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Abstract 
Vertical temperature profiles are important initial conditions for numerical weather prediction 

models. In the infrared band from the solar spectrum, the temperature profile can be calculated for clear 

atmosphere. However, more than 20% of images contain clouds. For a few classes of clouds (cirrus and 

thin stratus, for example), the micro-wave band can be used, with worse precision, to compute the 

temperature profile. But for deeper clouds nor micro-wave can provide an useful information. At the 

present paper we introduce a methodology that intends to be able to identify atmospheric temperature 

profile under all classes of clouds, combining to inversion procedures in the same framework: 

reconstruction of cloud bottom boundary condition for radiative transfer equation and then retrieving the 

temperature profile. For both steps, two different multi-layer perceptron self-configured artificial neural 

networks are used as inversion operators. Initial results confirm the good potential of the proposed 

technique. 

 

Nomenclature 
 

𝑏 bias of an ANN 

𝐵  Planck function 

�̅�𝑚  inverse of LTSN matrix 

𝑐  speed of light at vacuum 

𝑒 calculated error of an ANN 

𝐹  incident beam at the top of the cloud 

𝐺  incident beam at the bottom of the cloud 

ℎ  Planck constant 

I radiance 

I identity matrix 

𝐽 objective function 

𝑘𝐵  Boltzmann constant 

𝐾 vector of unknown parameters 

�̅�𝑁
𝑚  LTSN matrix 

𝑝1, 𝑝2 weights 
𝑝𝜆 scattering phase function 
𝑃𝑙  Legendre polynomial 
𝑧  vertical direction 
𝑆  source term 
T  absolute temperature 
ℑ  transmittance 
𝑤 connection weight of an ANN 
𝑥 ANN input 
𝑦  ANN output 
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Greek 
 
𝛼 momentum parameter 

𝛽  extinction coefficient 
𝛿 local gradient 
𝜂 learning rate 
𝜂𝑖  weights of Gauss-Legendre quadrature 
𝜃 polar angle 
𝜅 absorption coefficient 
𝜇  cosine of the polar angle 
𝜈  wave number 
𝜛  single scattering albedo 
𝜎 scattering coefficient 
𝜏  optical variable 
𝜑  activation function 
𝜙 azimuthal angle 
 
Subscript 
 

𝑘  index of an output neuron of an ANN 

𝜆 wavelength 

𝑠  scattered component 

𝑢 unscattered component 

 

Introduction 
The numerical weather prediction is one remarkable scientific conquer for the twentieth century. It 

was identified as an initial value problem at 1904 and in 1922, Lewis Fry Richardson has published a 

book proposing the weather predicting by solving the complete Navier-Stokes using finite differences 

[1]. The scheme proposed by Richardson failed; Lynch [2] did an interesting report for the process, and 

an overview on the modern weather forecasting can be found on [3]. 

In order to have a better forecasting, the computation of a good initial condition is a mandatory issue. 

This imposes the necessity of using observed data from the regions for which the forecasting will be 

performed. In this sense, meteorological satellites can provide information from regions with difficult 

access, as tropical rain forests, deserts, poles of the planet, and over the ocean, overcoming the lack of 

information provided by terrestrial measurement stations. The mathematical equation relating the 

satellite radiances and atmospheric profiles (RTE: Radiative Transfer Equation) describes the physical 

conception behind the identification process for estimating temperature profile, moisture, and gas 

concentration. The forward problem is to compute the radiances, and the inverse problem is to retrieve 

the properties from the measured radiances. 

Several approaches to retrieve the atmospheric temperature profile from satellite data have been 

developed. In the infrared band from the solar spectrum, the temperature profile can be calculated for 

clear atmosphere. However, more than 20% of images contain clouds. Under this situation, micro-wave 

band can be used, with worse precision, to compute the temperature profile, but for a few classes of 

clouds (cirrus and thin stratus, for example). For deeper clouds (stratus-cumulus and cumulus-nimbus), 

nor micro-wave can provide useful information. 

