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Abstract. The Wang & Mendel algorithm for modeling for dynamic behairivibration testing during satellite qualifica-
tion is proposed in this paper. Vibration testing is carriaat for emulating launchings to avoid breaks and other daesag
of space systems. Further, such a testing also allows fieaadjustments in the structure model by dynamic behavior
analysis. Forecasting dynamic behavior is accomplisheattgining a model that best represents the actual system
in a process named system identification. Takagi-Sugenry 8ystem approach is employed to represent space devices
underlying space qualification tests. Fuzzy systems aneetsal approximators, that is, they are able to represent an
system. They are able to deal with both qualitative infofamafexpertise, heuristic knowledge) and quantitativetgfla
information. Nevertheless, when dealing with data thisrapph requires other techniques working in synergy for ad-
justment of their parameters. This paper addresses the asg & Mendel learning algorithm for tuning Takagi-Sugeno
modeling by using experimental data from vibration spacalifging tests. The resulting fuzzy model is used to describ
the dynamical behavior through data measured during thdificetion of space systems in Integration and Testing Labo-
ratory (LIT) at the National Institute of Space ResearchREY. The objective in this paper is, then, to study the felisib

of employing such a nonlinear identification technique fetireating the future behavior of vibration systems. Foerul
base extraction by using the Wang & Mendel algorithm the risdset to deal with different membership functions in
order to define the optimized one. The proposed method em@layssian membership functions in the input universe
of discourse while the output is selected to be a singletomimeeship function. The conjunction operator chosen is to
be the minimum. The problem is composed of two parts. In tteofire, the model uses part of signals of low amplitude
for tuning the fuzzy system and then it is validated with émeaining set of data. Afterwards, this proposed neuroyfuzz
model is employed to estimate a distinct dynamical behavim@n a new input signal of high amplitude is applied to the
space system. The criterion for validation of the modelgpéetbwas Pearson multiple correlation coefficients. Result
of the structural model used in the design of the satellitg @intheir sub-systems are confronted with the real behavior
presented by the structure, allowing eventual adjustment®se results were improved when used the variation of the
signal of low amplitude as input.

Keywords: Satellite Qualification; Vibration Testing; Fuzzy ModginVang & Mendel (WM) Algorithm.
1. INTRODUCTION

Computational Intelligence has been considered as theesscof Artificial Intelligence and the way of the future
computing (Venayagamoorthy, 2009). Itis mainly composeHirzy Systems (FIS — Fuzzy Inference System), Artificial
Neural Networks (NN) and Evolutionary Computing (EC), InmeuSystems (IS), Swarm Intelligence (SI) along with
hybrid systems concerning the field of searching, optinomsénd machine learning (Venayagamoorthy, 2009; van Eck
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et al., 2006; Konar, 2005). This approach presented a booistgtthe 90's, driven by an increasing interest of engisger
economists, and many other professionals to apply theseigirg tools in their specific fields, aiming for problem
solving automation and fast evaluation of possible sohgtiocComputational Intelligence is largely employed in coint
system design, modeling and identification, and decisigpasu system.

Despite the success of deterministic mathematical apmielgnamic modeling, Computational Intelligence (CI) has
been presented as an important alternative that has alieg tadrt in dynamic modeling and identification. Among the
techniques that compose Computational Intelligence, étleeanost prominent is Fuzzy System.

Fuzzy system intertwined with the bioinspired meta-heigrisy using swarm intelligence simulating social behavior
and interactions of individuals (particles) — known as ieErtSwarm Optimization (PSO) — for space system modeling
were applied in (Marinke et al., 2005; Araujo et al., 2006aéjo and Coelho, 2007; Araujo and dos S. Coelho, 2008).
A PSO-maodified technique which introduces a simulation efdhtion of atmosphere turbulence named Particle Swarm
Optimization with Turbulence (PSOT) (da Luz, 2007; Becceatal., 2006) used together with fuzzy system was em-
ployed in the space sector in (Araujo et al., 2009). In tunazy system working in synergy with artificial neural networ
for modeling vibration dynamic behavior was applied in (#jmand Marinke, 2008).

Embracing fuzzy set theory and fuzzy logic, fuzzy systenesieniversal approximators able to deal with both qual-
itative information (expertise, heuristic knowledge) aqhntitative (data) information (Guillaume, 2001; Sugemal
Yasukawa, 1993). From the perspective of data-driven aisaBnd design Takagi-Sugeno fuzzy systems became an
option to cope with complex, nonlinear dynamical modelingjgem.

