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Abstract. The Wang & Mendel algorithm for modeling for dynamic behavior in vibration testing during satellite qualifica-
tion is proposed in this paper. Vibration testing is carriedout for emulating launchings to avoid breaks and other damages
of space systems. Further, such a testing also allows feasible adjustments in the structure model by dynamic behavior
analysis. Forecasting dynamic behavior is accomplished byobtaining a model that best represents the actual system
in a process named system identification. Takagi-Sugeno fuzzy system approach is employed to represent space devices
underlying space qualification tests. Fuzzy systems are universal approximators, that is, they are able to represent any
system. They are able to deal with both qualitative information (expertise, heuristic knowledge) and quantitative (data)
information. Nevertheless, when dealing with data this approach requires other techniques working in synergy for ad-
justment of their parameters. This paper addresses the use Wang & Mendel learning algorithm for tuning Takagi-Sugeno
modeling by using experimental data from vibration space qualifying tests. The resulting fuzzy model is used to describe
the dynamical behavior through data measured during the qualification of space systems in Integration and Testing Labo-
ratory (LIT) at the National Institute of Space Research (INPE). The objective in this paper is, then, to study the feasibility
of employing such a nonlinear identification technique for estimating the future behavior of vibration systems. For rule
base extraction by using the Wang & Mendel algorithm the model is set to deal with different membership functions in
order to define the optimized one. The proposed method employs Gaussian membership functions in the input universe
of discourse while the output is selected to be a singleton membership function. The conjunction operator chosen is to
be the minimum. The problem is composed of two parts. In the first one, the model uses part of signals of low amplitude
for tuning the fuzzy system and then it is validated with the remaining set of data. Afterwards, this proposed neuro-fuzzy
model is employed to estimate a distinct dynamical behaviorwhen a new input signal of high amplitude is applied to the
space system. The criterion for validation of the models adopted was Pearson multiple correlation coefficients. Results
of the structural model used in the design of the satellite and of their sub-systems are confronted with the real behavior
presented by the structure, allowing eventual adjustments. These results were improved when used the variation of the
signal of low amplitude as input.
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1. INTRODUCTION

Computational Intelligence has been considered as the successor of Artificial Intelligence and the way of the future
computing (Venayagamoorthy, 2009). It is mainly composed by Fuzzy Systems (FIS – Fuzzy Inference System), Artificial
Neural Networks (NN) and Evolutionary Computing (EC), Immune Systems (IS), Swarm Intelligence (SI) along with
hybrid systems concerning the field of searching, optimization and machine learning (Venayagamoorthy, 2009; van Eck
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et al., 2006; Konar, 2005). This approach presented a boost during the 90’s, driven by an increasing interest of engineers,
economists, and many other professionals to apply these promising tools in their specific fields, aiming for problem
solving automation and fast evaluation of possible solutions. Computational Intelligence is largely employed in control
system design, modeling and identification, and decision support system.

Despite the success of deterministic mathematical appliedto dynamic modeling, Computational Intelligence (CI) has
been presented as an important alternative that has also taking part in dynamic modeling and identification. Among the
techniques that compose Computational Intelligence, one of the most prominent is Fuzzy System.

Fuzzy system intertwined with the bioinspired meta-heuristic by using swarm intelligence simulating social behavior
and interactions of individuals (particles) – known as Particle Swarm Optimization (PSO) – for space system modeling
were applied in (Marinke et al., 2005; Araujo et al., 2006; Araujo and Coelho, 2007; Araujo and dos S. Coelho, 2008).
A PSO-modified technique which introduces a simulation of the action of atmosphere turbulence named Particle Swarm
Optimization with Turbulence (PSOT) (da Luz, 2007; Becceneri et al., 2006) used together with fuzzy system was em-
ployed in the space sector in (Araujo et al., 2009). In turn, fuzzy system working in synergy with artificial neural network
for modeling vibration dynamic behavior was applied in (Araujo and Marinke, 2008).

Embracing fuzzy set theory and fuzzy logic, fuzzy systems are universal approximators able to deal with both qual-
itative information (expertise, heuristic knowledge) andquantitative (data) information (Guillaume, 2001; Sugenoand
Yasukawa, 1993). From the perspective of data-driven analysis and design Takagi-Sugeno fuzzy systems became an
option to cope with complex, nonlinear dynamical modeling problem.

