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[1] This paper addresses the estimation of vertical vegetation density profiles from
multibaseline interferometric synthetic aperture radar (InSAR) data from the AirSAR
aircraft at C band over primary, secondary, and abandoned-pasture stands at La Selva
Biological Station, Costa Rica in 2004. Profiles were also estimated from field data taken
in 2006 and lidar data taken with the LVIS, 25 m spot instrument in 2005. After
motivating the study of tropical forest profiles based on their role in the global carbon
cycle, ecosystem state, and biodiversity, this paper describes the InSAR, field, and lidar
data acquisitions and analyses. Beyond qualitative agreement between profiles from the
3 measurement techniques, results show that InSAR and lidar profile-averaged mean
height have RMS scatters about field-measured means of 3.4 m and 3.2 m, 16% and 15%
of the average mean height, respectively. InSAR and lidar standard deviations of the
vegetation distribution have RMS scatters about the field standard deviations of 1.9 m and
1.5 m, or 27% and 21%, respectively. Dominant errors in the profile-averaged mean height
for each measurement technique were modeled. InSAR inaccuracies, dominated by
ambiguities in finding the ground altitude and coherence calibration, together account for
about 3 m of InSAR error in the mean height. The dominant, modeled error for the field
measurements was the inaccuracy in modeling the trees as uniformly filled volumes of
leaf area, inducing field errors in mean height of about 3 m. The dominant, modeled lidar
error, also due to finding the ground, was 2 m.
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1. Introduction

[2] Forests cover 40% of the Earth’s solid, ice-free surface
[Waring and Running, 1989]. Tropical rain forests contain
40% of the Earth’s forested biomass, and tropical seasonal
forests contain another 15% [Schlesinger, 1991; Saugier et
al., 2001]. Global measurements of the 3-dimensional
structure of forests bear on the assessment of their role in
the global carbon cycle. Global monitoring also contributes

to the understanding of ecosystem state and biodiversity.
Traditional remote sensing of the Earth primarily registers
terrestrial features in the two lateral directions—latitude and
longitude—along the Earth’s surface. The relatively new
3-dimensional remote sensing techniques of interferometric
synthetic aperture radar (InSAR) [Treuhaft et al., 2004]
and lidar [Lefsky et al., 2002] can register forest features
explicitly in the third, vertical dimension. Due to their high
vegetation density and 3-dimensional complexity, tropical
forests represent a special challenge for these new techni-
ques, as well as for field measurements.
[3] This paper presents vertical profiles of forest vegeta-

tion estimated from InSAR data over tropical forests at the
La Selva Biological Station in Costa Rica in March 2004.
The main purpose of the paper is to investigate the rela-
tionship between those InSAR profiles to profiles estimated
from field measurements in February 2006 and those
estimated from lidar taken in March 2005, and to compare
the levels of agreement between profiles to proposed error
models for each technique. The next subsection discusses
the need for vegetation profiles in various disciplines of
global ecology. Section 2 describes the La Selva site and the
stands measured. It also describes the InSAR and field
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3Divisäo de Sensoriamento Remoto, Instituto Nacional de Pesquisas
Espaciais, São José dos Campos, Brazil.
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measurement techniques performed by the authors. The
lidar data acquired by the LVIS system [Blair et al., 1999]
will also be described. Section 3 shows a sample of profile
results and profile moments of the three measurement
approaches, while section 4 models dominant errors in the
InSAR, field, and lidar measurements. Section 5 contains
conclusions.

1.1. Ecological Importance of Vegetation Profiles

[4] The structure of forests, particularly in the vertical
direction, has been used as an indicator of aboveground
biomass, ecosystem state, and biodiversity. The distribution
of aboveground biomass in turn is key to understanding the
global carbon cycle [Houghton, 2005]. Before the InSAR
and lidar techniques, microwave based methods showed the
most robust correlations with forest biomass and have been
used to estimate biomass for a variety of forest types [e.g.,
Dobson et al., 1992;Moghaddam et al., 1994; Imhoff, 1995;
Luckman et al., 1998; dos Santos et al., 2003; Le Toan et
al., 2004; Lucas et al., 2006; Saatchi et al., 2007]. The
above references used some combination of radar power
from various polarizations and polarimetric phase to esti-
mate biomass. Generally, the higher the power, the higher
the biomass. However, almost all of these studies show a
saturation effect above 50–180 Mg/hectare (ha), depending
on the radar wavelength, the type of forest, and instrumental
parameters. In the neighborhood of and beyond these
saturation points, incrementally higher biomasses typical
of tropical forests no longer have a discernable effect on the
radar power, making biomass estimation from radar power
inaccurate or impossible. Saturation with optical remote
sensing [e.g., Steinenger, 2000] has also been observed. In
contrast, the most accurate high-biomass measurements to
date from remote sensing include vertical structure. Some
studies involving InSAR [Neeff et al., 2005] and lidar
[Lefsky et al., 2005] have used remotely sensed forest
height, sometimes coupled with other observations, and
have achieved estimates of biomass beyond 200 Mg/ha
without saturation. Others have used functions of the
profile, such as the lidar-derived height of median energy
[Drake et al., 2002a] or moments of the profile such as
InSAR-derived mean or standard deviation of the vertical
profile [Treuhaft et al., 2003]. Treuhaft et al. [2003] and
Neeff et al. [2005] combined structural information with
hyperspectral and radar power respectively.
[5] Vertical structure information also applies to the

characterization of the state of the forest ecosystem, such
as fire susceptibility or fire history, and regional or local
climate change. The vapor pressure deficit [Ray et al.,
2005], for example, was found to be strongly correlated
with fire-spread rate. Canopy leaf area index and canopy
height were in turn found to correlate with vapor pressure
deficit. Various other profile metrics have been correlated
with understorey biomass, which is a key factor in the
spread of ground fires to the canopy [Skowronski et al.,
2007]. Vertical structure information has also been used to
characterize fire dynamics with fuel models [Mutlu et al.,
2008]. In tropical rain forests, forest fires can cause signif-
icant release of carbon dioxide to the atmosphere, in
extreme cases of the same order of magnitude as global
fossil fuel emissions [Cochrane, 2003]. The remote sensing
of fire susceptibility is potentially an important monitor of

one of the factors affecting the atmospheric global carbon
balance and climate. Because earlier fires predispose areas
to subsequent fires [Cochrane and Schulze, 2003], the
structural signatures of burned areas derived from vertical
profiles could potentially be used as indicators of conse-
quent fire susceptibility. Vertical structural features have a
strong effect on the exchange of water and energy with the
atmosphere and thus can affect regional or local climate. For
example, a model exercise determined that replacing the
tropical forests of the Amazon basin with pasture would
decrease evapotranspiration and increase albedo [Shukla et
al., 1990]. In turn, the regional surface temperature would
rise by 1–3�C, and the precipitation would decrease by
several hundred mm/year. At the stand, ‘‘microclimate’’
level, for Douglas fir sites in western Washington, few �C
changes in temperature at 2 m above the ground surface
were correlated with clear cutting and selective logging
[Chen et al., 1999]. Microclimate edge effects on soil
moisture and evapotranspiration, signaled by abrupt
changes in vegetation structure, have also been measured
in Amazonian forests [e.g., Camargo and Kapos, 1995].
Remotely sensing changes in the vertical structure of forests
due to clear cutting or selective logging could enable the
monitoring of changes in regional climate or microclimate.
[6] Biodiversity has also been shown to depend on struc-

tural characteristics of the forest. For example, MacArthur
and MacArthur [1961] found a strong correlation between
bird species diversity (BSD) and an entropy-like function of
a leaf area density vertical profile determined by direct field
measurement, forest height diversity (FHD). The diversity
function for both BSD and FHD was defined as

