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Abstract: - An orbital maneuver is an important phase of a space mission. The idea is to change the orbit of a 
spacecraft, in order to be able to complete the mission goals required. It can be done to insert a spacecraft in its 
nominal orbit or during the mission to compensate undesired effects of perturbations. To perform the orbital 
maneuvers, a software that calculates an optimal maneuver is developed. This method will be used as a reference 
for comparison and analises of the suboptimal methods to be used on board. This method id based on an 
analytical development that generate equations that can be computed in a shorter time, allowing real time 
applications. In all the simulations, low thrust is used to make the maneuvers. 
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1   Introduction 
The problem of calculating orbital maneuvers is a 
very important topic in Orbital Mechanics. Thus, the 
problem of transferring a spacecraft from an orbit to 
another has grown in importance in recent years. 
Applications of this study can be found in various 
space activities, such as placing a satellite in 
geostationary orbit, the maneuvers of a space station, 
orbit maintenance of a satellite, among others. More 
information about this type of maneuvers can be 
found in references [1], [2] and [3]. 

In actual applications, there may be a need to 
make an additional maneuver, both for a transfer orbit 
or only for periodic corrections of lesser magnitude. 
This issue of transfer is to change the position, 
velocity and mass of the satellite from its current 
status to a new state pre-determined. The transfer 
may be completely constrained or partially free (free 
time, free final velocity, etc.). In the most general 
case, the choice of direction, sense and magnitude of 
the thrust to be applied should be made, respecting 
the limits of the available equipment. To carry out 
this transfer, it is intended to use optimal or sub-
optimal continuous maneuvers [4], [5]. So, to fulfill 
that task, two methods for calculating maneuvers 
were developed. 

The first of them will get an optimization 
without worrying about the processing time. The 
second method is sub-optimal and it will approach 
the directions of application of the thrust to allow a 
faster calculation of the control. 

The optimum method will be used to compare 
the consumption obtained by the sub-optimal method, 
which involves simplifications for each special 

situation, in order to obtain a high processing speed, 
favoring the possibility of using it in real-time. In 
both methods, it will be assumed that the magnitude 
of the thrust to be applied is constant and small and 
the search will be to find its direction. This direction 
can be  free (optimal method) [6] or with some kind 
of constraints (sub-optimal method). 
 
2   Sub-optimal Method 
The goal of this topic is to develop a sub-optimal 
method with high-speed computing for the 
calculation of orbital maneuvers based on continuous 
thrust and small magnitude. The idea is to have a 
method that generates quick result and, if possible, 
with a result in terms of cost of fuel not much 
different from the optimal method described above. 
This method should be used in cases of  transfers 
with small magnitude, which usually are more 
frequent in the steps that follow the insertion of the 
spacecraft in its nominal orbit. To solve this problem, 
it was chosen in the literature a base method to make 
expansions and adjustments to the needs of this work. 
The method is described below. 

A near optimal method for calculating orbital 
transfer and with minimum time (so, minimum 
consumption, as the magnitude of the thrust is 
constant, what implies that the time of application of 
thrust and consumption are directly proportional) 
around the Earth for spacecraft with electric solar 
propellant was developed by [7]. It used a technique 
of direct optimization to solve the problem of optimal 
control, with approaches toward application of thrust. 
The optimal trajectories calculated by the direct 
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approach present very close results to the optimal 
trajectories obtained from variational calculation. 

The equations of motion for the vehicle when 
the thrust is acting are shown below. The equations 
are written in terms of non-singular equinotial 
elements to cover both circular and planar orbits (i = 
0 °, 180). The relation between the equinotial 
elements (a, h, k, p, q, F) and the classical orbital 
elements (a, e, i, W, W, E) is given by: 
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where: a = semi-major axis, e = eccentricity, i = 
inclination, W = longitude of the ascending node, w = 
argument of perigee, E = eccentric anomaly and F = 
eccentric longitude. 

For a spacecraft moving in the gravitational field 
and subject to the propulsive force, the equations of 
motion are as follows:   

    
α= ˆMax T

'           (6) 
 

In equation 6 the state vector is x = [a, h, k, p, q] 
T and the sign ( ') indicates the derivative with 
respect to time. The vector   (3 x 1) is a unit vector 
along the direction of thrust application. The value aT 
is the magnitude of the thrust acceleration, given by: 
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where h is the efficiency of the propulsion system, P0 
is the initial power given propulsion system, m is the 
mass of the vehicle, g is the gravity acceleration at 
sea level and Isp is the specific impulse. The equation 
of state for F is not included because it has been used 
the average of orbital elements and thus only 
elements which vary slowly are considered. 