Takagi-Sugeno (T-S) fuzzy model (Takagi and Sugeno, 198&hialternative for fuzzy system representation when
dealing with data. It is able to approximate highly nonlin&actions and exhibits simple structure by using a small
number of implication rules (Takagi and Sugeno, 1985; Sogerd Kang, 1988). T-S model divides the input space in
the same manner that Mamdani fuzzy system (Mamdani andafsdi75) but aims to approximate structure of the local
models to a linear model in the consequent of the rule. Amatbeantage of employing this approach is that it reduces
the problem complexity by restricting the number of rulest thill be processed in each subsystem, and then interpglati
them to obtain the global model.

The T-S fuzzy model is characterized as a set of IF-THEN rulbere the consequent part are linear sub-models
describing the dynamical behavior of distinct operatiamiditions meanwhile the antecedent part is in charge ef-int
polating these sub-systems. This model can be represenfelicavs:

Rj IF 2 is Alj AND ... AND z,, is Amj THEN Y; = f() (1)
The “THEN functions” constitutes the consequent part of ik rule of the fuzzy system that is characterized, but not

limited to, as a linear polynomial; = b)) + bjuj + ... + b{z']_ugj. The j-th rule output,y; = f(u,b?), is function

of the consequent input vectar, = [u] ...,ugj]T, comprisingg; terms and the polynomial coefficient vectbr,=
v,..., b{l'j]T, that compose the consequent parameter set.
The global model is, then, obtained by the interpolatiomveen these various local models:
N .
y = hi(x)y; (), @
j=1
whereN denotes the maximal number of rules dnd>) is the normalized firing strength @t(;) , defined as:
15 (X)
hi(¥) = =3 > @)
2 =1 15(X)
with:
Hj (X) = MAJI (xl):uAé (332) cee MA{R (xm) ) (4)

for linguistic labels,A7, associated to a membership function.
When linguistic labelsA? are determined by Gaussian membership functions,

1 (Zz — mij)

2
1Ay, (zi) = exp l—Q] ®)

2 o3

wherem;; ands;; are the centers (mean value) and the spreads (standartiafes)af the Gaussian function — respec-
tively defining the core and the support of membership femsti- then equation (1) may be rewritten as:

R;:IFayis exp [~3 S5 | AND .. AND i exp [~ 3 S50 | THENy; = b + ...+ b ui . (6)

15 mj a5 " q;
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Figure 1. Space Vibration Test System.

The question that comes up is how are the best feasible adjnsof them,;, s;;, andb; parameters for all, j for
tuning the fuzzy system in (6). When heuristic systems areldped knowledge extracted from specialists are directly
employed to tune the fuzzy system. However, when dealinly data, an additional technique is necessary to optimize
those parameters. These techniques encompasses, focedbat not limited to, Gath-Geva clustering (GG) algarith
Wang & Mendel learning (WM) algorithm, subtractive learnif®) algorithm, Hard C-means (HCM) algorithm, Fuzzy
C-Means (FCM) algorithm, Gustafson-Kessel (GK) algoritfamiaptive neural-fuzzy inference system (ANFIS), only to
mention few.

This paper addresses the Wang & Mendel learning algorithmn@\and Mendel, 1992) for modeling the dynami-
cal behavior in vibration testing during satellite quahfion since fuzzy systems, in general, and Takagi-Sugerryfu
systems, in particular, is not characterized by possessiggdearning process. This approach is effective for rukeba
extraction when processing numerical data and presenpessomputational characteristic, as describe next.

1.1 Space Vibration Test Modeling

The resulting fuzzy model is used to describe the dynamiehabior through data measured during the qualification
of space systems in Integration and Testing Laboratory)(fTthe National Institute of Space Research (INPE). This
paper focuses on vibration testing.

Vibration testing is employed for emulating vibrations get during the launching. Such a testing is carried out
to verify the structure of the satellite and their sub-systén order to appropriately support the launcher lift-aftiao
guarantee useful life when in orbit. There are differenels\of excitation during vibration testing in order to vgrénd
assure that the satellite and their sub-systems will sugperefforts when in orbit or during the launching. Due tottha
estimating future dynamical behavior when using high atagé testing signals is important to safe satellites orrothe
space devices. Moreover, the analysis of the dynamicaMiomhzan help not only to avoid breaks and other damages but
also allows feasible adjustments in the structure model.

The simplified structure of the electro-dynamic vibratigstem is depicted in Fig. 1 whem,,,, y;.., andz;,, are
displacements in the axis, y, andz, respectively. The indek when is related te corresponds to the sensor on the
control system while the sensor on the specimen underlyiagdsting is represented by the indexThe indexm is
related to the number of the sensor used in the test. In thgerpanly the displacement in direction is took into
account. While, the sensar; compose the input variable; (k) of the universe of discoursé/;, corresponding to the
displacement of the electro-dynamic vibration systems#resor:; is related to the output variablg(k) of the universe
of discourseY’, corresponding to the displacement of the space systenes tesd.