BSD;FHD ¼
X
i

�pi ln pi ð1Þ

where pi is the fraction of birds that belong to species i for
BSD, and it is the fraction of foliage area within height bin i
for FHD. A wide range of vertical resolutions was used—
between 6 inches and 15 feet. It should be noted that the
numerical value of FHD for foliage diversity depends on bin
widths, but presumably the qualitative correlation between
BSD and FHD observed by MacArthur and MacArthur
persists for different choices of vertical bin size. Subsequent
studies have found a wide range of correlation between
BSD and FHD as in (1) [Wiens, 1989]. Polarimetric radar
power has also been correlated with bird species diversity
[Imhoff et al., 1997], but that study suggested direct
structural measurements of the type available from InSAR
and lidar would be an improvement over simple radar
power. Turner et al. [2003] review spectral and structural
possibilities for remote sensing of terrain characteristics
affecting species diversity, including vertical canopy
profiles. Weak correlations between species health and
vegetation height have also been observed [Bradbury et al.,
2005].

1.2. Fundamental Limitations of InSAR in Measuring
Vegetation Profiles

[7] Beyond characterizing biomass, ecosystem state, and
biodiversity, another reason to study vegetation profiles
with InSAR in particular is to probe its fundamental
limitations in measuring the vertical structure of forests.
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Although multibaseline interferometry has been used in
astronomy to measure stellar structure for the last 80 years
[Thompson et al., 1986], interferometry applied to forests
must be tested for instrumental limitations and its ability to
measure structure along the direction of signal attenuation.
While the vertical profile resolution from InSAR with a
modest number of baselines is generally worse than that of
lidar, InSAR’s coverage is 4 orders of magnitude broader
[Treuhaft et al., 2004] and therefore lends itself to global
monitoring. Part of the reason for InSAR’s improved
coverage is simply due to the fact that sensors with longer
wavelengths (microwave wavelength � few cm, optical
wavelength � 10�4 cm) have wider beams, and hence
cover more terrain. Another reason for the improved cov-
erage of InSAR is the technique’s ability to see through
clouds. This is especially important for tropical forests. In
the Amazon Basin, for example, with a repeat time of
16 days, the chances of obtaining remote sensing data
with 50% or less cloud cover in a month is often less than
30% [Asner, 2001].
[8] Estimation of profiles from multibaseline InSAR is

relatively new, with the first demonstration of profile
sensitivity by Reigber and Moreira [2000]. InSAR-based
profiles of leaf area density were estimated in Central
Oregon [Treuhaft et al., 2002]. The current work is the first

to attempt InSAR profiles in tropical forests, although
Hajnsek et al. [2009] estimated tropical forest heights with
2 m accuracy by assuming uniform profiles at L band.

2. Site and Remote Sensing Measurements

2.1. Site Characteristics and Radar Flights

[9] La Selva is a tropical wet forest [Holdridge, 1947]
and is characterized by a high diversity of trees, lianas, and
epiphytes [McDade et al., 1994]. It is comprised of about
55% primary forest. It gets about 4 m/year of rainfall. 30 sites
of dimensions 50 m � 50 m were chosen as remote sensing
study targets. Of those, 20 were primary forests—6 of which
were selectively logged—7 were secondary forests, and 3
were abandoned pastures. The sites were chosen along two
flight lines of the AirSAR aircraft carrying the radar [Van Zyl
et al., 1997] used for the InSAR measurements, as indicated
by yellow squares in Figure 1. For the northern line, the
plane carrying the radar flew from southeast to northwest at
a heading of 296 degrees. For the southern line, the
plane flew from northwest to southeast at a heading of
124 degrees. Because AirSAR has only two physical base-
lines, the so-called ‘‘bistatic’’ of 2.5 m and ‘‘ping-pong’’ of
5 m, and because many more were needed to estimate
profiles, the aircraft was flown at 7 altitudes over La Selva,

Figure 1. QuickBird image of La Selva Biological Station in Costa Rica, outlined in white. The yellow
squares are the locations of the 30 stands used in this paper, which were placed at an incidence angle of
�35� to the flight lines of AirSAR over La Selva in 2004. Center of image is approximately 10.421864�
latitude and �84.021195� longitude. Figure reprinted with permission from the La Selva Biological
Station.

D23110 TREUHAFT ET AL.: INSAR, FIELD, LIDAR TROPICAL FOREST

3 of 16

D23110



ranging from 1278 m to 8062 m along the tracks in Figure 1.
By flying the two fixed baselines at many altitudes, the
equivalent of up to 14 baselines was produced (see (3) and
the discussion of the az parameter). All forest stands for all
altitudes were maintained at close to 35� incidence angle,
with the incidence angle of some of the stands for the lowest
altitudes deviating from 35� by ±5�. AirSAR took fixed
baseline, vertical polarization InSAR measurements at
C band (wavelength 5.6 cm) and L band (wavelength
24 cm), but only the C band results will be discussed in
this paper. AirSAR also took repeat pass, fully polarimetric
InSAR measurements—where the baseline is synthesized
by two different passes over the same terrain—at L and
P band (wavelength 80 cm); the analyses of these data are
underway, but are not part of this paper. The InSAR, field,
and lidar measurements at La Selva are described below.

2.2. InSAR Profiles: General Description

[10] The InSAR measurement is called the ‘‘complex
coherence’’. It consists of an amplitude, called the ‘‘coher-
ence,’’ and a phase, which were broadly characterized in
terms of vegetation characteristics by Treuhaft et al. [2004].
More detailed descriptions of the relationship between the
complex coherence and vegetation structural parameters are
given by Rodriguez and Martin [1992], Treuhaft et al.
[1996], Cloude and Papathanassiou [1998], Treuhaft and
Siqueira [2000], and Sarabandi and Lin [2000]. A technical
approach to the complex coherence when combined with
lidar structure is given by Slatton et al. [2001]. Following is a
description of the complex coherence on the vertical charac-
teristics of the vegetation distribution only. The dependence
of InSAR on signal-to-noise and target range and azimuth
characteristics are treated in the references above.
[11] Figure 2 schematically shows the InSAR complex

coherence due to returns from the ground and two vegeta-

tion elements at heights za and zb, within the radar range
resolution, indicated by the region within the curved lines.
The vegetation elements, referred to as ‘‘scatterers,’’ can be
leaves, branches, twigs, or trunks, all of which return a
signal to the radar. In a complete statistical formulation of
InSAR [e.g., Treuhaft et al., 1996], a ‘‘scatterer’’ is really a
statistical combination of all of the above types of forest
elements, but this level of formal detail will not be pursued
here. The InSAR phase at any altitude is the difference in
path length from a scatterer to the ‘‘1’’ and ‘‘2’’ ends of the
baseline—the difference between the length of the black
and red lines—expressed in units of the wavelength and
multiplied by 2p. For the scatterer at za in Figure 2a,