The goal of the present paper is to evaluate the algorithm to identify atmospheric temperature profile 

under all classes of clouds. The procedure can also be applied to other atmospheric properties. The idea 

is to combine two inversion procedures in the same framework: reconstruction of cloud bottom boundary 

condition for RTE [4], and then retrieving the temperature profile [5], as shown schematically at Fig. 1. 

For step-1, the RTE is a complete Boltzmann equation, that includes the scattering process. In step-2, the 

RTE is expressed by the Schwarzchild’s equation, and the scattering phenomenon can be neglected. 

For both steps, two different multi-layer perceptron (MLP) artificial neural networks (ANN) are used 

as inversion operators. The best configuration for the ANN is obtained automatically, by using self-

configured ANN strategy [6], where an objective function is minimized in order to obtain an ANN with 
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few neurons and fast convergence. Multi-particle collision algorithm [7] is the metaheuristic used for 

solving the optimization problem, and it has shown good results to find out the optimized ANN. 

 

 
Fig. 1. Scheme of the proposed methodology 

 

Noisy synthetic satellite data were used to test the inverse methodology, and preliminary results 

confirm the good performance of the proposed technique. 

 

1. Solving the radiative transfer equation 

The radiative transfer equation models the light beam interactions into a medium. Light intensity is 

given by a directional quantity, the radiance I, which measures the rate of energy being transported at a 

given point and for a given direction. Considering a horizontal plane, this direction is defined by a polar 

angle 𝜃 (relative to the normal of the plane) and an azimuthal angle, 𝜙. Once within the medium, light 

can be absorbed, scattered or transmitted, according to the absorption and scattering coefficients, 𝜅𝜆 and 

𝜎𝜆, and to a scattering phase function, 𝑝𝜆, describing how light is scattered in any direction. An extinction 

coefficient 𝛽𝜆 is defined as 𝛽𝜆 = 𝜅𝜆 + 𝜎𝜆. 

Assuming plane parallel atmosphere, considered a good approximation for planetary atmospheres [8, 

9], the RTE is given by 

 
𝜇

𝛽𝜆

𝜕𝐼𝜆(𝑧; 𝜇, 𝜙)

𝜕𝑧
+ 𝐼𝜆(𝑧; 𝜇, 𝜙) = 𝑆𝜆(𝑧; 𝜇, 𝜙), (1) 

 

where 

 

𝑆𝜆(𝑧; 𝜇, 𝜙) ≡ (1 −𝜛𝜆)𝐵𝜆(𝑇) +
𝜛𝜆
4𝜋
∫ ∫ 𝐼𝜆(𝑧; 𝜇

′, 𝜙′)𝑝𝜆(𝜇
′, 𝜙′; 𝜇, 𝜙)𝑑𝜇′𝑑𝜙′

1

𝜇=−1

,
2𝜋

𝜙=0

 (2) 

 

being 𝜇 ∈ [−1,1] the cosine of the incident polar angle 𝜃, 𝜛𝜆 ≡ 𝜎𝜆(𝑠) 𝛽𝜆(𝑠)⁄  the single scattering albedo 

and 𝐵𝜆(𝑇) is the Planck function [10], 

 

𝐵𝜆(𝑇) =
2ℎ𝑐2

𝜆5 (𝑒
ℎ𝑐

𝑘𝐵𝜆𝑇
⁄

− 1)
 , (3) 

 

where ℎ is the Planck constant, 𝑐 is the speed of light at vacuum, 𝑘𝐵 the Boltzmann constant and T the 

absolute temperature. 
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1.1 Boltzmann equation 

For step-1, the medium is a cloud, where there is no radiation source term. Under these hypothesis, 

and considering the definition of the optical depth (with: 𝑑𝜏 ≡ 𝛽
𝜆
𝑑𝑧), Eqs. (1) and (2) can be rewritten as 

