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Summary: A structural damage detection problem is tackled using a recent metaheuristic al-
gorithm (Multi-Particle Collision Algorithm – MPCA) associated with a deterministic approach
– the Hooke-Jeeves approach. The inverse problem of damage identification is formulated as
an optimization problem assuming the displacement time history as experimental data. The ob-
jective function is defined by the square difference between the measured displacement and the
displacement computed by using the forward model. The proposed hybrid approach consists
of the MPCA metaheuristic coupled with the local search method of Hooke-Jeeves. A paral-
lel version of MPCA technique using Message Passing Interface (MPI) is implemented since it
reduces the computation time.

Three different structures were considered for testing the methodology: damped spring-
mass system, truss, and beam structure models. Finite element method was used for structure
modeling with a different number of degrees of freedom (DOF).

Experimental data was created in silico (synthetic experimental data). Time-invariant dam-
ages were assumed to generate the synthetic displacement data. Experiments with noiseless
and noisy data were carried out. Level of noise of two and five percent were considered. Good
estimations of damage location and quantification have been achieved.

1. INTRODUCTION

Monitoring structural integrity and damages identification is an interesting application in
the field of system identification. Modal parameters (notable frequencies, mode shape, and
modal damping) in those systems are function of the physical properties of the structure (such
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as mass, damping and stiffness). Changes in physical properties caused by damages on the
structure, such as cracks or loosening of connections, will cause detectable changes in these
modal properties.

Since the damage identification problem can be described as an inverse problem, its solution
is usually unstable. Small random errors, as perturbation or noise on the measurements, can
cause large oscillations on the solution.

Many papers handle this class of problems. A review of damage identification techniques in
structural systems, based on vibration response, was published by Doebling et al.[1]. In [2, 3],
an approach for solving the damage identification problem using a hybrid method where the
Genetic Algorithm is used coupled with the Conjugate Gradient method is presented. In [4],
the authors deal with a structural damage detection problem using displacement measurements
as experimental data, and the problem is solved using two different methodologies: the con-
jugate gradient method with the adjoint equation and an artificial neural network. In [5], the
damage identification is performed using the measurements of natural vibration frequency and
eigenvalues of a real structure.

Metaheuristic algorithms are powerful methods from the Artificial Intelligence field. They
can solve optimization problems with a complexity that other classic optimization algorithms
usually can not. During recent years, metaheuristics algorithms have been used to solve real-
world optimization problems. There are a sort of metaheuristics which are inspired on nature
processes, such as evolutionary (Genetic Algorithms, Differential Evolution, Evolution Strate-
gies), social cooperation in animals (Particle Swarm Optimization, Ant Colony Optimization,
Artificial Bee Optimization) and physical processes (Simulated Annealing).

Multi-Particle Collision Algorithm (MPCA) [6] is a metaheuristic algorithm based on the
physics in the nuclear reactor, with particles (neutrons) traveling in the reactor. Two phenomena
can be pointed out during the travel trajectory: absorption and scattering. The latter process is
the mechanism to scape of local minima. Three principal functions in the algorithm control all
the process: perturbation, exploration and scattering. Particles in the whole population behave
cooperatively, i.e., after a number of objective function evaluations, defined by the user, the
best particle is over-copied for all other particles, through a blackboard strategy. This algo-
rithm has been used successfully in the solution of many optimization problems such as fault
diagnosis [7], automatic configuration of neural networks applied to different problems such as
atmospheric temperature profile identification [8], data assimilation [9] and climate prediction
[10].

In this paper, MPCA is hybridized with the pattern search method of Hooke-Jeeves (HJ)
[13]. This is a simple and efficient local optimization method that consists in exploratory and
pattern moves. It uses a sequence of exploratory movements on a base point, considering a
certain radius. If, during the exploration, a better solution is computed, the base point changes
for this better point. Otherwise, the exploration radius is changed for a smaller value.