It is also worth mentioning that a second input is taken irttcoaint by using the previous input of the system, that
is, u1 (k — 1). This is important because when dealing with fuzzy modettifieation, the input universe of discourses
composing the input spacé are chosen to be finite number of past inputs and past outptlite system representing the
system dynamics (Barada and Singh, 1998). The T-S modé&ks, tepresented by the regression type of rules that maps
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the current state and input variable into the output vagialold Eq. (6) is related to

m—1
o(k + 1) Z aiyp(k — 1) + Y biup(k — j), 7
j=0

wherea; andb; are constant unknown parameters when dealing, for instarittediscrete, linear, time-invariant, single-
input-single-output systems. In doing so, the Eq. 6 canWwétten, in the simplified membership function representat
as in the following form:

R . IF y(k)is A] AND ... AND y(k — n + 1) A7 AND u(k)is B AND ... AND u(k —m +1) BJ,
(8)
THENg;(k+1)=>""" 01 a;y( —14)+ Z" ! bju(k —-p)+d

The objective of the optimization process consists of deft@ng (tuning) these unknown parameters, b;, c¢;, 4;,
i.e., (ma,,,sa,; foralli, j),andB;, i.e., (np,,, ss,,, forall i, j ), when using measured input-output. These parameters
compose the matri# and the performance of the WM-TS Fuzzy model output estimafitk), is used for computing
the minimum square error when compared with the currentubugpk), as given by:

N
ming = 3 [[5(k) — y(k)]] ©)
k=1

The estimate output (or fuzzy function approximati@id} + 1) in (9) is used for computing the square error when
compared with the actual outputik + 1). This activity corresponds to the parameter-learning &k consequently, the
parameter estimation process. The identification of T-&syss realized in this paper based on Wang & Mendel learning
algorithm for optimization of those parameters.

1.2 Wang & Mendel Learning Algorithm

The Wang & Mendel learning method is in charge of finding oet parameters for designing the fuzzy system. It
comprises five steps and is characterized for being a sinmules@aightforward method not requiring time-consuming

training.
Suppose there is a set of input-output mapping in the form:
(x(ll), e ,arg-l) .. .xg),y(l),) , (xf), cee §2) .. .56512),]4(2),) Yo (mgm), cee gm) .. .ajslm),y(m),) . (10)

where the input is given hy;, such that: represented the inputs, and the output isuch that» represented the number
of epochs. The input-output mapping; z\™, ... ,x§m) 2™ s y(m) is determined by fuzzy IF-THEN rules.
The main steps of the global version of Wang & Mendel are:

e Step 1l

Divide the Input and Output Spaces into Fuzzy Regions:
— The interval in which the input and output variables lie irittrespective universe of discourse is repre-

sented b)[xl_vm-li_] [xg 7x;r] e, n] ly~,y ]
— Divide each domain into 2N+1 regions and assign each one didimknsional fuzzy membership func-
tion.

— Ruspini partition is setup.
— Obs. 1: Any shape of the membership function may be chosen.
— Obs. 2: Different N's may be chosen for each universe of disg) or not.
e Step 2
Generate Fuzzy Rules from Given Input Data:
— Determine the degrees of givmﬁi),mgi), cee gl),. x%),y(” taking into account their respective
membership functions.
— Assign a giverzngi), xgi), cee §Z), . ng), v, to the region with maximum degree.
— Obtain one rule from one set of input of the input-output époc

— Obs. 1: The fuzzy IF-THEN rules uses logical connective antba input statements and any of the
T-norm may be set.
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e Step 3
Assign a Degree D(Rule), to Each Rule according to:

D(Rule;) = mai(z1)mpi(x2) ... mNi(xn)m(Zy) . (12)
The assigned degree, ", for thei-th epoch is used to redefine the degree ofittierule as:

D(Rule;) = mai(z1)mpi(x2) ... myi(x,)mz;(y)m® . 12)
such that the degree of a rule is defined as the product of tireeke of its components and the degree of the
epoch which generates this rule.

e Step 4
Create a Combined FAM Bank (multidimensional Fuzzy Matrix) : The cells of the multidimensional fuzzy
matrix are filled with fuzzy rules by following a specific sigy.
— FAM Bank is assigned rules from either those generated fromemical data or linguistic rules;
— If there is more than one rule in one box of the FAM bank, usedlethat has maximum degree.
e Step 5