 

𝜇
𝑑𝐼𝜆(𝜏; 𝜇, 𝜙)

𝑑𝜏
= −𝐼𝜆(𝜏; 𝜇, 𝜙) +

𝜛0
4𝜋

∫ ∫ 𝐼𝜆(𝜏; 𝜇
′, 𝜙′)𝑝𝜆(𝜇

′, 𝜙′; 𝜇, 𝜙)𝑑𝜇′𝑑𝜙′
1

𝜇=−1

2𝜋

𝜙=0

, (4) 

 

known as Boltzmann equation, subjected to boundary conditions 

 

𝐼𝜆(0; 𝜇, 𝜙) = 𝐹𝛿(𝜇 − 𝜇0)𝛿(𝜙 − 𝜙0) (4a) 
𝐼𝜆(𝜏0; −𝜇, 𝜙) = 𝐺𝛿(𝜇 − 𝜇1)𝛿(𝜙 − 𝜙1) (4b) 

 

Where (𝜇0, 𝜙0) and (𝜇1, 𝜙1) represent the polar and azimuthal directions of incident beams, 𝐹 and 𝐺, at 

𝜏 = 0 (top of the cloud) and 𝜏 = 𝜏0 (bottom of the cloud). To simplify the solution and to use some 

previous development [11], the problem defined by Eq. (4) is split in two ones, assuming that the 

incident beam at one boundary does not interact with the incident beam at the other boundary. Therefore, 

 

𝜇
𝑑𝐼𝜆(𝜏; 𝜇, 𝜙)

𝑑𝜏
= −𝐼𝜆(𝜏; 𝜇, 𝜙) +

𝜛0
4𝜋

∫ ∫𝐼𝜆(𝜏; 𝜇
′, 𝜙′)𝑝(𝜇, 𝜙; 𝜇′, 𝜙′)𝑑𝜇′𝑑𝜙′

1

−1

2𝜋

0

 (5) 

𝐼𝜆(0; 𝜇, 𝜙) = 𝐹𝛿(𝜇 − 𝜇0)𝛿(𝜙 − 𝜙0) (5a) 
𝐼𝜆(𝜏0; −𝜇, 𝜙) = 0 (5b) 

 

and 

 

𝜇
𝑑𝐼𝜆(𝜏; 𝜇, 𝜙)

𝑑𝜏
= −𝐼𝜆(𝜏; 𝜇, 𝜙) +

𝜛0
4𝜋

∫ ∫𝐼𝜆(𝜏; 𝜇
′, 𝜙′)𝑝(𝜇, 𝜙; 𝜇′, 𝜙′)𝑑𝜇′𝑑𝜙′

1

−1

2𝜋

0

 (6) 

𝐼𝜆(0; 𝜇, 𝜙) = 0 (6a) 
𝐼𝜆(𝜏0; −𝜇, 𝜙) = 𝐺𝛿(𝜇 − 𝜇1)𝛿(𝜙 − 𝜙1) (6b) 

 

and the final solution is the sum of the solutions of both problems. Both problems are solved using the 

same technique, and only the solution for Eq. (5) will be shown here. 

Let us assume that the electromagnetic radiation field consists of two components: one called 

unscattered component (𝐼𝑢), and the scattered component (𝐼𝑠). Thus, the total radiation can be written as 

the sum of these two components, 

 

𝐼(𝜏; 𝜇, 𝜙) = 𝐼𝑢(𝜏; 𝜇, 𝜙) + 𝐼𝑠(𝜏; 𝜇, 𝜙). (7) 

 

The formulation for the unscattered component is obtained eliminating the scattering term (𝜛0) in Eq. 5, 

and its explicit solution is given by 

 

𝐼𝑢(𝜏; 𝜇, 𝜙) = 𝐹𝛿(𝜇 − 𝜇0)𝛿(𝜙 − 𝜙0)𝑒
−𝜏 𝜇0⁄ , (8) 