InSAR Phase � fa ¼
2p
l

r1a � r2að Þ ð2Þ

where r1a and r2a are the path lengths from scatterer a to the
‘‘1’’ and ‘‘2’’ ends of the baseline, respectively, and l is the
observing wavelength—this definition of phase assumes
there is one transmitter at one end of the baseline and a
receiver at each end. The path length difference and
consequent phase is higher for the vegetation at zb than
for that at za or the ground altitude. It is shown by Treuhaft
et al. [1996], for example, that the InSAR phase, fa, can be
expressed for the vegetation element at altitude za as

fa ¼ f0 þ
@f
@z

����
z¼z0

za � z0ð Þ � f0 þ az za � z0ð Þ ð3Þ

where z0 and f0 are the altitude and phase of the ground
surface. The partial derivative of phase with respect to
altitude, az, is defined by (3). It is taken holding the range
and azimuth coordinates constant. This derivative is
proportional to the baseline length B, and inversely

Figure 2. (a) The contribution to the InSAR complex coherence of the ground return at z = z0, and two
vegetation elements at heights za and zb. The curved lines depict the ranges allowed by the radar. The
interferometric phase for each element is the difference between the path lengths of the black and red
lines for that element, in units of the wavelength, multiplied by 2p. This differential distance for each
element is in turn proportional to its height above the surface. The path lengths from scatterer a to the
‘‘1’’ and ‘‘2’’ ends of the baselines are indicated by r1a and r2a. (b) The angles of the component vectors
with the x axis are proportional to the InSAR phases of each, and to the heights z0, za, and zb. The lengths
of the components are proportional to the total vegetation signal at each altitude. The coherence of the net
InSAR observations is the length of the blue vector divided by the sum of the lengths of the others. The
phase of the net observation is the angle of the blue vector with the x axis.
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proportional to l and the height of the radar H. For the
physical baselines and aircraft altitudes mentioned above,
az’s in this experiment ranged from 0.043 m�1 to 0.54 m�1.
For forest vegetation, and for a single az, returns such as
those in Figure 2a will add together vectorially as in Figure
2b to form the total InSAR observation, the complex
coherence. In Figure 2b, the phase of each vector is
proportional to the altitude of each vegetation component
above the ground, as in (3), and is plotted as the angle
between the vector and the x axis. The length of each vector
is proportional to the radar signal returned from that
altitude. The radar signal in turn is proportional to the
backscattering strength per vegetation element and the
number density of vegetation elements, the product of
which, we argue below, can be considered proportional to
leaf area density. The vector length is also inversely
proportional to the level of attenuation at that altitude.
The phase of the net InSAR observation due to the ground
and two vegetation elements is the phase of the blue vector.
The length of the blue vector divided by the sum of the
lengths of the others is the coherence of the net InSAR
observation. Note that, generally, the more vertically
extended the vegetation, the higher the phase of the net
InSAR observation, and the lower the coherence. For the
many vegetation elements in a real forest, the vector
addition describing the complex coherence in Figure 2b
becomes an integral as in (4) [Treuhaft et al., 1996]:

Complex Coherence ¼ eif0F azð Þ
F 0ð Þ where

F azð Þ �
Z hv

0

dz eiazzN zð Þhf 2b zð Þi

� exp� 4l
cos q

Z hv

z

hIm ff z0ð Þ
� �

iN z0ð Þ dz0
� �

ð4Þ

where hv is the height of the tallest vegetation. The first line
in the definition of F (az) describes the strength of the total
signal sent by the scatterers back to the radar. This strength
depends on N(z) the number density of scatterers per unit
volume in the scene and h fb2(z)i the average squared
backscattering amplitude per scatterer at altitude z [Ishimaru,
1978]. The exponential in the second line of (4) describes
the attenuation of signals as they travel to or from the top of
the canopy to any point z in the canopy, with the average
imaginary part of the forward scattering amplitude,
hIm( f f (z))i, describing the average attenuation per scatter
at location z.
[12] In order to estimate and evaluate profiles from

InSAR data, (4) must be related to a vegetation density,
which can be estimated from InSAR data and compared to
field-measured profiles. At C band (l = 5.6 cm), it is
reasonable to assume most scatterers are leaves. The scat-
tering amplitudes, fb and ff in (4), are proportional to the
area of the scatterer, for a thin scatterer like a leaf. Thus it
could be argued that hIm( ff (z))i N(z) is proportional to the
leaf area density (LAD), which is the one-sided leaf area per
unit volume [Asrar et al., 1989]. The h fb2(z)i term, however,
is proportional to the area squared. Denoting Rel(z) as the
relative LAD with peak normalized to unity, F (az) in
(4) could then be written in terms of relative LAD as (apart

from constants which will cancel in forming the complex
coherence of (4))

F azð Þ ¼
Z hv

0

dz eiazzRel zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf 2b zð Þi

q

� exp� 2sx

cos q

Z hv

z

Rel z0ð ÞÞ dz0
� � ð5Þ

where sx is identified as the peak profile extinction
coefficient if Rel(z) is normalized with a peak value of
‘‘1’’. In (5), two profiles appear, the relative leaf area
density and the square root of the squared backscattering
amplitude. We will make the assumption that h fb2(z)i is
independent of z, and can therefore be factored out of the
integral and cancels with the denominator F (0) in (4). This
assumption is equivalent to saying that the nature of the
ensemble of scatterers, for example the histogram of leaf
areas at any altitude, does not change from the bottom to the
top to the canopy. The only thing that is changing is N(z),
the number density of scatterers. This assumption estab-
lishes the dependence of InSAR on vegetation density
parameters used to estimate leaf area density profiles

Complex Coherence ¼ eif0F azð Þ
F 0ð Þ where

F azð Þ �
Z hv

0

dz eiazzRel zð Þ � exp� 2sx

cos q

Z hv

z

Rel z0ð Þ dz0
� � ð6Þ

[13] While visual observations of the apparent diversity in
leaf areas at any altitude in a tropical forest support the
assumption leading to (6), the assumption is qualitative and
must be remembered when considering errors in the esti-
mated profiles in later sections. It should also be noted that
the implicit limitation of having to make some assumption
about the spatial dependence of number density and scat-
terer strength in InSAR is a limitation of virtually all remote
sensing techniques: They respond to the product of the
scatterer efficiency or strength and the number of scatterers
per unit volume, and it is often difficult to cleanly separate
the two or combine them into biologically meaningful
quantities like LAD.
[14] Note from (6) that the az parameter is the spatial

frequency of a Fourier transform of the relative vegetation
density multiplied by the attenuation expression. Given that
interpretation, the smallest value of 2p/az—from the highest
B/H ratio—establishes a lower limit to the size of vertical
density fluctuation which can be reliably described by
estimates of Rel(z).

