = cos i; i is the orbital plane inclination; (A.12)

θ2 = L3

L2
= cos II2; (A.13)

L1

L2
= cos J2 (A.14)

P2

(
L1
L2

)
are the Legendre polynomial of order 2;∑

ε

and
∑
ε,δ

means that δ and ε assume values −1 and +1.

In the applications of this paper, the satellite is symmetrical, it means that A = B, or the
satellite has the principal moment of inertia A close to the principal moment of inertia B.
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