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ABSTRACT

Testing is paramount in order to assure the quality of a soft-
ware product. Over the last years, several techniques have
been proposed to leverage the testing phase as a simple and
efficient step during software development. However, the
features of the web environment make application testing
fairly complex. The existing approaches for web application
testing are usually driven to specific scenarios or applica-
tion types, and few solutions are targeted for testing the
functional requirements of applications. In order to tackle
this problem, we propose a task-based testing approach that
provides high coverage of functional requirements. Our tech-
nique consists of reassembling classical graph algorithms in
order to generate all the possible paths for the execution of
a task. Performed experiments indicate that our approach is
effective for supporting the functional testing of web appli-
cations.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: [Testing and debugging —
testing tools]

General Terms

Algorithms, Experimentation

Keywords
Web application testing, tasks, graph algorithms

1. INTRODUCTION

In recent years the web has become the universal medium
for the development of software applications. Besides uni-
versal access from any machine connected to the Internet,
web applications have no installation costs, may be upgraded
automatically and are independent of client’s operating sys-
tems. On the other hand, the use of server and browser
technologies that are constantly evolving make web applica-
tions error-prone. In fact, web-based systems are infamous
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for being poorly developed [12]. As a result, a large number
of applications present defects, causing both financial and
credibility losses to the software industry.

Software testing is the most effective way in order to pre-
vent defects. However, the features of the web environment
make application testing fairly complex, as (i) web appli-
cations are distributed in a client server architecture and
relies on request/response calls to synchronize their state;
(ii) they are heterogeneous, i. e., usually built with different
languages, both in client and server sides; and (iii) they have
a dynamic nature, possessing non-deterministic characteris-
tics in some scenarios [5].

Over the last decade different techniques have been pro-
posed in order to cope with the complexity of web appli-
cation testing. Many of the existing techniques fall in the
category of model-based testing, where a model of the web
application is built and test cases are derived from this
model. There are also techniques that exploit logged user
sessions to generate test cases. Finally, there are crawling-
based approaches that perform the systematic exploration
of web applications, allowing the generation of navigational
maps that can be used to produce test cases.

Whichever the used technique, the works reported on the
literature present limited test coverage. Therefore, there is
no “one size fits all” solution. Each approach is more adequa-
te for a certain scenario or application type. For instance,
there are solutions targeted to JavaScript applications [2,
4], others targeted to AJAX applications [9, 11], and, more
recently, to mobile applications [8].

A common point among the existing approaches is that
they are not targeted to cover functional testing. Some
works report coverage of functional testing to some extent,
but, in general, no approach is guided by the functional re-
quirements of applications. An exception is the work by
Thummalapenta et al. [15], which aims at automating the
creation of functional tests based on business rules. Using
a two-step black-box approach, their solution first crawls
the application GUI and creates an abstract state transi-
tion diagram, which is then used in the second step to iden-
tify rule relevant abstract paths. Although more effective
than existing solutions, this approach is not able to cover
all functional requirements of an application. Moreover, as
this approach is based on crawling the application’s GUI,
it is rather computationally costly, specially for large web
applications with unbounded number of GUI states.

In this paper we propose a technique for functional tes-
ting that is able to exercise the functional requirements of
a web application without using costly crawling approaches.



Our solution leverages techniques that exploits user-session
logs [6, 14]. However, instead of gathering real user data,
we prefer to record tasks performed by the application de-
veloper using a tool called UsaTasker [17]. This tool allows
developers to define tasks by simply interacting with the
application’s GUI.

UsaTasker provides facilities for the visualization and ma-
nagement of captured tasks, allowing (i) the definition of
sequence of events in which each event may occur in any
order; (ii) the definition of sequence of events that may be
repeated several times; and (iii) the definition of optional
events. In this way, it is possible to specify, for instance,
that the fields of a form may be filled in any sequence (i),
that certain steps of tasks, such as putting products on a
shopping cart may be repeated several times (ii) and, finally,
that a certain field of a form is optional and, therefore, may
be left blank (iii).