2.3. InSAR Profile Measurements: Estimates From
La Selva Data

[15] Profiles are estimated from InSAR data using (6) with
a specific parameterization of Rel(z) as a model. The
estimation proceeds by proposing a model functional form
for Rel(z) and identifying its parameters. For profiles
estimated in Central Oregon [Treuhaft et al., 2002], a
Gaussian was used to model Rel(z) and the Gaussian
parameters of mean and standard deviation were estimated
along with the InSAR phase at the ground (f0) and the peak
extinction coefficient (sx). For the 30 tropical forest stands
of La Selva, it was found that Rel(z) was best modeled with
12 parameters, each of which was the constant density in

D23110 TREUHAFT ET AL.: INSAR, FIELD, LIDAR TROPICAL FOREST

5 of 16

D23110



5 m wide bins spanning 0 to 60 m in altitude above the
forest floor (see Figure 7 for examples). With Relj the
constant density of the jth bin, the model complex coherence
becomes

Model Complex Coherence ¼ eif0F azð Þ
F 0ð Þ where

F azð Þ ¼
X12
j¼1

Z jDz

j�1ð ÞDz

dz eiazzRelj

� exp� 2sx

cos q
jDz� zð ÞRelj þDz

X12
k¼jþ1

Relk

( )" #

ð7Þ

In (7), the bin width is Dz and is fixed to 5 m. The
parameters f0, and sx appear along with the set of 12 {Relj}
parameters in (7). Note the hv parameter, the maximum
forest height, no longer appears as it has been set to 60 m,
which is 10–15 meters taller than the tallest trees observed
on the ground at La Selva.
[16] Profiles were estimated by adjusting the {Relj}

parameters until the following expression was minimized
[e.g., Hamilton, 1964]

~O� ~M Relj
� 	� �T

Cov�1 ~O� ~M Relj
� 	� �
 �


ð8Þ

where ~O is a vector of InSAR coherence and phase
observations from 12–14 baselines, realized with multiple

aircraft altitudes described above, with corresponding az’s.
These coherences and phases are the result of averaging
complex coherences derived at �5 m intervals over the
50 m � 50 m plots. The coherences were corrected for range
effects (ignored in (4) and all subsequent model expressions
for complex coherence) by using vegetation-free areas
outside of La Selva; they were corrected for signal-to-noise
effects using the methods of Treuhaft and Siqueira [2000].
In (8), ~M is the corresponding vector of model coherences
and phases from (7) for each az, and Cov is the covariance
matrix of the observation errors in coherence and phase,
which are assumed to be independent (Cov is diagonal).
[17] While the {Relj} parameters were adjusted to mini-

mize (8), f0 and sx were fixed before the minimization
process, based on information other than the plot-averaged
complex-coherence observations. When Gaussian [Treuhaft
et al., 2002] or constant [Papathanassiou and Cloude,
2001; Hajnsek et al., 2009] profiles are assumed as a model,
especially with polarimetric InSAR as in the last two
references, it is possible to estimate the ground phase
parameter f0 from the 50 m � 50 m plot-averaged InSAR
data. But with the more complicated density parameter-
izations of this experiment as in (7), and in the absence of
polarimetric interferometry, we found the ground return to
be indistinguishable from low-altitude vegetation density,
and f0 was difficult to estimate from the plot-averaged
InSAR data alone. For this reason, f0 was established by
examining histograms of InSAR phases on finer�5 m� 5 m
centers within a 100 m � 100 m area around the center of

Figure 3. Histogram of interferometric phases on 5 m � 5 m centers over a 100 m � 100 m area
surrounding a primary stand center. The red ellipse is identified as ground returns, spanning �3 m in
altitude, and the average of the ground returns, indicated by the arrow, is taken to be the f0 parameter. The
upper axis is the phase height, which is the phase divided by az, which was 0.062 for this baseline. The
phase height was shifted to have ‘‘0’’ close to ‘‘f0.’’
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each 50 m � 50 m plot used, as in Figure 3 for a primary
stand. A collection of the lowest few phases, indicated by
the red ellipse in Figure 3, was taken to be from the ground,
and f0 was assigned the average value of the phases of the
ground return. As az gets bigger (baseline length gets
bigger, or aircraft altitude gets lower), the distribution of
phases, which is proportional to the distribution of vegeta-
tion height, gets wider. With large enough az, the phases
from the bottom to the top of the canopy wind through 360�,
and a clear identification of the bottom as in Figure 3 is no
longer discernable. The method used to ‘‘find the ground’’
in this paper fails, and for this reason only phases from
observations with the first 5 lowest values of az were used
in the analysis. Coherences from all az’s were used. Sim-
ulation demonstrates that the peak extinction parameter, sx,
is also difficult to estimate from the InSAR data when
the vegetation profile is allowed to be as multilayered as
in (7) [Treuhaft et al., 2009]. For this reason, 0.1 dB/m
was adopted as the peak extinction for all 30 stands,
because, as will be seen in sections 3 and 4, it gave the
best agreement with field and lidar profiles.
[18] As suggested by Figure 2b, many different arrange-

ments of vegetation components (many different vectors)
can sum to the same total InSAR observation for a single
baseline. Equivalently, a single Fourier transform of vertical
structure cannot completely specify profile characteristics.
Multibaseline InSAR is therefore required to isolate each
component in a vegetation profile. Each baseline, with its
corresponding az, generates a new and different Figure 2b,
with the same vector lengths, but phases which scale in
proportion to az. From multibaseline data, the individual
vector lengths, which are proportional to vegetation density,
can be estimated. From a parameter estimation point of
view, the more detailed the profile parameterization—the
more profile parameters to be estimated—the more InSAR
baselines are necessary. At very least, the number of total
observations (InSAR and/or others) must equal or exceed
the number of independent parameters to be estimated. By
flying at 7 different radar altitudes, H, up to 14 effective
baselines were produced with az’s between 0.043 m�1 to
0.54 m�1. Because the minimum detectable vertical scale is
approximately 2p/az, we can expect vertical sensitivity on
scales of 13 m and higher. That is, accurate estimation of

abrupt changes in vertical structure at scales shorter than
13 m would require larger baselines or lower altitudes than
those of this experiment.

2.4. Field Profile Measurements

[19] Field measurements on the same 30 stands at La
Selva along 10 m � 100 m transects included the location of
each tree in along- and cross-transect coordinates, diameter
at breast height, height to the base of the crown, total height,
and lateral dimensions of each tree’s canopy. All tree
heights were measured using ocular methods, that is, they
were estimated visually. For each tree with diameter at
breast height greater than 10 cm (greater than 5 cm for
abandoned pastures), heights were measured by sighting
along the arm to subtend angles from the bottom to the top
of the tree. Vantage points were sought which optimized the
visibility of the tops of trees. These visual height estimates
were calibrated by clinometer measurements [Gonçalves
and dos Santos, 2008]. A model was developed in Ama-
zônia and La Selva with ocular height estimates as input and
heights based on clinometer readings as output. Lateral
dimensions of the canopies were estimated by stretching
measuring tape between points directly beneath the extrema
of the observed canopy, in the directions parallel and
perpendicular to the transect. From these measurements,
semimajor axes of each tree modeled as an ellipsoid were
calculated as shown in Figure 4 [Nelson, 1997]. The
volume of each ellipsoid overlapping an altitude bin was
assumed to be uniformly filled with leaf area and summed
to calculate the leaf area density at altitude z. Departures
from the ‘‘uniformly filled’’ assumption will be addressed in
section 4 on errors. For a height bin centered at z and
thickness D z, the relative field density profile was modeled
as

Field Density zð Þ /
XNz

i¼1

Z
Vi zð Þ

dx dy dz

¼
XNz

i¼1

Z zhii

zloi

p aibi 1� z� zi

ci

� 2
" #

dz ð9Þ

where Vi(z) is the volume of the ith tree in the height bin at z,
z, zi is the center of the ellipsoid representing the ith tree
with any part inside the bin at z ± Dz/2, Nz is the number of
trees with foliage overlapping the height bin, and ai, bi, and
ci are the x, y, and z semimajor axes of the ellipsoid. The
integration limits zloi and zhii are between the lowest and
highest points for the ith tree within the bin.