Takagi-Sugeno (T-S) fuzzy model (Takagi and Sugeno, 1985) is an alternative for fuzzy system representation when
dealing with data. It is able to approximate highly nonlinear functions and exhibits simple structure by using a small
number of implication rules (Takagi and Sugeno, 1985; Sugeno and Kang, 1988). T-S model divides the input space in
the same manner that Mamdani fuzzy system (Mamdani and Assilan, 1975) but aims to approximate structure of the local
models to a linear model in the consequent of the rule. Another advantage of employing this approach is that it reduces
the problem complexity by restricting the number of rules that will be processed in each subsystem, and then interpolating
them to obtain the global model.

The T-S fuzzy model is characterized as a set of IF-THEN ruleswhere the consequent part are linear sub-models
describing the dynamical behavior of distinct operationalconditions meanwhile the antecedent part is in charge of inter-
polating these sub-systems. This model can be represented as follows:

Rj : IF x1 is A1j AND . . . AND xm is Amj THEN yj = f(·) (1)

The “THEN functions” constitutes the consequent part of thej-th rule of the fuzzy system that is characterized, but not
limited to, as a linear polynomial,yj = b

j
0 + b

j
1u

j
1 + . . . + bj

qj
uj

qj
. The j-th rule output,yj = f(u, bj), is function

of the consequent input vector,u = [uj
1, . . . , u

j
qj

]T , comprisingqj terms and the polynomial coefficient vector,b =

[bj
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j
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]T , that compose the consequent parameter set.
The global model is, then, obtained by the interpolation between these various local models:

y =

N∑

j=1

hj(x)yj(uj) , (2)

whereN denotes the maximal number of rules andhj(z) is the normalized firing strength ofR(j) , defined as:

hj(x) =
µj(x)

∑M

j=1 µj(x)
, (3)

with:
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for linguistic labels,Aj
i , associated to a membership function.

When linguistic labelsAj
i are determined by Gaussian membership functions,

µA1j
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]
(5)

wheremij andsij are the centers (mean value) and the spreads (standard deviations) of the Gaussian function – respec-
tively defining the core and the support of membership functions – then equation (1) may be rewritten as:

Rj : IF x1 is exp
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. (6)
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Figure 1. Space Vibration Test System.

The question that comes up is how are the best feasible adjustment of themij , sij , andbi parameters for alli, j for
tuning the fuzzy system in (6). When heuristic systems are developed knowledge extracted from specialists are directly
employed to tune the fuzzy system. However, when dealing with data, an additional technique is necessary to optimize
those parameters. These techniques encompasses, for instance, but not limited to, Gath-Geva clustering (GG) algorithm,
Wang & Mendel learning (WM) algorithm, subtractive learning(S) algorithm, Hard C-means (HCM) algorithm, Fuzzy
C-Means (FCM) algorithm, Gustafson-Kessel (GK) algorithm, adaptive neural-fuzzy inference system (ANFIS), only to
mention few.

This paper addresses the Wang & Mendel learning algorithm (Wang and Mendel, 1992) for modeling the dynami-
cal behavior in vibration testing during satellite qualification since fuzzy systems, in general, and Takagi-Sugeno fuzzy
systems, in particular, is not characterized by possessingany learning process. This approach is effective for rule base
extraction when processing numerical data and presents simple computational characteristic, as describe next.

1.1 Space Vibration Test Modeling

The resulting fuzzy model is used to describe the dynamical behavior through data measured during the qualification
of space systems in Integration and Testing Laboratory (LIT) at the National Institute of Space Research (INPE). This
paper focuses on vibration testing.

Vibration testing is employed for emulating vibrations present during the launching. Such a testing is carried out
to verify the structure of the satellite and their sub-systems in order to appropriately support the launcher lift-off and to
guarantee useful life when in orbit. There are different levels of excitation during vibration testing in order to verify and
assure that the satellite and their sub-systems will support the efforts when in orbit or during the launching. Due to that
estimating future dynamical behavior when using high amplitude testing signals is important to safe satellites or other
space devices. Moreover, the analysis of the dynamical behavior can help not only to avoid breaks and other damages but
also allows feasible adjustments in the structure model.

The simplified structure of the electro-dynamic vibration system is depicted in Fig. 1 wherexlm, ylm, andzlm are
displacements in the axis,x, y, andz, respectively. The indexl, when is related toc corresponds to the sensor on the
control system while the sensor on the specimen underlying the testing is represented by the indexs. The indexm is
related to the number of the sensor used in the test. In this paper, only the displacement inx direction is took into
account. While, the sensorxc1 compose the input variable,u1(k) of the universe of discourse,U1, corresponding to the
displacement of the electro-dynamic vibration system, thesensorxs1 is related to the output variable,y(k) of the universe
of discourse,Y , corresponding to the displacement of the space systems under test.