The processing time is significantly reduced when 
using orbital averages. As all orbital elements used 
are variables that vary slowly, due to the fact that the 
force of thrust has little magnitude, it can be used 
major steps of integration, in the order of days. The 
equation of motion of the spacecraft can be 
approximated by calculating the increment of each 
orbital element in a period and dividing by such a 
time. Therefore, the variation in time of the equinotial 
elements by complete orbit with the propeller acting 
can be obtained from the equation: 
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where   is the approximation of the state and T is the 
orbital period. The bar on top of variables means that 
they were evaluated using the average state vector. 
The integration represents the change in orbital 
elements in a revolution with the orbital elements 
kept constant, unless the eccentric longitude F, which 
is varied between -p e +p. 

Setting the direction for the thrust application   by 
the components (id, jd, kd), the product shown inside 
the integral symbol can be obtained. As the 
acceleration is held constant, it means that this value 
can be placed outside of the integral symbol. Thus, 
the analytical equations used for the terms 
corresponding to each of the elements are shown 
below, where id, jd and kd represent the three 
components of the direction vector of the thrust 
application. 
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For the element h: 
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For the element k: 
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For the element p: 
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For the element q: 
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These equations are written in terms of equinotial orbital elements. It is also possible to write them according to the 
traditional keplerian elements. In this case they are: 
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The calculus of integration shown in Equation 8 
generates equations that are too long for real 
applications, especially taking into account the 
need to implement them in real time for a 
maneuver. Thus, although these equations, in their 
complete form shown here, generate a new method 
for calculating orbital maneuvers, their use will be 
focused on individual cases. This implies to define 
a reference orbit, which may be the final desired 
orbit, the  initial orbit of the spacecraft or even an 
average of those two orbits. As it will be 
considered only maneuvers with small amplitudes, 
this restriction will not bring great losses in terms 
of accuracy. 

Then, with these approaches made, numerical 
values can be used, so that, these functions are 
only functions of F and numerical constants. From 
there, the integral used in equation 8 can be 
calculated and it is obtained a simple analytical 
equations for the variation of each orbital element 
considered as a function of direction and 
magnitude of the thrust applied. Thus, the problem 
of obtaining the lowest fuel consumption in a 
maneuver can be defined as to find the optimal 

direction for thrust application that minimizes: 
 

J = tf      (19) 
 

Subject to the mean equations of motion and the 
initial condition: 

 
0x)0(x =      (20) 

 
and also subject to the ties in the final state: 
 

  [ ] 0x)t(xt),t(x ffff =−=ψ    (21)
  
3   Results 
Several maneuvers were simulated to test the 
methods developed [8]. The first two maneuvers 
involve the same initial orbit, but the directions of 
thrust application and time of the operation are 
different, with the goal of reaching a final orbit 
farther. The third maneuver involves a greater range 
of variation in a semi-major axis and it is good to 
demonstrate the applicability of the method in 
situations like this.  
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3.1 Maneuver 1 
In this specific case, the semi-major axis was changed 
and eccentricity and the argument of perigee of the 
orbit were kept constants. The changes were small in 
magnitude (about 47 meters in a semi-major axis, the 
main objective of the maneuver) to be compatible 
with the method developed. The argument of perigee 
was kept constant as 90 degrees, but it could be any 
value. 

Table 1 shows the elements of the initial orbit and 
the components of the orbit to be achieved after 
maneuver 1. 

Table 2 shows the input data required for the first 
maneuver simulation with the optimal method: orbital 
elements of the initial orbit, the vehicle 
characteristics (initial mass, the magnitude of thrust, 
initial position of the vehicle, true anomaly), the 
condition imposed to the final orbit and estimation of 
the solution to start the process of iteration 
(beginning and end of propulsion, angles of pitch and 
yaw and their rates of initial change and an estimation 
of fuel consumption). 

 
Table 1: Elements of initial and final orbit for 

maneuver 1. 
Initial orbit Condition in the final 

orbit 
Semi-major axis  

 7259,650 km 
Semi-major axis 

7259,697 km 
Eccentricity  

0,0629 
Eccentricity 

 0,0629 
Inclination 

66,52º 
Arg. of perigee 

 90º 
Long. of ascending node 

110º 
 

Arg. of perigee 
 90º  

 

 
 

Optimal case 
 
Table 2: Data for the maneuver 1 using the optimal 

method. 
Total mass (vehicle + fuel) 2500 kg 
Available thrust = 1 N 
Initial position = 0 

 
 

Spacecraft 
initial data True anomaly = 0º 

Start of the engime = 0º 
Stop of the engine = 5º 
Initial pitch angle =  0º 
Initial yaw angle = 0º 
Initial rate of variation in pitch = 0 
Initial rate of variation in yaw = 0 

 
 
 

Initial 
estimate of 

solution 
Fuel needed to maneuver = 2 kg 

 
 