 

for τ ∈ [0, τ0], μ ∈ (0,1] and ϕ ∈ [0,2π]. Using Eq. (7) at Eq. (5), and considering Eq. (8), one obtains 

 

𝜇
𝑑𝐼𝑠(𝜏; 𝜇, 𝜙)

𝑑𝜏
= −𝐼𝑠(𝜏; 𝜇, 𝜙) +

𝜛0
4𝜋

∫ ∫𝐼𝑠(𝜏; 𝜇
′, 𝜙′)𝑝(𝜇, 𝜙; 𝜇′, 𝜙′)𝑑𝜇′𝑑𝜙′

1

−1

2𝜋

0

+
𝜛0
4𝜋

𝑝(𝜇, 𝜙; 𝜇0, 𝜙0)𝐹𝑒
−𝜏 𝜇0⁄  

(9) 

𝐼𝑠(0; 𝜇, 𝜙) = 0 (9a) 
𝐼𝑠(𝜏0; −𝜇, 𝜙) = 0 (9b) 
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The above is solved by the LTSN method [12]. This method consists on the application of the Laplace 

transform on the radiative transfer discrete ordinates equations, producing and algebraic equation on 𝑠, 
and then the application of inverse Laplace transform to obtain the desired radiation field. 

For obtaining the radiative transfer discrete ordinates equations from Eq. (9), the anisotropic 

scattering phase function 𝑝𝜆 is represented by an expansion in Legendre polynomials 𝑃𝑙 in terms of the 

cosine of the scattering angle 𝜃. After that, the polar angle domain (𝜇) is discretized, and the integral is 

approximated by a Gauss-Legendre quadrature: 

 

𝜇𝑗
𝑑𝐼𝑚(𝜏, 𝜇𝑗)

𝑑𝜏
= −𝐼𝑚(𝜏, 𝜇𝑗) +

𝜛0
2
∑𝜔𝑙

𝑚𝑃𝑙
𝑚(𝜇𝑗)∑𝜂𝑖

𝑁

𝑖=1

𝑃𝑙
𝑚(𝜇𝑖)𝐼

𝑚(𝜏, 𝜇𝑖)

𝐿

𝑙=𝑚

+ 𝑆𝑚(𝜏, 𝜇𝑗) (10) 

 

for 𝑗 = 1,2,… , 𝑁, where 𝜂𝑖 are the weights of the quadrature, the boundary conditions are described as 

 

𝐼𝑚(0, 𝜇𝑗) = 0,       𝑗 = 1, 2, … , 𝑛 (10a) 

𝐼𝑚(𝜏0, 𝜇𝑗) = 0,     𝑗 = 𝑛 + 1, 𝑛 + 2,… , 𝑁 (10b) 

 

and 𝑆𝑚 is the source scattering function, given by 

 

𝑆𝑚(𝜏, 𝜇𝑗) =
𝜛0
2𝜋
[∑ 𝜔𝑙

𝑚𝑃𝑙
𝑚(𝜇𝑗)𝑃𝑙

𝑚(𝜇0)

𝐿

𝑙=𝑚

] 𝐹𝑒−𝜏 𝜇0⁄ . (11) 

 

Applying Laplace transform on Eq. (10), the following system of equations on 𝑠 is obtained [11], 

 

𝑠𝐼�̅�(𝑠) +
1

𝜇𝑗
𝐼�̅�(𝑠) −

𝜛0
2𝜇𝑗

∑𝛽𝑙
𝑚𝑃𝑙

𝑚(𝜇𝑗)∑𝜂𝑖

𝑁

𝑖=1

𝑃𝑙
𝑚(𝜇𝑖)𝐼

�̅�(𝑠) =

𝐿

𝑙=𝑚

𝐼𝑗
𝑚(0) +

1

𝜇𝑗
𝑆̅𝑚(𝑠), (12) 