The remainder of this article presents, in Section 2. , the forward problem defined by the
dynamic equation of motion of a N degrees of freedom (N -DOF) structural system. Section 3.
presents the inverse problem of identifying damages in structural systems. Section 4. presents
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the hybrid method of MPCA-HJ. In Section 5. , three cases of simples structures are used to
evaluate the proposed method. Finally, in Section 6., the final remarks are presented.

2. FORWARD PROBLEM

The general mathematical formulation of a forced vibration system is given by Eq. (1), with
initial conditions given by Eq. (2).

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) ; (1)

x(0) = x0 ,

ẋ(0) = ẋ0 ,
(2)

where M is the system mass matrix, K is the stiffness matrix, C is the damping matrix, F is
the external forces vector, x represents the displacements vector.

A numerical solution with the Newmark method [11] was implemented. The direct problem
calculates the system displacement x, knowing M,K,C,F and assuming initial conditions
x(0) and ẋ(0).

The systems considered in this work (a damped spring-mass system with 10-DOF, a truss
with 12-DOF and a beam with 20-DOF) are detailed in Section 5..

3. INVERSE PROBLEM

The inverse problem of localization and quantification of damages on structures is solved as
an optimization problem, through the minimization of the objective function defined in Eq. (3).

J(K) =
N∑
i=0

[xi(t)− x̂i(t)]
2 , (3)

where xi(t) and x̂i(t) are the computed and measured displacements at time t, respectively.
This problem will be solved using the hybrid method of MPCA-HJ, which is described in the
next section.

4. HYBRID METHOD: MULTI-PARTICLES COLLISION ALGORITHM-HOOKE
JEEVES

In the solution of the inverse problem, MPCA looks for good solutions within the entire
search space. After a predefined number of function evaluations, the MPCA execution is in-
terrupted. Then, HJ method is applied, taking the best solution found with MPCA as input
parameter. Thus, HJ tries to improve the solution by performing local search for a low num-
ber of evaluations. If the final solution of HJ phase is better than that provided at the final of
MPCA phase, it is taken as the current solution. MPCA and HJ are described in the two next
subsections.
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4.1 MULTI-PARTICLES COLLISION ALGORITHM

The MPCA algorithm consist in a set of particles (candidate solutions) that travels inside
a nuclear reactor, which are perturbed, and then, depending on their fitness, are absorbed or
scattered. The algorithm create random initial particles. The Perturbation function performs
a random variation for each particle within a defined range, creating new particles. If a new
particle is better that the old one, then an intensification (or local search) is made by means of
the Exploration function, generating small perturbations on the particle. If the new particle was
not accepted (was worse than the old particle) then a Metropolis scheme is activated (by means
of the Scattering function): the particle is replaced (with a defined probability) by a new random
solution, or a series of small perturbations are performed [6, 12]. After a number of function
evaluations, the best particle is shared among all the particles in the set, using a Blackboard
strategy, implementing a mechanism of cooperation. The MPCA pseudo-algorithm is shown in
Algorithm 1 (assume Nprocessors = 1).

4.2 HOOKE-JEEVES

The direct search method of Hooke-Jeeves [13] consists of the application of two move-
ments, repeatedly: the exploratory move and the pattern move. In a D-dimensional problem, a
candidate solution is denoted as a vector s, of length D. An objective function f measures the
fitness of the solution.

In the exploratory move (see Algorithm 2), the matrix V(D×D) stores the search directions.
To change a solution in an exploratory move, one column of V (named vd) scaled by a step size
∆, is added to s. In the simplest case, V is the identity matrix, so adding ∆vd to s implies
to change the dth element of the solution vector s. This process is made over all the decision
variables (dimensions of the problem). A new solution is accepted if it is better than the original
s. An exploratory move will return an improved solution sn, if it was successful.

A pattern move sn∗ is computed adding to sn a search direction (sn − sc). If xn∗ is better than
sc then it will replace the latter, else sn will become the new sc. If no improvement is found for
sc, the step size ∆ is reduced in ρ times.

As stopping criteria, a minimum step size ∆min and a maximum number of function evalu-
ations Nhjmax were defined. Algorithm 2 shows the pseudo-code of the method.