Sub-optimal case 
 
Turning the initial keplerian elements to non 
singular elements, according equations 1 to 5: 
 
a = 7,25965x106  m 
 
h = -0,0220906 
 
k = -0,0588826 
 
p = 0,614085 
 
q = -0,230383 
 

Therefore, now the numerical values of the orbit 
can be used, which will be used as the reference 
orbit, carrying out the integration shown in 
equation 8 and in this way, it is possible to obtain a 
set of equations that provide the variation of each of 
the elements used to describe the orbit by orbital 
revolution with the propellers acting all the time. 
Therefore, they will become the equations of 
motion of the spacecraft with the assumptions 
adopted. These equations, already taking into 
account the fact that it was a planar maneuver, so, 
kd = 0, as a function of the components of the 
vector that defines the direction of thrust applied, 
are: 

 
daa= acel*(1987180*id+5296820*jd)   (22) 
 
dha= acel*(-0,832233*id+0,00831686*jd)  (23) 
 
dka= acel*(-0,00831686*id+0,851282*jd)  (24) 
 
dpa= =0      (25) 
 
dqa= =0      (26) 
 
where accel is the acceleration imposed by the 
satellite propellant. 

To show in detail the usefulness of these 
equations, figures 1 to 3 show the variation of the 
elements by orbit as a function of the direction of 
the thrust applied. It is possible to get many 
informations about the effect of the direction of the 
thrust applied in orbital elements. Figure 1, made 
for the situation where the direction of the thrust 
applied is a constant, shows that there is a value of 
the component x for which the semi-major axis 
shows a maximum variation. This value is around 
0.35. That figure may be used for a prior 
assessment of the direction of thrust applied 
depending on the objectives of the mission. 
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Fig. 1: Variation of the semi-major axis as a 
function of the direction of the thrust applied. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Variation of the orbital element h as a 
function of the direction of the thrust applied. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Variation of the orbital element k as a 
function of the direction of the thrust applied. 

 
As p and q are constants, graphic is not shown. 

With these equations, the software Mathematica is 
used to solve the optimization problem and to obtain 
the optimal solution. Several assumptions can be 
made about the direction of the thrust applied. The 
simplest of them is assuming a constant direction. So, 
the problem becomes to find the value of id that 
generates the minimum fuel consumption, because 
kd = 0 (planar maneuver) and jd is obtained by the 
condition that the vector that defines the direction of 
the thrust applied is unit. The solution found is id = 
0.38. Considering linear or parabolic relations can 
reduce the consumption so much and the time of 
maneuver obtained, but it is not studied in this part of 
the work. 

Table 3 shows the final orbit achieved by the 
spacecraft after the maneuver, for the optimal and 
sub-optimal method, as well as the fuel consumed 
and time of make the maneuver. 
 

Table 3: Final keplerian elements obtained for 
maneuver 1. 

Final elements Optimal 
method 

Sub-optimal 
method 

Semi-major axis  
(km) 

7259,697 7259,697 

Eccentricity 
 

0,062887 0,062887 

Inclination 
 (°) 

66,52 66,52 

Long. of ascending 
node  (°) 

110 110 

Arg. of perigee (°) 
 

90 90 

Consumption (kg) 
 

0,1652 0,2808 

Duration of the 
maneuver (min) 

302  512 

 
 

3.2   Maneuver 2 
For maneuver 2, the semi-major axis was also 
changed and the eccentricity and the argument of 
perigee of the orbit were kept constant. The changes 
were of a magnitude slightly higher than in the 
previous case, about 120 meters in semi-major axis, 
the main objective of the maneuver, also aiming to be 
compatible with the method developed. The 
argument of perigee was kept constant in value 90 
degrees, but could be any value. 

Table 4 shows the elements of the initial orbit and 
the conditions imposed for maneuver 2. 

 
 
 
 

 

da(km)

0.2 0.4 0.6 0.8 1

2.5

3

3.5

4
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id 

                                                  id 

0.2 0.4 0.6 0.8 1
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       dk  
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Table 4: Elements of initial and final orbit for 
maneuver 2. 

Initial orbit Condition in the final 
orbit 

Semi-major axis 
 7259,650 km 

Semi-major axis 
7259,770 km 

Eccentricity 
0,062900 

Eccentricity 
 0,062900 

Inclination 
 66,52º 

Arg. of perigee  
90º 

Long. of ascending node   
110º 

 

Arg. of perigee 
90º 

 

 
Optimal case 
 
Table 2 also shows the parameters used for maneuver 
2, with the optimum method. 
 
Sub-optimal case 
 
As the initial orbit (which is also used as the 
reference orbit) is the same as the previous example, 
both the initial orbital elements and the approximate 
equations of motion are the same. 

So, the software Mathematica is again used to 
solve the problem of optimization and to get the 
optimal solution. Once more it will be assumed a 
constant direction. In this way, the problem becomes 
to find the value of id that generate the minimum fuel 
consumption, because kd = 0 (planar maneuver) and 
jd is obtained by the condition that the vector that 
defines the direction of the thrust applied is unit. The 
solution found is id = 0.41. 