2.5. Lidar Profile Measurements

[20] Lidar data were collected at La Selva by the Laser
Vegetation Imaging Sensor [Blair et al., 1999] in spring,
2005 [Blair et al., 2006]. LVIS records a waveform with the
complete return history of the near-infrared laser energy
reflected off of different surfaces (leaves, branches, ground).
At any height, the amplitude of the waveform corresponds
to the relative abundance of vertically intercepted surfaces.
Because of attenuation, lidar waveforms are sometimes
adjusted using a modified MacArthur-Horn transformation
[Harding et al., 2001; Lefsky et al., 2002] to produce a
canopy height profile. In this study we did not transform the
lidar waveforms because a previous study at this site

Figure 4. Field measurements of total height, height-to-
base-of-crown, and lateral dimensions of the canopy (a and
b) specify the volume of model ellipsoid trees contributing
to field density between z � Dz/2 and z + Dz/2.

D23110 TREUHAFT ET AL.: INSAR, FIELD, LIDAR TROPICAL FOREST

7 of 16

D23110



demonstrated that both transformed and untransformed lidar
profiles (averaged within a plot) did not significantly differ
from field-derived profiles and profile metrics from untrans-
formed lidar profiles showed slightly stronger correlation
with metrics from field profiles [Drake et al., 2002b].
[21] Lidar profiles were produced for each of the 30 sites

by averaging all waveform profiles for which any part of the

Gaussian beam fell within the 50 m � 50 m area charac-
terizing a site. Each waveform profile was weighted by the
fractional beam overlap in the averaging process. In order to
calculate the fractional overlap, each beam was considered
to have Gaussian standard deviation of 6.25 m [Blair and
Hofton, 1999], equivalent to a beam diameter of approxi-
mately 25 m. There were on average 11–14 shot centers
within the 50 m � 50 m areas, suggesting shot centers were
separated by average linear distances of approximately 13–
15 m. Each waveform was referenced to the ground level
before averaging. Figure 5 shows an example of a set of
waveforms and their average for a secondary stand, 19–23
years old. The lidar return power on the ordinate is the
product of the actual return power and the overlap weight. It
is the average waveform that is used to compare with
vegetation densities derived from InSAR and field measure-
ments. As discussed in section 4 on errors, for primary and
secondary forests, this ground ‘‘bump’’ was difficult to find
and contributed to the error in plot-averaged waveforms,
especially in the overall placement of the waveform on the
horizontal (altitude) axis.

3. Results

3.1. Lateral Scale of Profiles With InSAR

[22] One of the first results to emerge from the analysis of
InSAR and lidar data was the specification of the lateral
scale over which InSAR profiles could accurately be esti-
mated, given our algorithmic approach to topography. The
InSAR analysis algorithms written for the La Selva data first
remove a planar topographic slope. The reason for this is
that, like vertically extended vegetation, topographic rises
within a site will cause phase to increase and coherence to
decrease, relative to a flat site. The ideal lateral scale for
profile estimation is one for which the removal of planar

Figure 6. (a) InSAR phase height (phase divided by az) for a 300 m � 300 m area surrounding one of
the abandoned-pasture sites. (b) The LVIS lidar ground altitude of the same area. The lidar altitudes
suggest that the higher InSAR phase at the center of the image is due to an elevation rise, not a stand of
trees. Comparison of these images suggested reducing the size of the plots over which InSAR profiles
would be estimated from 100 m � 100 m to 50 m � 50 m.

Figure 5. All lidar waveforms with beam area overlap
with a secondary forest stand, 19–23 years old. Each
waveform is represented by a different color and is
multiplied by its fractional beam overlap with the 50 m �
50 m stand. The dashed green line is the average of all the
waveforms, multiplied by 4 for easier viewing. This average
waveform was compared to InSAR and field profiles.
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topography suffices to reduce topographic effects on phase
and coherence below those of vegetation structure.
[23] Figure 6 shows a 300 m � 300 m area from both

InSAR and lidar at La Selva. At the center of the images is
one of the abandoned pasture stands with short trees and a
profile-averaged vegetation height of about 10 m (the
second <6 yr plot in Figure 7). The InSAR image on the
left is the phase height (the phase divided by az), and the
right-hand image shows the lidar surface topography esti-
mate. Each lidar dot corresponds to the center of a 25 m
beam of the lidar, though each dot is only 5 m � 5 m, like
the InSAR pixels on the left. The InSAR phase height in
Figure 6 shows variations of >20 m within 100 m of the
center of the image, suggesting either the presence of a
forest with profile averaged mean vegetation heights of 20 m
or rapidly varying topography. The strong correlation of the
InSAR image with the lidar topography image suggests that
topographic fluctuation is largely responsible for the InSAR
phase height changes. Prompted by Figure 6, the original
lateral scale for InSAR was reduced from 100 m � 100 m to
50 m � 50 m. It was found that for stands such as in Figure
6, if the lateral scale exceeded 50 m � 50 m, the slope of the
topography changed too rapidly to be removed by the planar
fitting InSAR algorithms, and abandoned pastures with
topography could be mistaken for secondary or primary
forests. For this reason, the lateral scale adopted for all
InSAR and lidar profiles was 50 m � 50 m. In future
experiments, it may be possible to develop more complex
InSAR algorithms to remove more rapidly varying topog-
raphy and consider larger lateral scales. That larger lateral
scales can confuse topography and tree heights is also true
for large-spot lidars [Lefsky et al., 2005].

3.2. Profiles and Moments From Multibaseline InSAR,
Field, and Lidar Measurements

[24] Figure 7 shows estimated profiles for 9 of the
30 50 m � 50 m stands at La Selva. The 9 stands are
representative of each of the forest cover types, as indicated.
The black in Figure 7 is the InSAR-estimated profile, red is
the field profile, and the green is the lidar profile from the
average of the waveforms, as in Figure 5. While the InSAR
and lidar plots were 50 m � 50 m, the field profiles derived
from measurements on 100 m � 10 m transects. The field
plot size was chosen in part because surface topography was
not an error for field measurements and in part because, at
the time of the field data acquisition, 100 m � 100 m stands
were being considered for the InSAR analysis. We observed
anecdotally in the field and by doing different cuts on the
lidar data that vertical structure measurements on these
various lateral scales were highly correlated, but this state-
ment should be made more quantitative in the future with
auto correlation functions of structure metrics as a function
of lateral distance in the forest. The InSAR profile, {Relj} as
in (7) is shown as stepwise constant, with 12 values of
vegetation density as estimated parameters at intervals of
5 m in height. As mentioned, the extinction was fixed
0.1 dB/m, and this will be treated in the discussion of RMS
agreement with field and lidar in Figure 8. Visual inspection
of Figure 7 suggests that small-scale (<10 m vertically)
features do not agree between the three profiles; recall that
InSAR accuracy for the baselines of this experiment is
expected to deteriorate for fluctuations of scale less than
13 m. It also seems that a translation of one or more of the
profiles on the ‘‘Height’’ axis would produce better agree-
ment for some stands. The InSAR and lidar profiles incurred