 

where 𝐼�̅�(𝑠) = ∫ 𝐼𝑚(𝜏)𝑒−𝑠𝜏𝑑𝜏
∞

0
. The matrix form of Eq. (12) becomes 

 

�̅�𝑁
𝑚(𝑠)𝐼�̅�(𝑠) = 𝐼𝑚(0) + 𝑆̅𝑚(𝑠), (13) 

 

where the matrix �̅�𝑁
𝑚(𝑠), called the LTSN matrix, is given by �̅�𝑁

𝑚(𝑠) = 𝑠𝑰 + 𝐴𝑚, where 𝑰 is the identity 

matrix and the 𝐴 matrix is given by 

 

𝑎𝑚(𝑖, 𝑗) =

{
 
 

 
 1

𝜇𝑗
−
𝜛0
2𝜇𝑗

∑𝛽𝑙
𝑚𝑃𝑙

𝑚(𝜇𝑗)𝜂𝑗𝑃𝑙
𝑚(𝜇𝑗)

𝐿

𝑙=𝑚

, 𝑖𝑓 𝑖 = 𝑗

−
𝜛0
2𝜇𝑗

∑𝛽𝑙
𝑚𝑃𝑙

𝑚(𝜇𝑗)𝜂𝑖𝑃𝑙
𝑚(𝜇𝑖)

𝐿

𝑙=𝑚

, 𝑖𝑓 𝑖 ≠ 𝑗

 . (14) 

 

while vectors 𝐼�̅�(𝑠), 𝐼𝑚(0) and 𝑆̅𝑚(𝑠) are defined as 

 

𝐼�̅�(𝑠) = [𝐼1̅
𝑚(𝑠)  𝐼2̅

𝑚(𝑠) …  𝐼�̅�
𝑚(𝑠)] (15) 

𝐼𝑚(0) = [𝐼1
𝑚(0)  𝐼2

𝑚(0) …  𝐼𝑁
𝑚(0)] (16) 

𝑆̅𝑚(𝑠) = [
𝑆1̅
𝑚(𝑠)

𝜇1
 
 𝑆2
𝑚(𝑠)

𝜇2
 …  

𝑆𝑁
𝑚(𝑠)

𝜇𝑁
]. 

(17) 

 

In order to solve Eq. (13), it must be multiplied by the inverse matrix of �̅�𝑁
𝑚(𝑠), represented by 

�̅�𝑚(𝑠), resulting in 𝐼�̅�(𝑠) = �̅�𝑚(𝑠)𝐼𝑚(0) + �̅�𝑚(𝑠)𝑆̅𝑚(𝑠). The inverse Laplace transform is applied to solve 

this equation: 
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𝐼𝑚(𝜏) = 𝐵𝑚(𝜏)𝐼𝑚(0) + 𝐻𝑚(𝜏), (18) 

 

where 𝐵𝑚(𝜏) = ℒ−1[�̅�𝑚(𝑠)] and 𝐻𝑚(𝜏) = 𝐵𝑚(𝜏) ∗ 𝑆𝑚(𝜏), and the convolution operation is denoted by ∗. 
 

1.2 Schwarzchild equation 

For step-2, the medium is the atmosphere between the ground and the bottom of the cloud, and it can 

be considered a non-scattering medium, under local thermodynamic equilibrium. From these 

considerations, the source function represented by Eq. (2) is simplified to Planck function. Equations (1) 

and (2) can be rewritten as [13] 

 

𝜇
𝑑𝐼𝜆(𝜏; 𝜇, 𝜙)

𝑑𝜏
+ 𝐼𝜆(𝜏; 𝜇, 𝜙) = 𝐵𝜆(𝑇), (19) 

 

known as Schwarzchild equation, widely used on remote sensing of atmospheric profiles. 