Table 6 shows the final orbit achieved by the 
spacecraft after the maneuver, for the optimal and 
sub-optimal methods, as well as the fuel consumed 
and the time of the maneuver. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabela 6 - Final keplerian elements obtained for 
maneuver 2. 

Final elements Optimal 
method 

Sub-optimal 
method 

Semi-major axis 
 (km) 

7259,77 7259,77 

Eccentricity 
 

0,0628876 0,0628876 

Inclination  
(°) 

66,52 66,52 

Long. of ascending node 
 (°) 

110 110 

Arg. of perigee 
 (°) 

90 90 

Consumption 
 (kg) 

0,2520 kg 0,3900 kg 

Duration of the maneuver 
(min) 

601,8 1020,2 

 
3.3 Maneuver 3 
The following test will be a maneuver with greater 
magnitude, with a change of about 31 km in semi-
major axis and 0.0026 in eccentricity and also around 
38 degrees in the argument of perigee. Table 7 shows 
the input data of maneuver 3. These results show that 
this method can be applied to transfers involving 
changes of the order of tens of kilometers in a semi-
major axis. 
 

Table 7: Elements of initial and final orbit for 
maneuver 3. 

Initial orbit Condition in the final 
orbit 

Semi-major axis 
 7738,87 km 

Semi-major axis 
7707,438 km 

Eccentricity 
0,00371677 

Eccentricity 
0,0011589 

Inclination 
 66,0353º 

Arg. of perigee  
90º 

Long. of ascending node   
7,57006º 

 

Arg. of perigee 
128,059º 

 

 
Optimal case 
 
Table 8 shows the input data for the optimal method 
in the case of maneuver 3. 
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Table 8: Data for the maneuver 3 using the optimal 
method. 

Total mass (vehicle + fuel) 2500 kg 
Available thrust = 1 N 
Initial position = 0 

 
 

Spacecraft 
initial data True anomaly = 0º 

Start of the engime = 0º 
Stop of the engine = 5º 
Initial pitch angle =  0º 
Initial yaw angle = 0º 
Initial rate of variation in pitch = 0 
Initial rate of variation in yaw = 0 

 
 
 

Initial 
estimate of 

solution 
Fuel needed to maneuver = 12 kg 

 
Sub-optimal case 
 

Changing the initial keplerian elements to non 
singular elements, according to Equations 1 to 5: 

 
a = 7,71544x106 m 
 
h = 0,0011488 
 
k = -0,000152672 
 
p = 0,0856096 
 
q = 0,644182 
 
Therefore, now it is possible to use the numerical 
values of this orbit, which will be used as the 
reference orbit, carrying out the integration shown in 
equation 8 and, in this way, it is possible to obtain a 
set of equations that provide the variation of each of 
the elements used to describe the orbit by orbital 
revolution with the propellers acting all the time. 
Therefore, these will be the equations of motion of the 
spacecraft with the assumptions adopted. These 
equations, as a function of the components of the 
vector that define the direction of the thrust applied, 
are: 
 
daa=acel*(7146070*id+949690*jd)                       (27) 
 
dha=acel*(-0,936935*id-0,000068*jd)    (28) 
 
dka=acel*(0,00007081*id+0,936411*jd)   (29) 
 
dpa=0        (30) 
 
dqa=0                                (31)
    
With these equations, the software Mathematica is 
used to solve the optimization problem and to obtain 
the optimal solution. Assuming constant direction, the 

value found was id = 0.94.  
 
Table 9 shows the final orbit achieved by the 
spacecraft after the maneuver, for the optimal and sub-
optimal cases, the fuel consumed and the time to 
perform the maneuver. 
 

Tabela 9 - Final keplerian elements obtained for 
maneuver 3. 

Final elements Optimal 
method 

Sub-optimal 
method 

Semi-major axis 
 (km) 

7707,4380 7707,4380 

Eccentricity 
 

0,0011589 0,0011589 

Inclination  
(°) 

66,0353 66,0353 

Long. of ascending node 
 (°) 

7,57006 7,57006 

Arg. of perigee 
 (°) 

90 90 

Consumption 
 (kg) 

14,01 21,13 

Duration of the maneuver 
(min) 

322 504 

 
 
4   Conclusion 
It was studied and developed a method for the case of 
sub-optimal continuous maneuvers. This method is 
based on an analytical development, which generates 
equations that can be used for fast processing time, 
allowing its use in real time. The goal is to find the 
direction of the thrust applied to perform the orbital 
maneuvers, with the application of the linear 
direction of the applied thrust. The time and 
consumption are  about 20% higher when compared 
to the ones obtained from the optimal method, so the 
suboptimal method can be used as a first estimate.  
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