It is also worth mentioning that a second input is taken into account by using the previous input of the system, that
is, u1(k − 1). This is important because when dealing with fuzzy model identification, the input universe of discourses
composing the input spaceX are chosen to be finite number of past inputs and past outputs of the system representing the
system dynamics (Barada and Singh, 1998). The T-S model is, then, represented by the regression type of rules that maps
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the current state and input variable into the output variable and Eq. (6) is related to

yp(k + 1) =

n−1∑

i=0

aiyp(k − i) +

m−1∑

j=0

biup(k − j), (7)

whereai andbj are constant unknown parameters when dealing, for instance, with discrete, linear, time-invariant, single-
input-single-output systems. In doing so, the Eq. 6 can be rewritten, in the simplified membership function representation,
as in the following form:

R(j) : IF y(k) is A
j
1 AND . . . AND y(k − n + 1) Aj

n AND u(k) is B
j
1 AND . . . AND u(k − m + 1) Bj

m

THEN ŷj(k + 1) =
∑n−1

i=0 aj
py(k − i) +
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p=0 bj

pu(k − p) + cj

(8)

The objective of the optimization process consists of determining (tuning) these unknown parameters,ai, bi, ci, Ai,
i.e., (mAij

, sAij
, for all i, j), andBi, i.e., (mBij

, sBij
, for all i, j ), when using measured input-output. These parameters

compose the matrixθ and the performance of the WM-TS Fuzzy model output estimation, ŷ(k), is used for computing
the minimum square error when compared with the current output, y(k), as given by:

minθ =

N∑

k=1

||ŷ(k) − y(k)|| . (9)

The estimate output (or fuzzy function approximation)ŷ(k + 1) in (9) is used for computing the square error when
compared with the actual output,y(k+1). This activity corresponds to the parameter-learning taskand, consequently, the
parameter estimation process. The identification of T-S system is realized in this paper based on Wang & Mendel learning
algorithm for optimization of those parameters.

1.2 Wang & Mendel Learning Algorithm

The Wang & Mendel learning method is in charge of finding out the parameters for designing the fuzzy system. It
comprises five steps and is characterized for being a simple and straightforward method not requiring time-consuming
training.

Suppose there is a set of input-output mapping in the form:
(
x
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1 , . . . , x

(1)
j . . . x(1)

n , y(1),
)

,
(
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(2)
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. (10)

where the input is given byxj , such thatn represented the inputs, and the output isy, such thatm represented the number

of epochs. The input-output mapping,f : x
(m)
1 , . . . , x

(m)
j . . . x

(m)
n → y(m), is determined by fuzzy IF-THEN rules.

The main steps of the global version of Wang & Mendel are:

• Step 1:

Divide the Input and Output Spaces into Fuzzy Regions:

– The interval in which the input and output variables lie in their respective universe of discourse is repre-
sented by[x−

1 , x+
1 ], . . . [x−

j , x+
j ], . . . , [x−

n , x+
n ], [y−, y+].

– Divide each domain into 2N+1 regions and assign each one a multidimensional fuzzy membership func-
tion.

– Ruspini partition is setup.

– Obs. 1: Any shape of the membership function may be chosen.

– Obs. 2: Different N’s may be chosen for each universe of discourse, or not.

• Step 2:

Generate Fuzzy Rules from Given Input Data :

– Determine the degrees of givenx(i)
1 , x

(i)
2 , . . . , x

(i)
j , . . . , x

(i)
n , y(i), taking into account their respective

membership functions.

– Assign a givenx(i)
1 , x

(i)
2 , . . . , x

(i)
j , . . . , x

(i)
n , y(i), to the region with maximum degree.

– Obtain one rule from one set of input of the input-output epoch.

– Obs. 1: The fuzzy IF-THEN rules uses logical connective among the input statements and any of the
T-norm may be set.
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• Step 3:

Assign a Degree,D(Rule), to Each Rule according to:

D(Rulei) = mAi(x1)mBi(x2) . . . mNi(xn)m
(
Zy) . (11)

The assigned degree,m(i), for thei-th epoch is used to redefine the degree of thei-th rule as:

D(Rulei) = mAi(x1)mBi(x2) . . . mNi(xn)mZi(y)m(i) . (12)

such that the degree of a rule is defined as the product of the degrees of its components and the degree of the
epoch which generates this rule.

• Step 4:

Create a Combined FAM Bank (multidimensional Fuzzy Matrix) : The cells of the multidimensional fuzzy
matrix are filled with fuzzy rules by following a specific strategy.

– FAM Bank is assigned rules from either those generated from numerical data or linguistic rules;

– If there is more than one rule in one box of the FAM bank, use therule that has maximum degree.