Our approach for generating test cases consists in expan-
ding the recorded navigational path by exploiting the fea-
tures of our navigational model. The resulting navigational
graph contains all paths that allows the correct execution of
the recorded task. Therefore, by replaying all these paths it
is possible to test the functionality expressed by the recorded
task. Repeating this procedure for all tasks in an application
assures very high coverage of functional testing.

In this paper we detail the procedure for generating ex-
panded navigational graphs for recorded tasks and show how
these graphs are used to derive test cases. We also present an
experiment that demonstrates that our approach is effective
for conducting positive tests in web applications.

This paper is organized as follows. Section 2 presents Usa-
Tasker and gives an overview of previous work developed
by the authors. Section 3 details our approach for deri-
ving test cases from recorded tasks. Section 4 presents an
experiment performed to evaluate our approach. Section
5 presents related work and discusses the advantages of our
solution when compared to the existing approaches. Finally,
Section 6 presents our final remarks.

2. PREVIOUS WORK

The work presented in this paper builds upon previous re-
search on usability evaluation. As a result of this research,
we developed USABILICS, a task-based system that per-
forms the automatic remote evaluation of usability in web
applications [16]. USABILICS evaluates the execution of
tasks by calculating the similarity among the sequence of
events produced by users and those previously captured by
evaluators. This evaluation provides a metric for the effi-
ciency and for the effectiveness of each evaluated task. We
named this metric the usability index of a task. USABI-
LICS also provides recommendations detailing actions to be
performed in order to solve detected usability problems.

One of the goals of USABILICS was to perform usability
evaluation with a minimum burden on the application deve-
loper (which is the application evaluator in most cases). To
achieve this goal, we implemented UsaTasker [17], a task de-
finition tool that supports the management of tasks targeted
to be evaluated in a web application. UsaTasker allows eva-
luators to define tasks by simply interacting with the appli-
cation’s GUI. After recording a task, our tool provides facili-
ties for the management of the captured events, allowing (i)
the definition of sequence of events in which each event may
occur in any order; (ii) the definition of sequence of events
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that may be repeated several times; and (iii) the definition
of optional events.

UsaTasker provides a GUI which presents a captured task
as a sequence of boxes, where each box represents an event
of the task. In order to define an event as optional, all the
evaluator needs to do is to select the desired box using the
mouse and change its property from mandatory to optio-
nal. Changing the ordering of events is also very simple. To
perform this action, the evaluator selects the events (conse-
cutive boxes) in which the precedence relation is not wanted.
When an event is marked as without precedence, it is dis-
played with a yellow background in UsaTasker’s GUI. Fi-
nally, to allow the repetition of events within a task, Usa-
Tasker presents a feature that allows selecting sequences of
events that may be repeated.

After recording and editing a task, a directed graph is
generated containing nodes that represents events and edges
that express the sequence in which each event occurs. Be-
sides being used in usability evaluation, we envision that
this directed graph can be used to support the functional
testing of web applications. Therefore, we designed and im-
plemented an extension to UsaTasker, which we called Usa-
Tasker++.

3. USATASKER++

We advocate in this paper that, by exploiting the features
of our navigational model, it is possible to derive test cases
from the directed graph that represents a tasks. Taking into
consideration that a given task may have optional, out of
order and cyclic events, it is possible to execute the task
in a myriad of different ways. In other words, there are
several different paths from the starting point (first event)
to the completion of the task (last event). The goal of Usa-
Tasker++ is to discover all these paths, making each existing
path a test case.

In order to produce all the possible paths with common
starting and ending events, we developed a set of algorithms
that process a directed graph taking into consideration the
features of our navigational model. The procedure to pro-
cess the graph use different techniques, reassembled in the
following steps:

1. graph calibration: creates an adjacency list that repre-
sents the graph;

2. path discovery: finds all basic paths in the graph;
3. reduction method: removes invalid paths;

4. out of order processing: creates additional paths to re-
present the out-of-order events;

5. cycle processing: creates additional paths to add the cy-
cles iterations.

