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ABSTRACT 

 
In this paper, a methodology for automatic detection of 
burned areas is suggested. The classification criterion is 
performed using Bayesian statistical parameter (mean and 
covariance matrix) extracted automatically using the 
Expectation Maximization algorithm and taking into 
account the spectral similarity between burned and flooded 
areas. In this work the final process involves the application 
of morphological operators of erosion and dilation of images 
in order to insert information from the spatial context, 
refining the final map. Experiments were conducted to a 
TM-Landsat scene with areas affected by fires and seasonal 
flooding. The results show that the accuracy is increased 
with the consideration of flooding mask and the subsequent 
application of spatial context, reaching values up to 97% of 
accuracy when compared with a reference map. 

 
Index Terms— Optical imagery, Land surface change, 

Pattern recognition 
 

1. INTRODUCTION 
 

Change detection through remote sensing imagery has 
been widely studied by many researchers in recent 
decades [1], [2], [3]. One of the most widely used 
techniques is based on the “difference image” [1], 
where data from images acquired at two different 
times are subtracted element by element (which can be 
pixels or objects). The differences can be computed 
either from the original features or from features 
extracted from the original data, such as principal 
components or vegetation indices. Usually, the 
classification between changed and non-changed 
elements is performed by using empirical strategies or 
manual trial-and-error procedures, which affect both 
the accuracy and the reliability of the change detection 
process [2]. Some studies propose a classification 
based on the Bayes theory, in which the changes are 
identified by estimating the parameters of the 
statistical distribution for ‘change’ and ‘no-change’ 
classes [2], [4]. In wetlands, the automatic detection of 
burned areas finds a problem caused by confusion with 

changes in hydrology: the similarity between the 
spectral and spatial characteristics of moist soil and 
burned areas constitute a major source of error [5], [6]. 
In this paper, we present a methodology to accurately 
detect burned areas in wetlands based on the Bayesian 
theory while avoiding unpredictable and rapid changes 
caused by flooding. 

 
2. PROPOSED APPROACH 

 
Following most change detection studies, the first step 
of our proposed approach consists of producing the 
difference image between two dates analyzed by 
subtracting pixel by pixel each of the respective 
available image multispectral channels. The resulting 
difference image shows the changes occurring between 
the two dates. In order to classify each pixel (X) of the 
image in one of the two exhaustive classes (change or 
no-change) by means of the Bayes theory, we need to 
define the statistical parameters of the two classes. In 
this study we employ the Expectation Maximization 
algorithm (EM), as described by [7], to automatically 
estimate the means vector, covariance matrix and the a 
priori probabilities for both classes. The rationale of 
using the EM algorithm to this end relies on the fact 
that both classes (change and no-change) tend to occur 
according a normal distribution with different 
parameters in the difference image. The output data 
computed by the EM algorithm are used as the input in 
a Bayesian classifier assuming a multivariate normal 
distribution: 
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where Gi(X) is the decision function for each class of 
change (i), p is the data dimensionality, in this case 
p=2, Σi

 
is the covariance matrix, µi the means vector 

and P(ωi) the a priori probabilities of each class. 
Considering classes ω1 (change) and ω2 (no change) 
the Bayesian rule is given by: 

if   1 2( )    ( ),G X G X  then: X  ω1 

(change)   ;  otherwise: X   ω2 (no-change). 
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After this process, a binary change map is generated 
with digital numbers of 0 (i.e., black) representing 
change areas and 255 (i.e., white) representing no-
change areas. It is worth noting that, for wetlands 
marked by fire events, which are our subject of study, 
the changes will initially be associated to burned areas 
as well as flooded areas. In order to exclude water 
bodies and moist soils from the subsequent change 
map, a mask is obtained using a reflectance threshold 
of 0–0.5 % in the channel TM-Landsat 5. This mask is 
then used to exclude the water bodies from the change 
map. Contextual information can be finally applied by 
means of morphological operators of erosion and 
dilatation of images [8] to eliminate the not significant 
or noise-like changes. This method was chosen 
because of its effectiveness in eliminating small areas 
corresponding to changes that are not of interesting to 
this study. Given the dynamic of Pantanal region, these 
small changes are common. 
 