5. EXPERIMENTAL RESULTS

In this work, three simple structures have been considered: a 10-DOF damped spring-mass
system, a 3-bay truss structure with 12-DOF, and a 20-DOF beam structure. Damages were
assumed throughout the structure, by means of reducing values of stiffness of some elements.

Experimental data were created in silico and obtained from the exact solution of the direct
problem as it is (noiseless), or adding a random error to it (noisy data), as shown in Eq. (4).

x̂i(t) = xi(t) +N (0, σ) (4)
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Algorithm 1 Multi-Particle Collision Algorithm
1: for i← 1, Nprocessors do . Initial set of particles
2: NFEi = 0, lastUpdatei = 0
3: for j ← 1, Nparticles do
4: currentPi,j = RANDOMSOLUTION
5: NFEi = NFEi + 1
6: end for
7: end for
8: for i← 1, Nprocessors do . Initial blackboard
9: bestPi = UPDATEBLACKBOARD(currentPi,−)

10: end for
11: while NFE < NFEmax do . Stopping criteria
12: for i← 1, Nprocessors do
13: for j ← 1, Nparticles do
14: newPi,j = PERTURBATION(currentP.Solutioni,j)
15: if newPi,j .Fitness < currentPi,j .Fitness then
16: currentPi,j = newPi,j

17: currentPi,j = EXPLORATION(currentPi,j)
18: else
19: currentPi,j = SCATTERING(currentPi,j , newPi,j , bestPi)
20: end if
21: if currentPi,j .Fitness < bestPi.Fitness then
22: bestPi = currentPi,j

23: end if
24: end for
25: end for
26: if NFEi - lastUpdatei > Nblackboard then
27: for i← 1, Nprocessors do . Blackboard
28: bestPi = UPDATEBLACKBOARD(currentPi,−)
29: lastUpdatei = NFEi

30: end for
31: end if
32: end while
33: for i← 1, Nprocessors do . Final blackboard
34: bestPi = UPDATEBLACKBOARD(currentPi,−)
35: end for
36: return bestP1

where N (0, σ) is a normal distribution with mean 0 and standard deviation σ. In these exper-
iments, noises with σ = 0.02 and σ = 0.05 are used. The hybrid approach MPCA-HJ was
configured with the control parameters presented in Table 1.

5.1 Damped Spring-mass system with 10-DOF

A damped spring-mass system with 10-DOF is shown in Figure 1. Structural parameters
for the undamaged configuration are assumed as Mi = 10.0 kg, Ki = 2 × 105 N/m and the
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Algorithm 2 Hooke-Jeeves

1: Choose xc,∆,∆min

2: while ∆ > ∆min do
3: xn = EXPLORATORY(xc,∆)
4: if f(xn) < f(xc) then
5: xn∗ = xn + (xn − xc)
6: if f(xn∗ ) < f(xn) then
7: xc = xn∗
8: else
9: xc = xn

10: end if
11: else
12: ∆ = ∆ * ρ
13: end if
14: end while
15: return xc

1: function EXPLORATORY(xc,∆)
2: x = xc

3: for d← 1, D do
4: f = f(x)
5: if f(x+ ∆vd) < f(x) then
6: xn = x+ ∆vd
7: else if f(x−∆vd) < f(x) then
8: xn = x−∆vd
9: end if

10: end for
11: return xn
12: end function

MPCA Nparticles 10
NFEmax 10000
Nblackboard 1000

IL 0.7
SL 1.1

HJ ∆min 1× 10−10

ρ 0.8
Nhjmax 10000

Table 1: Control Parameters for MPCA-HJ

damping coefficients are assumed proportional to the undamaged stiffness Ci = 5.0× 10−3 Ki,
i = 1, . . . , 10. All external forces Fi = 5 N are assumed constants. For the experiments, the
numerical integration was performed assuming tf = 5 s with a time step ∆t = 5× 10−3 s. For
this system, the following damage configuration was assumed: 10% on the 1st spring, 25% on
the 3rd, 15% on the 4th, 5% on the 5th, 30% on the 7th, 20% on the 8th, and 10% on the 10th.
All the others elements have been assumed as undamaged.