• Step 5:

Determine a Mapping based on the Combined FAM Bank (defuzzification strategy) :

– Combine the antecedents of thei-th fuzzy rule according to:
mi

oi
j

= mIi
1

(x1)mIi
2

(x2) . . . mIi
j
(xj) . . . mIi

n
(xn) , (13)

whereoi denotes the output region of thei-th rule, andIi
j denotes the input region.

– Determine the output by using the centroid defuzzification formula:

y =

∑
K

i=1
mi

oi
j

yi
j

∑
K

i=1
mi

oi
j

. (14)

wherey denotes the center value of regionoi, the smallest absolute value among all the points at which
the membership function for this region has membership value equal to one, andK is the number of
fuzzy rules in the combined FAM Bank.
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(c) Validate Dynamical Response for Conditioning Signal:
Experimental Data and Estimate Output, Reduced Amplitude.
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1.3 Results

To best obtain the optimized fuzzy input-output mapping during learning from data, the Wang & Mendel algorithm
is set to deal with different number of membership functions. The proposed method employs Gaussian membership
functions in the input universe of discourse while the output is selected to be a singleton membership function as before
mentioned in (6).

Actual data with high and low amplitude signals were used foreliciting the fuzzy model. The model uses part of
signals of low amplitude (Training Data) for tuning the fuzzy system and then it is validated with the remaining set of
data (Validate Data) as depicted in Fig. 2. Afterwards, the computed WM-fuzzy model is employed to estimate a distinct
dynamical behavior when a new input signal of high amplitudeis applied to the space system. Results of the structural
model used in the design of the satellite and of their sub-systems are confronted with the real behavior presented by the
structure, allowing eventual adjustments.

The input-output mapping for the estimate fuzzy model when employing three membership functions is shown in
Fig. 3(a). The training dynamical response for conditioning signal with experimental data and estimate output with
reduced amplitude is illustrate in Fig. 3(b). Notice that the estimate output is quite similar to the experimental data.This
is justified due to the fact that this experimental output data, together with the experimental input data, were employed
in the training task. The validate dynamical response for conditioning signal with experimental data and estimate output
with reduced amplitude is illustrated in Fig. 3(c). Although not presenting an equivalent result than latter one, the estimate
output follows most of the main dynamical behavior in this not trained part of the reduced amplitude signal data.

In what follows, fuzzy model was employed in the attemptive to estimate a second output but now with a new high
amplitude input signal. Here the same interval of training and validation is followed for making the comparative analysis
easier. The training dynamical response for conditioning signal with experimental data and estimate output with high
amplitude is illustrate in Fig. 3(d). Concerning the validate interval, the dynamical response for conditioning signal with
experimental data and estimate output with high amplitude is illustrate in Fig. 3(e). Although the estimate dynamic output
does not reach the same amplitude in both intervals, they capture mostly the dynamic of the experimental data. It is worth
mentioning that, here, only the fuzzy inference system for modeling the space vibration testing with three membership
functions was employed. Results are promising and new research in the number of membership functions and rules must
be investigated. Another result that should be pointed out is that the fuzzy model was obtained with the Wang & Mendel
learning algorithm that has shown its effectiveness in thistask even being recognized as a simple and straightforward
method.

Additionally, these results were obtained with the lower amplitude of the reduced amplitude signal data, demonstrating
its robustness and capacity of generalization.

2. CONCLUSION AND FUTURE WORK

To obtain a feasible input-output mapping by learning from data this paper employed the Wang & Mendel learning
algorithm for tuning a Takagi-Sugeno fuzzy model. Results has shown that combining Wang & Mendel learning algorithm
and fuzzy systems it is possible to obtain hybrid models withthe capacities of learning, adaptation, optimization when
applied to space qualification activity. In this paper, the Takagi-Sugeno fuzzy model was employed to describe the
dynamic vibration system used to emulate environmental conditions during space launching moment. The model uses
part of signals of low amplitude for training the neuro-fuzzy system and then it is validated with the remaining set of
data. Afterwards, the estimate fuzzy model is employed to estimate a distinct dynamical behavior when a new input
signal of high amplitude is applied to the space system. In these conditions results show to capture the main dynamic
characteristics of the experimental data. In this sense, the WM-TS fuzzy modeling becomes an alternative for forecasting
dynamic satellite behaviors under distinct exogenous input. It is also shown that the models have good capacity of
generalization. These results were improved when used the variation of the signal of low to high amplitude as input.

In order to check if a better performance for the estimate model can be reached, research is going to be verity if the
number of membership functions and rules interfere in the results. Also, comparative analysis along with other methods,
especially from computational intelligence, will be carried out.
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