Figure 7. Relative vegetation density profiles, with each peak normalized to ‘‘1,’’ from multibaseline
InSAR (black), field (red), and lidar (green) measurements, for nine forest stands.
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error due to ‘‘finding the ground’’, as discussed in the next
section. Larger-scale characteristics of the profiles, such as
means and standard deviations appear to agree. An en-
hancement near zero is seen in the InSAR and lidar profiles
for a number of primary and secondary profiles. All 3
abandoned pastures show vegetation density near the
ground. In all cases, the enhancements near the ground
are probably due to shorter trees, understorey, and return
from the ground itself. In order to minimize ground con-
tamination in the analyses of Figure 8 below, the first 5 m
bins of Figure 7 were reduced by 75% for the InSAR, and
all powers for lidar altitudes lower than 5m similarly reduced
by 75%. Though this process seems ad hoc, various ground
suppression approaches made very little difference in the
quantitative analyses of Figure 8. No low-altitude enhance-
ments are evident in the field data for primary and secondary
forests primarily because field measurements do not have a
‘‘ground return’’. Also, because trees with diameters less
than 10 cm—5 cm for abandoned pastures—were excluded
from the field study, there may be some reduction of
vegetation contributions at the lowest altitudes in the field
profiles. The error bars on the InSAR profiles result from
dividing each stand up into 4 equal subplots and using the
scatter of the InSAR observations in those subplots to first
calculate the error in the InSAR observations. The distribu-
tion of InSAR observation errors is then used in a Monte
Carlo process simulating a set of InSAR observations about
the actual InSAR observations. From these simulated obser-
vations, estimates of standard deviations—the error bars—
are derived. This approach to estimating profiles and errors
ignores systematic errors common to an entire stand, which
will be discussed in the next section.
[25] Figure 8 shows the mean and standard deviations of

the InSAR and lidar density profiles Rel(z), defined as

Mean ¼

Z
z Rel zð Þ dzZ
Rel zð Þ dz

standard deviation ¼

Z
z2 Rel zð Þ dzZ
Rel zð Þ dz

�mean2

0
BB@

1
CCA

1=2

ð10Þ

They are plotted versus the field quantities. For lidar, Rel(z)
is the waveform. The RMS differences between the InSAR
or lidar and field means are 3.40 m and 3.21 m, or 16% and
15% of the average mean height, respectively (see Table 1).
The RMS difference between InSAR and lidar is of the
same order, 3.70 m or 17%. Note the possible overestimate
of field mean heights at the high end of Figure 8a, as
evidenced by a preponderance of both InSAR and lidar
points below the y = x line. As discussed in the next
section on errors, this could be due to the assumption of
modeling the trees as uniformly filled ellipses as in (9). It
could also be due to the 10 cm diameter-at-breast-height
cutoff for trees included in profile estimation for tall forests.
The RMS differences, if assumed equally apportioned and
independent between the techniques, suggest approximately
2 m errors in mean height characterizes InSAR, field, and
lidar measurements. The next section on error modeling
refines that apportionment to reflect dominant modeled
errors for each technique.
[26] Figure 8b shows the standard deviation of the vege-

tation density distribution for InSAR and lidar versus the
field standard deviation. The InSAR scatter about the field
measurements is 1.91 m, or 27% and the lidar scatter is
1.47 m or 21%. The scatter of the InSAR about the lidar
measurement is 1.86 m or 27%.
[27] It was found that using 0.1 dB/m as sx in (7) for all

30 stands yielded the lowest scatters of InSAR mean and
standard deviation about the field or lidar measurements in
Figure 8. While there is no universally accepted value for
the extinction coefficient of forest vegetation, modeled and
measured values have been reported from 0.2 dB/m to

Figure 8. The (a) mean and (b) standard deviation of the vegetation distributions from InSAR (black)
and lidar (green) versus field estimations, for uniformly filled ellipsoidal trees.

Table 1. RMS Scatters of InSAR and Lidar Profile Means and

Standard Deviations About Field Values for Three Models of Field

Profile Constructiona

Model
InSAR

Mean (m)
Lidar

Mean (m)
InSAR Standard
Deviation (m)

Lidar Standard
Deviation (m)

Uniform 3.4 3.2 1.9 1.5
Spoke 3.3 2.9 1.9 1.4
Spoke2 3.9 3.3 1.9 1.3

aModels are (1) uniformly filled volumes, (2) the ‘‘bicycle spoke’’ radial
dependence of volume filling as in equation (12), and (3) the spoke2 model,
where the filling is inversely proportional to the radial distance squared
(equation (12) with the denominator squared).
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beyond 1.0 dB/m [Chuah and King, 1994; Papathanassiou
and Cloude, 2001; Bosisio and Dechambre, 2004]. Our
extinction coefficient of 0.1 dB/m could be low because it
represents an average over 50 m � 50 m of forest structure,
which, even in primary forests, contains substantial lateral
gaps with very little vegetation. Figure 9 shows an example
of field-measured canopy dimensions (ellipses with ai and bi
of Figure 4), with centers placed as measured along one of
the field transects of a primary stand at La Selva. Trees are
not uniformly spread on the transect, but rather there are
clear regions near the center of Figure 9 in which the radar
beam would detect returns near the ground. The ground
returns and returns from the trees in the clumps would
contribute vectors with small phases and very large phases,
respectively, in Figure 2. A large diversity of altitudes for
the returns would lower coherence, which, in turn, could
make the vertical extent of returns seem large, signaling
high penetration or low effective extinction. In other words,
these clear regions of zero vegetation density may create an
average density, and therefore average attenuations via (4),
lower than that characteristic of the forest vegetation in the
clumps of trees in Figure 9. The observational signature of
a taller canopy is a lower coherence and a higher phase. If
the coherence dropped due to instrumental effects, but the
phase remained the same, the estimated extinction coeffi-
cient might decrease, also in part explaining our low value
of 0.1 dB/m.
[28] As mentioned in subsection 2.1, 6 of the primary

forest stands were selectively logged, according to La Selva
records. However, field measurements failed to detect
logging ‘‘scars’’—tree stumps, skid trails, or felling
gaps—in these areas. We plan to resolve this apparent
discrepancy with La Selva records in a future publication.
Preliminarily, foliage height diversities derived from InSAR
as in (1) from those 6 stands were approximately 10% lower
than those of the other primary stands. A detailed analysis

of FHD and biomass estimates will appear in a future
publication on products derived from profiles.

4. Dominant Errors in the InSAR, Field, and
Lidar Measurements

[29] This section explores some of the dominant errors in
the InSAR, field, and lidar measurements in order to
understand the empirical profile-averaged mean height
scatters of the last section. The dominant errors considered
suggest InSAR and field mean-height errors of 3 m, while
the lidar mean-height errors are 2 m. At the 25% level, these
dominant modeled errors overestimate the 3.4 m RMS
scatter in the differenced means in Figure 8a, which
suggests that the modeled errors account for the observed
scatters, but are perhaps too conservative. While a complete
error analysis of each of the three techniques is beyond the
scope of this paper, this section shows that the scatters
between the techniques are plausibly attributed to known
dominant error sources.