The atmospheric radiation is assumed independent on azimuthal angle. The amount of radiation 

reaching a certain level τ of the atmosphere is calculated multiplying Eq. (19) by e−τ μ⁄  and integrating 

between τ and τ1, where τ = τ1 refers to the ground surface. For remote sensing applications, it is 

assumed μ = cos θ ≈ 1, and writing the result in terms of pressure coordinates 

 

𝐼(𝜈𝑖) = 𝐵[𝜈𝑖 , 𝑇(𝑝𝑠)]ℑ(𝜈𝑖 , 𝑝𝑠) + ∫ 𝐵[𝜈𝑖 , 𝑇(𝑝)]
𝜕ℑ(𝜈𝑖 , 𝑝)

𝜕𝑝
𝑑𝑝

𝑝0

𝑝𝑠

, (20) 

 

where 𝑝 is the atmospheric pressure, 𝑝0 the pressure at the top of the atmosphere, 𝑝𝑠 the pressure at the 

surface and ℑ(𝑧) = 𝑒−𝜏 the monochromatic transmittance. The quantity 𝜕ℑ(𝜈𝑖 , 𝑝)/𝜕𝑝 is known as 

weighting function, and when multiplied by Planck function provides a measure of the contribution of 

each atmospheric layer to the radiation that reaches a specified pressure level 𝑑𝑝. Eq. (20) is solved using 

finite difference method, 

 

𝐼𝑖 = 𝐵𝑖,𝑠(𝑇𝑠)ℑ𝑖,𝑠 +∑(
𝐵𝑖,𝑗 + 𝐵𝑖,𝑗−1

2
)

𝑁𝑝

𝑗=1

[ℑ𝑖,𝑗 − ℑ𝑖,𝑗−1], (21) 

 

for 𝑖 = 1,2,… , 𝑁𝜆, where 𝑁𝜆 is the number of spectral channels and 𝑁𝑝 is the number of atmospheric layers 

being considered. 

 

2. Self-configured artificial neural network 

Artificial neural networks (ANN) are structures inspired by the operation of biological neural 

network of human brain. They resemble the brain in two main aspects: they acquire knowledge from the 

environment through a learning process and store this knowledge on connection or synaptic weights. 

Moreover, they also have the ability of generalize, meaning they can produce appropriate outputs from 

inputs out of learning process. The abilities of learning and generalization make ANN able to solve 

complex problems, especially highly nonlinear problems [14]. 

Artificial neural networks are made of arrangements of processing elements, called neurons. As 

represented on Fig. 2a, the artificial neuron model basically consists of a linear combiner, followed by an 

activation function, given by 

 

𝑦𝑘 = 𝜑(∑𝑤𝑘𝑗𝑥𝑗

𝑁

𝑗=1

+ 𝑏𝑘), (22) 

 

where 𝑥𝑗  is the input vector, 𝑤𝑘𝑗 are the connection weights, 𝑏𝑘 is the bias, 𝑦𝑘 is the output of the 𝑘𝑡ℎ 

neuron and 𝜑(∙) is the activation function. 
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There are several different architectures for ANN. The Multilayer Perceptron (MLP), with 

backpropagation learning process, is our choice. Multilayer perceptrons are feedforward networks 

composed of an input layer, one output layer and a number of hidden layers, whose aim to extract high 

order statistics from the input data, as represented in Fig. 2b. 

 

 
Fig. 2a. Single neuron model 

 
Fig. 2b. Multilayer perceptron 

 

For a supervised ANN, two distinct phases can be devised. At the training phase, the connection 

weights are adjusted for the best performance of the network in establishing the mapping of many 

input/output vector pairs. Once trained, the weights are fixed, and the run phase can be performed, where 

the network is presented to new inputs and calculates the corresponding outputs, based on what it has 

learned. The backpropagation training is a supervised learning, where pairs of input and output data are 

used to determine the error of the network as the square difference between the calculated output and the 

desired vector, for the same input. The connection weights are adjusted by an amount proportional to the 

error, following the so-called delta rule, 

 