3.1 Graph calibration

In this step, the original graph from UsaTasker is con-
verted to an adjacency list. Then, the adjacency list is refa-
ctored in multiple iterations to effectively address the three
types of events: optional, cyclic and out-of-order.

An optional event generates an extra edge between the
event before and another after the optional vertex. In this
case, the user can skip an event, going directly from the
previous action to the one after it, as shown in Figure 1 (A).



An example of this characteristic is a web application in
which the user can optionally fill out the middle name field
or mark a subscribe check-box. A restriction to this type
of event is that the initial event and the last event of a
task must be mandatory (non optional) since they define
the boundaries of the graph. These boundaries are used to
determine when to start and when to stop processing.

1 2 —» 3
2 3

3

1 2

2 3

3 1

Figure 1: Graph and Adjacency List: (A) extra edge due to
optional event 2; (B) extra edge due to cyclic event 3.

The cyclic event connects one vertex to another located
in a previous position in the graph. This is used in case
of a repeated set of events in the same flow. Figure 1 (B)
shows an example of this type. Cycles are only processed if
the number of elements between the vertexes is greater than
one. This is just to differentiate from the out of order events,
which have cycles between two vertexes next to each other.
There is no restriction to the destination vertex of a cycle
event in being optional or out of order. As an example, cycle
events in an e-commerce application can be the addition of
multiple products in a shopping cart.

An out-of-order event must always coexist with another,
generating several extra edges. Take the example of Figure
2. The five events 1, 2, 3, 4 and 5 — in which 2, 3 and 4
are out-of-order — indicate that it is possible to have many
sequences of events: 1-2-3-4-5; 1-3-2-4-5, 1-4-3-2-5, and so
on. In such case, there are several additional edges compared
to the original set. This overall step is divided in four phases.

In the first phase, shown in Figure 2 (A), the out-of-order
elements next to each other are gathered in a list. One
graph can have several out-of-order lists as long as the lists
are separated by an element that is neither optional nor
out-of-order. During the second phase, the vertex before
the out-of-order list is connected to all the vertexes in the
list — see Figure 2 (B). In the third phase, all the vertexes
in the out-of-order group are connected to the vertex after
the group, as shown in Figure 2 (C). The final phase of this
step, exemplified in Figure 2 (D), is when each vertex of the
group is connected to all the others inside the group. An
example of this type of event in a web application is a set of
text fields that can be filled in any order.

3.2 Path discovery

The second step detailed in this paper is to generate the
paths that represent different sequences of events. With the
refactored Adjacency List completed in the previous step, all
paths are defined using Algorithm 1, which is a manipulated
DFS (Depth-First Search) algorithm.

The manipulation done in this algorithm that makes it
different from the original DFS is that it contains triggers
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Figure 2: Out of order elements identified in green: (A) List
generation; (B) Previous vertex is connected to all elements
in the list; (C) Each element in the list is connected to the
vertex after the list; (D) Each vertex is connected to each
other in the group.

(such as “is last” in line 4), which makes it possible to output
a sequence of events, not just a DFS tree.

A stack (LIFO) defined as L in the algorithm is used to
represent the current sequence of events. Every time the
algorithm moves forward in the graph, the event is inserted
in the stack (line 2). When it moves back to a prior event,
the event is removed from the stack (line 19). By doing this,
the algorithm is always on hold of the sequence of events that
represents the path to the current vertex.

Another difference compared to the original DFS algo-
rithm is that this algorithm resets the edges’ visited-state
flag after reaching the final element of the graph (line 7).
This way, the same vertex can be visited more than once in
case a different path can reach it.