4.1. InSAR Errors

[30] Phase and coherence calibration errors lead to errors
in profiles estimated from InSAR. An origin of phase, f0, as
in Figure 3 must be determined for each baseline. Due to the
relatively flat terrain in Oregon, that analysis used nearby
clear areas to arrive at the ground surface phase [Treuhaft et
al., 2002]. At La Selva, the nearest clear areas were outside
of the white line on Figure 1. Because there were frequently
substantial topographic changes between the clear areas and
the forest stands, and because there seemed to be instru-
mental phase drifts—probably due to uncompensated air-
craft motion—over the substantial distances between clear
and forested areas, using the clear areas to establish f0 did
not perform well. As mentioned, the process illustrated in
Figure 3, using the set of InSAR phases within an extended,
100 m � 100 m stand to equate the lowest to f0 gave more

Figure 9. The distribution of crowns from field measurements along a 10 � 100 m transect in a primary
forest. The ellipse for each crown has semimajor and semiminor axes as measured in the field. Trees tend
to be clumped, with substantial lateral gaps of bare terrain.
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consistent results. However, this process adds a level of
subjectivity and human error, which is probably at the
5 meter level per baseline, of the order of the dimensions of
the red ellipse indicating the ground return. The conversion
of phase to meters of altitude for the baseline of Figure 3
(az = 0.062) is shown on the top x axis. An error in f0, if
it is proportional to az for each baseline, would move the
entire profile up or down on the x axis. But since the
‘‘finding the ground’’ phase calibration error is probably
independent between baselines, the final average-height
error can be estimated by dividing the 5 m per baseline
error by the square root of the number of baselines in
which phase was used (5), yielding 2.7 m. Note that this is
an approximate estimate, as the actual error depends on the
parameter estimation process in the minimization of (8).
[31] The coherence as well required calibration for each

baseline, which involves accounting for loss of coherence
due to noise and so-called ‘‘range decorrelation’’ [Rodriguez
and Martin, 1992; Treuhaft et al., 1996], as well as any other
instrumental errors in the processing of signals at each end
of the baseline. The clear, farm areas outside of La Selva
were used in the coherence calibration process. For the
range of az’s in this experiment, 0.043 m�1 to 0.54 m�1, an
estimate of the coherence calibration error is based on the
difference between coherences of the 2–3 clear areas used
to calibrate each baseline, which was of the order of 2% to
10% from the lowest to highest az’s. In order to get an
approximate estimate of the effect on mean-height estimates
due to this level of coherence error, consider the coherence
from a simplified, uniform vegetation layer without attenu-
ation. For a forest height hv, the coherence for the zero-
extinction uniform layer is (from (4) with the imaginary part
of the forward scattering amplitude set to zero, and the
number density and backscattering vertical dependence
taken to be uniform; or from Treuhaft et al. [1996])

Coherence ¼
sinaz

hv
2

az
hv
2

ð11Þ

By taking derivatives of (11) with respect to hv/2, it can be
demonstrated that a 1 m change in average tree height for a
35 m stand corresponds to a change in coherence of about
1% to 5% over the range of baselines in this experiment,
from the lowest to the highest az’s. Thus each of the 12–14
coherences used contributes about 2 m error. The net error
again can be estimated by dividing this error by the square
root of the number of baselines, yielding 0.6 m. This
estimate is approximate for the same reasons mentioned
above for the phase calibration error estimate, and
additionally because it uses the uniform-volume expression
in (11), which, according to Figure 7, does not accurately
describe the stands at La Selva.
[32] Considering this assessment of the phase and coher-

ence error contributions, an overall approximate calibration
error of 3 m seems reasonable for mean heights. Note that
the average error bar in Figure 8a, which is empirically
determined, is 2.8 m, suggesting that the phase and coher-
ence errors considered account for much of the observed
error.
[33] One other source of error already mentioned, but not

modeled in the above considerations, is the assumption that

the average backscattering intensity per scatterer, h fb2(z)i, in
(5) is independent of z, which leads to (6). If the backscat-
tering intensity does have vertical dependence, it will cause
errors in the estimates of Rel(z). Though beyond the scope
of this paper, a complete analysis of this possibility could
involve proposing plausible functional dependences of
h fb2(z)i, generating simulated data using (5), and analyzing
the data using the parameterization of (7). The level of
agreement between InSAR and field measurements dis-
cussed in Table 1 suggests that the error due to assuming
the uniformity of h fb2(z)i is probably not as big as the phase
and coherence errors considered above. Another approach
to profile estimation has been to combine all the terms to the
right of exp(iaz z) in (4) into a single profile of the strength
of the returned radar signal [e.g., Cloude, 2007]. While
estimating this profile does not uniquely separate vegetation
density from scatterer brightness and attenuation, as in (2),
it may be that for many applications, the radar signal
profiles have useful correlation with biological properties
of the forest, such as biomass.

4.2. Field Errors

[34] As mentioned in section 2.4, ocular methods for
measuring tree heights in the field, which were then used
in integration limits in (9), were calibrated with a clinom-
eter. The ocular measurements were determined to be
accurate to 1 m in the vertical direction and 0.5 m in the
lateral directions [Gonçalves and dos Santos, 2008]. An-
other source of error in profiles estimated from field
measurements is the form of (9) itself, which assumes that
leaf area uniformly fills the ellipsoids described by the
dimensions measured in the field. We tested a second model
that assumed a decrease in leaf area as a function of the
radial distance from the trunks, similar to the linear density
of bicycle spokes, which decreases with radial distance from
the axle. Physically, the ‘‘spoke’’ model assumes that the
density of leaves surrounding each branch is approximately
uniform, and that the gaps between the branches of uniform
vegetation are formed by the radial spread of the branches,
or spokes, themselves, resulting in an average 1/radius
dependence of density. The spoke model can be written as

Field Density zð Þ /
XNz

i¼1

Z
Vi zð Þ

dx dy dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ

p ð12Þ

where Vi(z) is as in (9). Because taller trees tend to have
canopies with larger lateral extents, the uniform-filling
model increases the leaf area density at higher altitudes
relative to the spoke model. We also tried a spoke2 model,
with the denominator of (12) squared. The spoke2 model
assumes that leaves decrease in volume occupied per branch
as the distance from the trunk increases. There is no a priori
physical reason to assume the spoke2 model; it is merely
shown to span a number of possibilities for radial
dependence. Ultimately it would be better to base the 3-D
(not just radial) volume filling characteristics of leaf area on
field data of the type indicated by Bongers, 2001. In the
examples shown in that reference [Sinoquet and Rivet,
1997], it is clear that leaf area density, for the specific
species chosen, exhibits a radial dependence, but it is not
strictly linear, as in the spoke model. Perhaps future work
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might entail complete studies characterizing the volume
filling characteristics, of the sort indicated by Bongers
[2001], but extended to the multiple species of a tropical
forest.
[35] Table 1 shows the RMS scatters of the InSAR and

lidar means and standard deviations about the corresponding
field-measured quantities for the uniform-filling model (9),
the bicycle spoke model (12), and the spoke2 model. The
spoke model gives smaller RMS scatters from InSAR
(3.3 m) and lidar (2.9 m), but the spoke2 model is about the
same or worse than the uniform model for most of the
entries of Table 1. From Table 1, it seems that the optimal
model includes a radial dependence of leaf area which is
somewhere between the uniform-volume and spoke2 model,
and closer to the spoke model. An example of the difference
in the ground profiles using the uniform or spoke model is

shown in Figure 10. The mean changes from 24.6 m for the
uniform model to 21.2 for the spoke model. In general,
shifts of 3 meters seem reasonable as an error accounting for
both height measurement error and possible volume-filling
mismodeling.