𝑤𝑗𝑖(𝑛) = 𝑤𝑗𝑖(𝑛) + 𝛼 (𝑤𝑗𝑖(𝑛) − 𝑤𝑗𝑖(𝑛 − 1)) + Δ𝑤𝑗𝑖 , (23) 

 

with Δ𝑤𝑗𝑖(𝑛) = 𝜂 𝛿𝑗(𝑛) 𝑦𝑖(𝑛), where 𝛼 is a momentum parameter, 𝜂 is the learning rate and the local 

gradient 𝛿𝑗(𝑛) is defined by 𝛿𝑗(𝑛) = 𝑒𝑗(𝑛)𝜑𝑗
′ (𝑣𝑗(𝑛)), where 𝑒𝑗(𝑛) is the calculated error. 

For finding the best configuration of an ANN is an exhaustive task, because there are no rules to 

define the optimum number of neurons on each hidden layer, the number of hidden layers, the best 

activation function, or the best values for parameters 𝜂 and 𝛼. In the last two decades, a number of 

authors are developing algorithms for automatically identify an optimal architecture for the ANN [6, 15, 

16]. Carvalho et al. [6] has formulated the optimal design for an ANN by minimizing the following 

objective function 

 

𝐽(𝐾) = 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑥 (
𝑝1 𝑥 𝐸𝑡𝑟𝑎𝑖𝑛 + 𝑝2 𝑥 𝐸𝑔𝑒𝑛

𝑝1 + 𝑝2
), (24) 

 

where 𝑝1 and 𝑝2 are weights that modify the relevance allowed to the training and generalization error, 

𝐸𝑡𝑟𝑎𝑖𝑛 and 𝐸𝑔𝑒𝑛 and 𝐾 is the vector of unknown parameter: number of hidden layers, number of neurons 

per hidden layer, type of activation function, learning and momentum ratios. The penalty function is used 

to control the ANN complexity, avoiding solutions with too much layers, or with too much neurons in 

each layer, but at the present work 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 1. Weights 𝑝1 and 𝑝2 assume the values of 1 and 0,1. 

The Multi-Particle Collision Algorithm (MPCA) [7] is the metaheuristic used for solving the 

optimization problem (24). MPCA is an extension of the Particle Collision Algorithm (PCA), proposed 

by Sacco and Oliveira [17]. The PCA has been inspired on the behavior of absorption and scattering of 

neutrons in nuclear reactors. Firstly, in the PCA, an initial configuration is chosen; then there is a 

stochastic perturbation of the old configuration to generate a new one. The qualities of the two 

configurations are compared. If the new configuration is better, it is named as the old configuration for 

the next step, where will be performed an exploration of the vicinity of this solution. If it is not, the 

algorithm proceeds with a new change of the old configuration, called “scattering”. MPCA is based on 

canonical PCA, but introduces the use of several particles, instead of only one particle, acting in a 
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collaborative way over the search space. It is intrinsically a parallel code, that makes the division of task 

by multiple particles for parallel machines of multi-cores processors. 

The search space of MPCA is given by the parameters shown on Table 1. The MPCA is used to 

generate a set of candidate solutions that correspond to an ANN architecture. For each solution, the ANN 

is activated, and the training process runs until the stopping criteria of minimum error is satisfied. With 

the values obtained by ANN, the MPCA calculates the objective function, updating the parameters for 

the ANN. The process is repeated until an optimal value for the objective function is found. 

 

Table 1. Parameters of the search space of MPCA 

Parameter Value 

Hidden layers 1 to 3 

Neuron in each hidden layer 1 to 32 

Learning ratio 0.0 to 1.0 

Momentum constant 0.1 to 0.9 

Activation function Tanh, Logistic, Gaussian 

 

3. Results 

 

3.1 Noisy data simulation 

The experimental data, which intrinsically contains errors, is simulated by adding a random 

perturbation to the exact solution of the direct problem, 𝐼𝑠𝑎𝑡 = 𝐼𝑀𝑜𝑑(𝑇(𝑝)) + 𝜎𝜀, where 𝜎 simulates the 

standard deviation of the noise and 𝜀 is a random variable taken from Gaussian distribution. An error of 

5% has been added to calculated radiances reaching the bottom of the cloud, and to the radiances leaving 

the top of the cloud. 