When the algorithm is processing each element in the
path, it detects if the next element is really a further element
(line 10), otherwise it considers the path as a cycle. During
the graph creation, each vertex is added using a unique ID
in increasing order. That way, it is guaranteed that a fur-
ther element in the graph is really after a previous one. If
the algorithm reaches a smaller ID, it means that it is going
through a cyclic path, so the elements involved are stored
on a specific cycle list for later processing (line 18).

3.3 Reduction method

At this point the adjacency list is created and the paths
are depicted. Unfortunately, most paths created during the



Algorithm 1: Algorithm ManipulatedDF'S

Input: Event E, linear list of events L, sequence of
events Ps, index of the current path p,
adjacency list Adj

Output: list of paths found Ps, hash-map C of vertex

and adjacent

1 set F as visited ;

2 push F to L ;

3 add E to Ps(p) ;

4 if F is last event in path then

5 increment p ;

6 add new sequence to Ps ;

7 reset all in Adj to not visited ;

8 firstAdj « true ;

9 foreach event adj in Adj(F) do
10 if a > F then
11 if firstAdj is false then
12 foreach event a in L do
13 | insert event a into Ps(p) ;
14 firstAdj < false ;
15 if adj is not visited then
16 L Manipulated DFS(adj, L, Ps,p, Adj) ;
17 else
18 L add E and adj to C' ;

19 remove last from L ;

path discovery phase are invalid. The reason is that during
the out of order processing, several edges were created to
represent the out of order property. Since all elements in
this type of set are connected, many paths that skip the
mandatory elements become available.

B Out Of Order

(o)
|} Optional

Figure 3: Invalid path

Consider the example in Figure 3, where 2, 3 and 4 are
out-of-order and 3 is optional. The path 1-2-5 is an acce-
ptable course for the DFS algorithm, but it cannot be con-
sidered as a valid test scenario, since it does not contain the
non-optional event 4.

During this phase, the reduction method walks through
all the paths and checks if all the non-optional elements are
present. If any is missing, the path is discarded.

3.4 Out of order processing

The goal of this step is to find the variations of a single
path, based on the out-of-order events. If a path contains
an out-of-order set, the permutation algorithm [7] is called
to generate all the possible sequences that the set can have.
Then, the system replicates the path as many times as the
number of variations, keeping the external elements of the

set and changing the sequences.

In the previous example shown in Figure 3, the out-of-
order set 2-3-4 generates the following sequences after the
permutation call: [2,3,4]; [2,4,3]; [3,2,4]; [3,4,2]; [4,2,3]; [4,3,2].
The external elements are 1 and 5, so the path is replicated
six times, one for each variation. The final result would be
the paths derived from the out-of-order set as shown below.

1-2-3-4-5
1-2-4-3-5
1-3-2-4-5
1-3-4-2-5
1-4-2-3-5
1-4-3-2-5

Note that at this point, if any element of the out-of-order
set is optional, the DFS processing detailed in the previous
sections already defines a path with and another without the
optional element. Therefore, permutation is executed sepa-
rately for each path, considering only the elements present
in the set. In the example of Figure 3, permutation is exe-
cuted for the path 1-2-3-4-5, and later executed for 1-2-4-5.
This last path is also processed since the vertex 3 is optional.

The permutation algorithm interchanges the position of
elements to generate the next permutation. The output of
this code is the list of all permutations. For example, the
set 1,2 outputs [1,2] and [2,1]; the set 2,3,4 outputs [2,3,4];
[2,4,3]; [3,2,4]; [3,4,2]; [4,2,3]; [4,3,2].

Besides the permutation process, it might be required to
handle more than one out-of-order set in a single path. Note
that if each set is handled separately, the permutation algo-
rithm will only generate paths varying the events within the
group. To manage this scenario, we created Algorithm 2 —
ProcessOutOfOrder — which performs the permutation be-
tween more than one out-of-order set in a single path.