4.3. Lidar Errors

[36] As in Figure 5, all the lidar waveforms within 50 m�
50 m areas must be averaged to produce the average profile.
For each waveform, the ground must be identified and the
waveform positioned on the x axis to be ‘‘zero’’ at the
ground. The difficulty in finding the ground for some of
the waveforms induced a significant error in the lidar
profiles. LVIS data taken in 1998 over La Selva [Blair et
al., 2004] were compared to LVIS data taken in 2005 in
order to characterize the different presentations of the
ground signal. For the same primary stand, Figures 11a
and 11b show the waveforms that were averaged together to
produce the profile, offset by about 7 meters from the
expected ground location, for the 1998 and 2005 data
respectively. Note that the 2005 data were used in Figure 7
and throughout this paper because they were closest in
epoch to the InSAR and field measurements and because all
of the stands of Figure 1 had analyzed lidar shots, while
only about half of our stands showed lidar shots in the 1998
data. For both data sets, a ground-finding algorithm
searched for a maximum within a 10 m range specified
near the point where obvious ground peaks were detected.
The point of the expected ground enhancement, ±2 m, is
shown on the x axis with arrows. Enhancements are obvious
for almost all of the 1998 waveforms in Figure 11a in the
neighborhood of the arrows. In Figure 11b for the 2005
data, however, it is difficult to see ground enhancements for
any of the waveforms. For all stands, the algorithm was
constrained to find a ground bump up to a maximum
altitude on the x axis. When there was no obvious bump,
as in Figure 11b, the upper limit was set to a single value,
established by examining the onset of the signal for all such
stands. By varying that upper limit over plausible ranges of
uncertainty, it was determined that the difficulty in finding

Figure 10. The relative field-estimated density for a
primary stand using the uniformly filled volume model
(black) and the spoke model (green). The mean of the black
curve is 24.6 m, and that of the green curve is 21.2 m.

Figure 11. For a primary stand, lidar return power (not weighted by area overlap) versus height for the
same stand in 1998 and 2005. Unlike Figure 5, only shots with centers within the 50 m � 50 m stand are
shown. Each color represents a different shot. The arrows show the expected ground altitude ±2 m.
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the origin for lidar waveforms induced a 2 meter error in
lidar mean heights. Reasons why ground returns may have
been more difficult to detect in 2005 include 1) the increase
in swath width from 1 to 2 km in the LVIS data acquisition
of 2005, requiring larger incidence angles, 2) drier con-
ditions in 1998 than 2005, resulting in more leaf loss and
possibly greater penetration in 1998, and 3) growth of
canopy and understory presenting more leaf area in 2005.

5. Conclusions

[37] InSAR complex coherence measurements with 12–
14 baselines at C band over 30 tropical forest stands at La
Selva have yielded vegetation profiles in agreement with
field and lidar profiles for large-scale vertical features.
Based on simple modeling considerations, these profiles
are interpreted as leaf area density profiles at C band.
Agreement between InSAR and lidar was at the 3.4 m level
for mean and 1.9 m level for standard deviation, as shown in
Table 1. The low extinction coefficient of 0.1 dB/m, which
yielded the best InSAR agreement field and lidar measure-
ments, may in part be due to the presence of lateral clumps
of trees, exposing bare soil or undergrowth. As in Figure 9,
the correlated rather than homogenous nature of the lateral
distribution of trees may have induced an effective extinc-
tion coefficient over the 50 m � 50 m plots much lower
than that through the densest foliage in tropical forests.
[38] Principal errors of phase and coherence calibration

for InSAR were modeled to be at the 3 m level, with the
dominant error being phase—‘‘ground finding’’—calibra-
tion errors. The principal coherence error had to do with
accounting for coherence losses which tend to make stands
seem more vertically distributed and/or less absorptive.
Dominant field errors included ocular measurement error,
but were principally due to the assumption of the uniformly
filled volume. The net field error was estimated to be 3 m
for the average height. A principal error for the lidar data
was also related to finding the ground, inducing 2 m profile-
averaged height errors. The above modeled errors are
equivalent to 14% mean-height errors for InSAR and field,
and 9% for lidar. These errors account reasonably well—
within 25%—for the observed scatters in Figure 8a between
InSAR and field mean heights (16%), lidar and field (15%),
InSAR and lidar (18%), but generally overestimate the
scatters observed.
[39] For the profile standard deviations, the scatters in

Figure 8b were 27% and 21% for InSAR and lidar about
field measurements. Though a detailed error analysis for
standard deviations was not performed, if one assumes that
the InSAR, field, and lidar errors were in the same 3:3:2
ratio as for the mean heights and uses the 1.89 m scatter for
the InSAR-field standard deviations of Figure 8b as a
normalization, the InSAR and field profile standard devia-
tion errors are 1.3 m (19%), and the lidar error is 0.9 m
(13%), which reproduces the observed scatters of Figure 8b
within 10%. Note that the InSAR and lidar error quotes, and
the inferred biomass estimation accuracies below, apply to
the specifics of this experiment, and, with optimized recon-
figurations, might be reduced in other experimental or
operational scenarios.
[40] For biomass estimation approaches linearly depen-

dent on structural attributes [e.g., Drake et al., 2002a;

Treuhaft et al., 2003; Neeff et al., 2005], these results
suggest a contribution of approximately 14–19% to bio-
mass estimation accuracy from InSAR remote sensing
alone, and 9–13% from lidar, not considering allometric
conversions between remotely sensed structure and bio-
mass. For high biomass stands, particularly in the tropics,
even if allometric errors contributed another 20% error per
hectare, the resulting 30% biomass estimation accuracy per
hectare for the InSAR in this experiment would be close to
the state-of-the-art and constitute a significant contribution
to global biomass monitoring. Lidar errors plus allometric
errors at this level would result in a net 24% error if lidar
were used for global sampling. However, these error esti-
mates do not take into account the likely scenario that some
form of structure and power measurement will yield the
optimal biomass estimate, as mentioned in section 1.1. For
fire-spread rates, regional and local climate assessment, and
biodiversity monitoring, the required forest-structure remote
sensing accuracies seem uncertain at this point.
[41] InSAR phase calibration errors can potentially be

reduced by using polarimetric InSAR at L band. Both the
increased vegetation penetration at L band and the enhanced
ability of polarimetric InSAR to detect the ground surface
[Papathanassiou and Cloude, 2001; Garestier et al., 2006]
will potentially mitigate the phase calibration error due to
problems in establishing the ground level encountered in
this work. L band repeat-track polarimetric InSAR data
have been acquired at La Selva for the same sites as in this
paper, and they will be analyzed to test the increased
performance in profile estimation. Improvements to the
analysis algorithms could include accounting for the vertical
and lateral correlations of vegetation density. The current
analysis only used vegetation volume models in which the
locations and characteristics of vegetation elements were
uncorrelated [Treuhaft et al., 1996]. The biological nature of
the profiles measured at L band, whether or not they can
still be interpreted as leaf area density, will also be consid-
ered. It is possible that smaller numbers of baselines can be
used to measure moments (mean, standard deviation, skew-
ness) or other functions of profiles [e.g., Cloude, 2007]. The
possibility of economizing on the number of baselines for
the purposes of space-based mission design will be consid-
ered with the L band repeat-track data. Multiple-frequency
InSAR observations, such as the P and X band work of
Neeff et al. [2005], can potentially reduce the number of
baselines required to produce information on vertical pro-
files. For the field measurements, upward looking lidars
may improve the accuracy of height and lateral dimension
measurements [Strahler et al., 2008]. Verifying the ‘‘spoke’’
model for volume filling, or measuring the radial depen-
dence of leaf area density, could potentially improve the
performance of the field profile estimates. More sophisti-
cated canopy models [Cescatti, 1997] may provide field
profiles which will better calibrate the InSAR and lidar in
the future. Both multiwavelength lidar and better modeling
of the lidar signal return might improve the lidar profile
accuracy. Restricting lidar acquisitions to near-nadir inci-
dence angles will, in all likelihood, improve the lidar
performance.
[42] The experiment described here should be repeated on

other types of tropical forests. For example, the performance
of the methods of this paper for the higher biomass stands of
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the moist tropical forests of Amazonia could be different
from that observed for the wet tropical forest of La Selva.
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