 

3.2 Databases and patterns generation 

Measured radiance are simulated by using a set of temperature profiles, employed in Eq. (21) to 

calculate the radiance reaching the bottom of the cloud, for a certain number of wavelengths. These 

radiances calculated from Eq. (21) are used as boundary conditions for Boltzmann equation (Eq. 4b). 

Finally, the radiances leaving the top of the cloud (measured by satellites) can be determined. 

A number of 646 temperature profiles were randomly selected from TIGR (Thermodynamic Initial 

Guess Retrieval) database. Seven wavelengths from HIRS/2 sensor of NOAA-14 satellite, associated to 

CO2 band absorption, centered on 15 𝜇𝑚, have been used, in order to provide a reasonable vertical 

profile for the most important vertical interval to the numerical weather prediction (from sea level up to 

250 hPa) [13]. For the numerical experiments, properties for cumulus cloud, with 1 km height, were 

considered [18]. 

ANN for step-2 consists of eight inputs (radiances for seven wavelengths plus the level of the 

atmosphere) and one output: the temperature for that level. The technique of self-configured ANN has 

determined the best architecture for one hidden layer, with ten neurons, logistic function as activation 

function, learning rate of 0.430439 and momentum equals to 0.852758. 

ANN for step-1 consists of ten inputs (radiances that leave the top of the cloud measured by satellites 

for ten polar directions and one wavelength) and one output: the radiance that reaches the bottom of the 

cloud for a given wavelength. The best architecture was an ANN with three hidden layers, with 10, 20 

and 14 neurons respectively, Gaussian function as activation function, learning rate of 0.832256 and 

momentum equals to 0.152039. 

Once the best architecture for each ANN is determined, the whole inverse problem is solved by 

employing radiances data for seven wavelengths to the ANN of step-1, obtaining the radiative boundary 

condition for the bottom of the cloud. After that, these seven radiance values, plus the levels of interest in 

the atmosphere, are presented to the second ANN (step-2), to find the temperature for that level. 

 

3.3 Preliminary results 

Four test cases have been chosen, from the whole set of patterns, to test the methodology. As 

mentioned before, the radiances for the seven wavelengths at the bottom of the cloud are firstly 
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estimated. The temperature profile, from 1000 hPa up to 0,1 hPa, is estimated by the second ANN. The 

region until 250 hPa is the most important vertical interval for numerical weather prediction, and only 

this interval is shown. Figures 3 to 6 show the obtained results, and indicate the largest relative error for 

estimated temperature, in the region between 1000 hPa and 250 hPa. It is clear the correlation between 

the precision on the estimates of the radiances at the bottom of the cloud and the temperature profile 

estimation. 

 

 

 
Fig. 3. Results for test case 1 – Largest relative error: 3% 

 

 

 
Fig. 4. Results for test case 2 – Largest relative error: 6.3% 

 

 

 
Fig. 5. Results for test case 3 - Largest relative error: 4.6% 

 

4. Conclusions 

A methodology based on self-configured artificial neural networks to retrieve atmospheric 

temperature profile from satellite data is performed under cloud covering. These preliminary results 

show that the proposed technique produces satisfactory results, and it has great potential of use. Such 

algorithm allows for obtaining information from images covered by thick clouds, where not either sign of 



4th Inverse Problems, Design and Optimization Symposium (IPDO-2013) 

Albi, France, June 26-28, 2013 

microwave is able to supply reliable inversions. The results encourage us to apply the strategy out lined 

here in more realistic experiments. 

 

 

 
Fig. 6. Results for test case 4 - Largest relative error: 8% 
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