Algorithm 2: Algorithm ProcessOutO fOrder

Input: list P of events of the path
Output: list N of new paths
1 permMap + mapOOOSequences(P) ;
2 foreach path p in permMap do

3 foreach QOO sequence ooo in p do
4 permGroup < permute(000) ;
5 numPerm < numPermx number of
permutations in permute(000) ;
6 for iterator i=0 to number of permGroup do
7 for iterator index=0 to numPerm do
8 for iterator k to permGroup(i) do
9 foreach sequence s in size of
permGroup(i) do
10 newPath < beginning of sequence +
sequence(k) of permGroup(i) + end
of sequence ;
11 add newPath to N ;
12 return NV ;
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At first, Algorithm 2 uses the Fundamental Counting Prin-
ciple from elementary algebra to come up with all the possi-
ble variations in a path with the out-of-order elements (line
4). So it defines the number of variations by multiplying
the amount of permutations of each out-of-order set. Take



the example of Figure 4 (A), the path 1-2-3-4-5-6-7-8-9-10-
11, with the out-of-order sets 2, 3, 5, 6, 7 and 9,10, has 24
possible variations. The results can be seen in Figure 4 (B).

The next step of the algorithm is to build the permutation
groups, one for each out-of-order set (line 6). The idea is
to spread the permutations within the maximum variations
defined by the Fundamental Counting Principle, as shown in
Figure 4 (B). For example, if the group has 2 permutations
and the overall maximum permutations is 24, half of the
maximum will be set with the first permutation, the other
twelve elements will be set with the second permutation, as
shown in Figure 5(A).

While processing the second group and so on, the algo-
rithm spreads the group permutations repeatedly until it
reaches the overall maximum (line 7). Figures 5 (B) and 5
(C) illustrate these permutations. After all groups are pro-
cessed, all the possible permutations are fulfilled with the
correct variation, group by group.

3.5 Cycle processing

The idea of the Algorithm 3 is to add a cycle in all paths
that has already been processed and that could have a cycle.
To do this, the algorithm checks the presence of a cycle event
in all the paths already processed (line 4). If the cycle event
is present, the path is duplicated and a cycle is connected
between the cycle event and its origin (lines 10 to 13).

This algorithm was designed to allow the user to select
the number of cycle iterations that should be included in
the test sequences (via NC input). The code starts with two
for statements to match the cycles with the corresponding
paths (line 1 and 3). If a cycle vertex is present in a specific
path and this cycle has more than two elements, the path
is duplicated and the cycle is added to the duplicate. This
step is repeated according to the number of cycle iterations
desired (line 9).

for Py for Py for

(2.3) 56,7} (9,10}
(" 1-2-3-4-5-6-7-8-9-10-11 )
1-2-3-4-5-7-6-8-9-10-11
{5,6,7} 1-2-3-4-6-5-7-8-9-10-11
1-2-3-4-6-7-5-8-9-10-11
1-2-3-4-7-5-6-8-9-10-11
{5,7.6} 1-2-3-4-7-6-5-8-9-10-11
- {9,10} 1-2-3-4-5-6-7-8-10-9-11
1-2-3-4-5-7-6-8-10-9-11
2.3} 6,57 1-2-3-4-6-5-7-8-10-9-11
1-2-3-4-6-7-5-8-10-9-11
{6,7.,5} 1-2-3-4-7-5-6-8-10-9-11
(B) < 1-2-3-4-7-6-5-8-10-9-11 >
® (10,9} 1-3-2-4-5-6-7-8-9-10-11
{7,5.6} 1-3-2-4-5-7-6-8-9-10-11
3,2} 1-3-2-4-6-5-7-8-9-10-11
(7,65} 1-3-2-4-6-7-5-8-9-10-11
6y 1-3-2-4-7-5-6-8-9-10-11
1-3-2-4-7-6-5-8-9-10-11
1-3-2-4-5-6-7-8-10-9-11
1-3-2-4-5-7-6-8-10-9-11
| sameas 1-3-2-4-6-5-7-8-10-9-11
above e 1-3-2-4-6-7-5-8-10-9-11
1-3-2-4-7-5-6-8-10-9-11
\_1-3-2-4-7-6-5-8-10-9-11 )
2 * 6 * 2 = 24

Figure 4: (A) Path with multiple out of order sets; (B) The
fundamental counting principle.