Determine a Mapping based on the Combined FAM Bank (defuzzifiation strategy) :
— Combine the antecedents of théh fuzzy rule according to:
mﬁ,j_ =myi(@1)myi(z2) . My (j)...mpi(zn) (13)
whereo® denotes the output region of tii¢h rule, and/; denotes the input region.
— Determine the output by using the centroid defuzzificatmmiula:

ZK mt . Tl
i=1 Moi Y5
— J
DT

i=1 ot

(14)

where7 denotes the center value of region the smallest absolute value among all the points at which
the membership function for this region has membershipevalyual to one, an& is the number of
fuzzy rules in the combined FAM Bank.
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Vibration Fuzzy Modeling with 3 Gaussian Membership Functions
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1.3 Results

To best obtain the optimized fuzzy input-output mappingrdyfearning from data, the Wang & Mendel algorithm
is set to deal with different number of membership functiod$ie proposed method employs Gaussian membership
functions in the input universe of discourse while the otitpiselected to be a singleton membership function as before
mentioned in (6).

Actual data with high and low amplitude signals were usedelariting the fuzzy model. The model uses part of
signals of low amplitude (Training Data) for tuning the fyzzystem and then it is validated with the remaining set of
data (Validate Data) as depicted in Fig. 2. Afterwards, taputed WM-fuzzy model is employed to estimate a distinct
dynamical behavior when a new input signal of high amplitisdepplied to the space system. Results of the structural
model used in the design of the satellite and of their sulegys are confronted with the real behavior presented by the
structure, allowing eventual adjustments.

The input-output mapping for the estimate fuzzy model wheipleying three membership functions is shown in
Fig. 3(a). The training dynamical response for conditigngignal with experimental data and estimate output with
reduced amplitude is illustrate in Fig. 3(b). Notice tha #stimate output is quite similar to the experimental dakes
is justified due to the fact that this experimental outputdaigether with the experimental input data, were employed
in the training task. The validate dynamical response fod@d@ning signal with experimental data and estimate outp
with reduced amplitude is illustrated in Fig. 3(c). Althdugot presenting an equivalent result than latter one, taate
output follows most of the main dynamical behavior in this tnained part of the reduced amplitude signal data.

In what follows, fuzzy model was employed in the attemptivestimate a second output but now with a new high
amplitude input signal. Here the same interval of training g@alidation is followed for making the comparative anays
easier. The training dynamical response for conditioniggal with experimental data and estimate output with high
amplitude is illustrate in Fig. 3(d). Concerning the vat&lmterval, the dynamical response for conditioning sligvith
experimental data and estimate output with high amplitadiiuistrate in Fig. 3(e). Although the estimate dynamiqoorit
does not reach the same amplitude in both intervals, they@mostly the dynamic of the experimental data. It is worth
mentioning that, here, only the fuzzy inference system fodeting the space vibration testing with three membership
functions was employed. Results are promising and new regs@athe number of membership functions and rules must
be investigated. Another result that should be pointedsotitat the fuzzy model was obtained with the Wang & Mendel
learning algorithm that has shown its effectiveness in thask even being recognized as a simple and straightforward
method.

Additionally, these results were obtained with the lowepétade of the reduced amplitude signal data, demonstyatin
its robustness and capacity of generalization.

2. CONCLUSION AND FUTURE WORK

To obtain a feasible input-output mapping by learning froamacthis paper employed the Wang & Mendel learning
algorithm for tuning a Takagi-Sugeno fuzzy model. Resudis $hown that combining Wang & Mendel learning algorithm
and fuzzy systems it is possible to obtain hybrid models wWithcapacities of learning, adaptation, optimization when
applied to space qualification activity. In this paper, tlakagi-Sugeno fuzzy model was employed to describe the
dynamic vibration system used to emulate environmentatlitions during space launching moment. The model uses
part of signals of low amplitude for training the neuro-fyzystem and then it is validated with the remaining set of
data. Afterwards, the estimate fuzzy model is employed tionese a distinct dynamical behavior when a new input
signal of high amplitude is applied to the space system. ésdlconditions results show to capture the main dynamic
characteristics of the experimental data. In this senseMM-TS fuzzy modeling becomes an alternative for forecgstin
dynamic satellite behaviors under distinct exogenoustinpuis also shown that the models have good capacity of
generalization. These results were improved when usedttieion of the signal of low to high amplitude as input.

In order to check if a better performance for the estimateehodn be reached, research is going to be verity if the
number of membership functions and rules interfere in tkalte. Also, comparative analysis along with other methods
especially from computational intelligence, will be cattiout.
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