3. EXPERIMENTS AND RESULTS 
 
To illustrate the proposed methodology we performed 
an experiment with a TM-Landsat 5 image as date 1 
acquired on August 2001 (Fig. 1.b), and as date 2 
acquired on September 2002 (Fig. 1.c). The study area 
is located in the central portion of South America 
inside the Brazilian Pantanal (Fig. 1a), which is a vast 
wetland associated with active tectonics and fluvial 
sedimentation [9]. This area is ideal to test the 
proposed methodology because there is a high 
occurrence of fires and seasonal flooding. A large fire 
event and flooding episodes were registered between 

image acquisitions. The scenes were provided by the 
U.S. Geological Survey [10], both had a Level-1 
Terrain (L1T) degree of correction and were 
orthorectified with an RMS error lower than 0.8 pixel 
[10]. All images had their digital number converted to 
exoatmospheric reflectance values according to a 
procedure described in [11] with updated calibration 
coefficients. Finally, radiometric normalization was 
applied using the dark object subtraction method [12], 
which is sufficient for the goals of the present study. 
In the Fig. 2.a we can see the results produced by the 
Bayesian classification and the improvement reached 
by the exclusion of water bodies (Fig. 2.b). The 
resulting effect caused by the application of spatial 
context information by morphological operators with 
15 iterations can be seen in Fig. 2.c. As expected, the 
initial change map (Fig. 2.a) shows artifacts, mostly 
caused by water bodies and moist soil. However, the 
exclusion of water bodies and the subsequent 
application of simple morphological operators 
considerably improved the initial results. A 
quantitative assessment by means of overall accuracy 
based on a manually produced reference map showed 
that a substantially reduction in post-classification 
errors was achieved with the combination of Bayesian 
classification based on statistical parameters estimated 
by EM algorithm, subsequent exclusion of the water 
bodies, and the application of spatial context 
information by morphological operators (Table 1). An 
iteration-by-iteration comparison between the 
reference image and the change map was performed 
with results showing the best result in the fifteenth 
iteration (Fig. 3). 

       
(a) (b) (c) 

Fig. 1. (a) Location of study area, (b) 31/Aug/2001 image acquired before fire events, and (c) 05/Sep/2002 
image acquired after fire events. (b) and (c) multispectral compositions: 5(R)4(G)3(B). 
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(a) (b) (c) (d) 
Fig. 2. Classification maps obtained with the proposed methodology. (a) Bayesian classification with statistical 
parameters based on EM algorithm; (b) Bayesian classification considering the water exclusion mask; (c) after 
application of morphological operators with 15 interactions; and (d) reference map. 
      
Table 1. Quantitative assessment of results. 

Burn detection 
method 

Correctly 
classified 

pixels 

Incorrectly 
classified 

pixels 

Overall 
accurac

y 
Classified image 93232 10997 89,4 % 

Classified image + 
Water body mask 96704 7525 92,7 % 

Classified image + 
Water body mask + 
Morph. operators 
after 15 iterations 

101206 3023 97,1 % 

 
The solid line in Fig. 3 represents the performance of 
the morphological operators applied directly in the 
Bayesian classification, and the dashed line is the 
performance considering the water mask. As can be 
seen, the process became stable between the10th and 
20th iterations. This allows us to suggest that the ideal 
number of iterations lies in a range of 10–20. It is 
worth noting that after the 15th interaction, the solid 
and dashed lines became overlapped. This result can 
be explained by the fact that, by the time the number 
of iterations increases, even in large regions, such as 
those resulting from flooding, the water features are 
eliminated from the map. However, it depends on the 
size of the water bodies present in the scene, i.e. when 
the size of the flooded regions is larger, the number of 
iterations needed until the lines overlap is greater. The 
time for this effect to occur is proportional to the size 
of the flood-labeled features. According to Fig. 3, after 
a certain number of iterations, the accuracy of the 
method begins to decline; therefore, the pre-
elimination of the flood-labeled regions is an important 
factor to the quality of the final results since it can 
reduce the number of iterations. 

 

 
 

Fig. 3 Accuracy as a function of the number of 
interactions, considering the water bodies (CWB) and 
not considering the water bodies (NCWB). 
 

4. CONCLUSIONS 
 

In this work we suggested a new methodology to 
automatically extract burned areas in wetlands from 
remote sensing multitemporal images. Our results 
support that a Bayesian classification followed by the 
exclusion of water bodies and the addition of spatial 
context information by morphological operators were 
effective to detect the burned areas in the study area. 
Some care needs to be taken concerning the number of 
iterations of the morphological operator. Despite the 
fine results reached by classification, the proposed 
methodology needs to be tested with other areas to be 
considered systematically. 
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