The cycles are processed only if the cycle sequences con-
tain more than two elements (line 6). This rule is justified
since the algorithm detailed on Section 3.1 already handles
cycle with two elements. At that point, several cycles were
added between the out-of-order elements to simulate the
specified behavior. So these short cycles are not processed
again during this step.

When a cycle element is found in a path, the cycle is added
into the original path and also to the respective variations
related to the out-of-order and optional elements. The for
statement on line 7 is responsible for distributing the cycles
within all paths.

4. EVALUATION

An empirical study was conducted to analyze the ap-
proach described in this paper. A web application based
on renowned technologies such as AJAX was used to eva-
luate the effectiveness of the test cases generation. The goal
of this study was to measure if the test cases created by
UsaTasker++ are able to cover the application’s functional
requirements.

The System Under Test (SUT) was a financial web site
that provides loans with low interest rates and a covenant
in which the loan needs to be spent in a restricted set of
vehicles of an specific automaker. Phase 1 of the experiment
was to define the tasks (use cases) provided by the SUT and
the functional requirements (FRs) related to each task.

Due to space restrictions, we will focus our attention on
the task “buy a vehicle”. The FRs for this task are as follows:

I. User can submit an offer for one vehicle at a time, but
several offers can be submitted;

II. Name and address are mandatory fields, while address
complement is optional;

Algorithm 3: Algorithm ProcessCycles

Input: from-to events hash-map C, list of all paths P,
number of cycle iterations NC'

Output: list of paths with cycle CL

1 s foreach event fromFE in C do

2 toE + C(fromkE) ;

3 foreach event sequence seq in P do

4 if fromE and toE are in seq then

5

6

cycle < sub-list of seq(toE, fromE) ;
if cycle contains more than 2 events and not
already processed then
7 foreach event sequence seq2 in P do
8 if fromFE is in seq2 then
9 for i <+ 0 to NC do
10 newSeq < seq2(0, fromE) ;
11 for rep < 0 to ¢ do
12 L newSeq < newSeq + cycle
13 newSeq
newSeq + seq2(fromE, end) ;
14 add newSeq to C'L

15 return CL ;
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2 permutations for 24 6 permutations for 6

2 permutations for 2

positions: split the positions in positions: split each position positions: split each position
2 and distribute the for each permutaion. Repeat for each permutation. Repeat
permutations evenly. the sequence until it reaches the sequence until it reaches
the maximum. the maximum.
1. 23 1. 23 567 1. 23 567 9 10|
2. 23 2. 23 576 2. 23 576 ||18_9
3. 23 3. 23 657 3. 23 657
4. 23 4, 23 6 75 4, 23 675
5. 23 5. 23 756 5. 23 756
6. 23 6. 23 765 6. 23 765
7. 23 7. 23 7. 23 567
8. 23 8. 23 8, 23 576
9. 23 9. 23 . 9, 23 657
10. 23 10. 23 10, 23 675
11. 23 11. 23 11. 23 756
12. 23 12. 23 12. 23 765
13. 32 13. 32 13, 32 567
14. 32 14. 32 14, 32 576
15. 32 15. 32 15. 32 657
16. 32 16. 32 16. 32 675
17. 32 17. 32 17. 32 756
18. 32 18. 32 18. 32 765
19. 32 19. 3 2 19. 32 567
20. 32 20. 32 20. 32 576
21. 32 21. 32 21, 32 657 -
22. 32 22. 32 22, 32 675 B
23. 32 23. 32 23. 32 756
24, 32 24, 32| 24, 32 765

(A) (B)

(©

Figure 5: Group permutations: (A) First group; (B) Second group and (C) Third group.

III. User must accept the “Terms of Use”. Otherwise, an
error is shown.

IV. The fields in the page can be filled in any order.

In the second phase, the basic flow for the task was re-
corded. Within this phase, the events were characterized
as Optional, Out-of-Order and/or Cyclic, based on the FRs
gathered on the previous phase. The graph in Figure 6 rep-
resents the model for the task. According to the FRs, all
the three characteristics were explored.

Note that the steps defined in this phase are tightly related
to the success of the test case coverage. The Test Analyst
should prepare the flow accordingly so that all FRs can be
explored. For experimental reasons, this paper will analyze
the shortened flow shown on Figure 6 and later will compare
it with a better approach.

Figure 6: The task “Buy a vehicle” expressed as a sequence
of events (shortened flow).
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The last phase of our experiment was to check if the gene-
rated test cases were able to cover all the application’s FRs,
as well as all the possible sequence of events. For the graph
depicted in Figure 6, UsaTasker++ was able to generate 72
test cases in total, 8 without cycles (referred in this paper
as Simple TCs) and 64 tests with cycles (Cycled TCs).

As indicated on the first line of Table 1, 2 test cases are
related to the optional element — one sequence with the ele-
ment and another without it — and 6 test cases are related to
the out-of-order elements — derived from the permutation of
3. Each one of these 8 Simple TCs contains a different cycle
sequence in it. Therefore, the 64 Cycled TCs are originated
from the operation that relates each cycle with the Simple
TCs — 8 cycle sequences X 8 Simple TCs.

In the second line of Table 1, we executed the same expe-
riment, but considering 3 cycle iterations. This time, we had
3 times the 64 Cycled TCs, since we created a sequence with
one cycle iteration, another with two iterations and another
with three iterations. The total test cases were 8 Simple
TCs and 192 Cycled TCs.

According to the permutation rules described on Section
3, as well as the logic defined for the optional and cycle ele-
ments, this experiment was successful in creating all possible
test cases. However, the generated test cases were not ca-
pable of covering FR I and III. Although many Cycled TCs
were generated, none of them submitted a real offer as it did
not accept the “Terms of Use”. All the TCs were manipula-
ting the GUI elements repeatedly, verifying the system be-
havior on negative scenarios. It was clear that the short set
of actions recorded by the Test Analyst did not go through
all the possibilities of the GUI, leaving some scenarios un-
touched.

After re-validating the base scenario, an extended ap-
proach was determined, as depicted in Figure 7. This time,
both options were recorded (“Agree” and “Disagree”) on the
same test sequence. As a result, the number of test cases
increased to 4160. Most important, the generated test cases
were now capable of covering all FRs of the SUT.



Figure 7: The task “Buy a vehicle” expressed as a sequence
of events (extended flow).

The 64 Simple TCs created during this validation (third
and fourth lines of Table 1) successively tests all the possi-
ble positive and negative scenarios, which are based on the
“Terms of Use” acceptance. Later, each cycle sequence of
those TCs are distributed in each Simple TC, generating
4096 Cycled TCs (64 cycles X 64 Simple TCs). When set-
ting the cycle iterations to 3, the number of Cycled TCs is
triplicated, creating a total of 12352 unique test scenarios.

Table 1: Test Results

Approach | CI | Ooo | Opt Cy Total
Shortened 1 6 2 64 72
Shortened 3 6 2 192 200
Extended 1 60 4 4096 4160
Extended 3 60 4 12288 | 12352

CI: cycle iterations; Ooo: out-of-order; Opt: optional; Cy: cyles.

As observed on Table 1, the number of test cases genera-
ted is proportional to the base scenario expansiveness. The
results, thus, highlight the significant amount of unique sce-
narios and the ability to generate all the possible sequences.
Nevertheless, it also stresses the application’s functional re-
quirements, demonstrating that our technique is successful
in achieving a complete functional coverage.

S. RELATED WORK

The work by Ricca and Tonella [13] is one of the first
relevant efforts to generate test cases for web applications.
They use a graph abstraction to represent the application,
where nodes represent pages, forms and frames, while edges
represent the relations among nodes, such as link, submit
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and include. Nodes and links are then used as coverage
criteria to derive test cases.

Besides Ricca and Tonella, many other authors have pro-
posed model-based approaches for generating test cases. The
work developed by Lucca et al. [10], for instance, abstracts a
web application using an object-oriented model and present
a decision-table-based method for generating test cases.

As far as model-based testing is concerned, it is also im-
portant to cite the works that tries to model a web applica-
tion using state diagrams. Andrews et al. [1] use finite state
machines (FSM) to model the behavior of a web applica-
tion. According to their model, nodes in the FSM represent
web pages and software modules, and edges represent transi-
tions among the pages and modules. Thummalapenta et al.
[15] also exploits state transition diagrams (STD), which are
created by crawling the application GUIL. They developed,
however, a set of algorithms that process the STD identi-
fying rule relevant abstract paths. They show that their
approach is effective for identifying paths that covers busi-
ness rules. Therefore, their work is more closely related to
ours, as it is also targeted to cover functional requirements.

The literature also present some efforts to generate test
cases without relying on application models. These efforts
fall basically in two main categories: unguided crawling and
user-session approaches. Unguided crawling techniques ex-
haustively explore the pages of a web application, generating
a navigational graph that can be used to test the application.
The first crawling approaches explored the regular hyper-
links inside of each page to perform the crawl [3, 18]. With
the advent and widespread of Javascript and Ajax technolo-
gies, new approaches have been proposed to handle state
changes that do not involve a page reload [9, 11]. Despite
of being able to generate a huge volume of test cases, these
approaches are not effective in covering the functional re-
quirements of applications.

User-session approaches generate test cases using logged
data gathered during application usage in the field [6, 14].
The advantage of recording user-sessions is the fact that
users are not being supervised while they perform tasks and
thus unexpected ways of executing a given task may occur,
which is important for application testing. On the other
hand, it is hard to assess the coverage of resulting tests, as
it depends on what had been recorded. Moreover, even when
the application’s main tasks are recorded, it is not possible to
assure that users have performed a task using all the possible
navigational paths provided by the application — most likely,
they did not. Finding those paths is where UsaTasker++
excels, providing a solution that leverages user-session ap-
proaches. Another advantage of our solution is the fact that
we do not have to deploy an application for real usage in or-
der to gather logging data. UsaTasker++ makes it possible
to test the application during its development, avoiding the
deployment of defective applications.

6. CONCLUSION

Different approaches have been proposed for web appli-
cation testing. None of them, however, are effective in or-
der to cover the functional requirements of applications. To
tackle this problem, we presented a task-based approach for
functional testing. As our test case generation procedure is
guided by pre-recorded tasks, the resulting test suites tend
to present high coverage of functional requirements: cove-
rage may reach 100% when recorded tasks are well chosen.



Another advantage of our approach is that instead of rely-
ing on complex application models or costly unguided crawl-
ing algorithms, we exploit task-based data that can be eas-
ily recorded by simply interacting with the web application
GUL

The novelty of our solution is a set of algorithms which
exploit the features of a navigational model that takes into
consideration the different possibilities in which a task may
be performed. To the best of our knowledge, no other work
exploits these navigational features in order to generate test
cases.

As important as generating test cases is evaluating their
results. This is the task of the oracles. In most of the cases,
oracles only determine whether a test case has passed or
failed. As future work, we plan to develop oracles that, in
case of failure, identify the GUI element where the failure
occurred. We advocate that this feature is able to shorten
the time to fix a defect, improving software productivity.
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