Figure 2 shows the results for the estimated damage factor. Lighter gray shows the exact
damage factor. Table 2 presents the relative error percent between the real and estimated values
of the stiffness. Almost perfect damage estimation were obtained for noiseless data. Good
results were obtained using 2% and 5% noisy experimental data.
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m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Figure 1: Spring mass system with 10-DOF
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Figure 2: Estimated damages for Spring-Mass structure

Element Noiseless Noisy 2% Noisy 5%
1 0.000 2.222 5.356
2 0.000 0.260 0.600
3 0.000 0.013 0.067
4 0.000 0.188 0.482
5 0.000 0.337 0.863
6 0.000 0.000 0.000
7 0.000 0.657 1.629
8 0.000 0.763 1.912
9 0.000 0.000 0.000
10 0.000 0.878 2.189

Table 2: Relative error between real and estimated stiffness in Spring-Mass structure
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5.2 Truss system with 12-DOF

The truss system is composed of 12 aluminum bars (ρ = 2700 kg/m3 and E = 70 GPa)
with a square cross section area A = 9× 10−4 m2 and each nondiagonal element is l = 1.0 m
long. Also for the truss structure, the damping matrix is proportional to the undamaged stiffness
matrix C = 10−5Ki. Constant external forces F = 1000 N are applied to the nodes A and B
in the positive diagonal direction, as shown in Figure 3. A damage configuration of 15% over
the 2nd element, 5% over the 4th, 30% over the 7th, 10% over the 10th and 20% over the 12th

element was considered. All the others elements have been assumed as undamaged.
Figure 4 shows the results for the estimated damage factor. Lighter gray shows the exact

damage factor. Table 3 presents the relative error percent between the real and estimated values
of the stiffness. Almost perfect damage estimation were obtained for noiseless data. Good
results were obtained using 2% noisy experimental data. Worse results were obtained using 5%
noisy experimental data.
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FA

FB

y

x
+

Figure 3: Three-bay truss structure

Element Noiseless Noisy 2% Noisy 5%
1 0.000 2.940 3.780
2 0.000 1.118 1.235
3 0.020 0.430 2.020
4 0.116 3.968 8.947
5 0.000 0.000 0.000
6 0.000 3.730 9.010
7 0.043 0.043 0.271
8 0.010 0.000 0.000
9 0.170 6.500 0.000
10 0.011 0.967 0.722
11 0.000 0.000 0.000
12 0.013 2.238 6.200

Table 3: Relative error between real and estimated stiffness in the Truss structure
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Figure 4: Estimated damages for Truss structure

5.3 Beam with 20-DOF

A beam-like structure is modeled with 10 beam finite elements and clamped at the left end,
as shown in Figure 5. Each aluminum beam element (ρ = 2700 kg/m3 and E = 70 GPa) has
a rectangular cross section area A = 4.5 × 10−5 m2, length l = 0.43 m and inertial moment
I = 3.375 × 10−11 m4. The following damage configuration was assumed: 20% damage over
the 2nd element; 10% over the 5th; 15% over the 9th; and 5% damage over the 10th element. All
the others elements have been assumed as undamaged.

Figure 6 shows the results for the estimated damage factor. Lighter gray shows the exact
damage factor. Table 4 presents the relative error percent between the real and estimated values
of the stiffness. Almost perfect damage estimation were obtained for noiseless data. Good
results were obtained using 2% noisy experimental data. Worse results were obtained using 5%
noisy experimental data.

1 2 3 4 5 6 7 8 9 10
F

Figure 5: 10-DOF Beam structure
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Figure 6: Estimated damages for Beam structure

Element Noiseless Noisy 2% Noisy 5%
1 0.000 0.000 0.000
2 0.000 1.850 4.600
3 0.000 1.790 4.410
4 0.000 1.450 3.620
5 0.000 1.333 3.200
6 0.000 1.160 2.810
7 0.000 0.410 1.300
8 0.000 1.180 2.430
9 0.000 4.035 9.353
10 0.000 8.832 18.463

Table 4: Relative error between real and estimated stiffness in Beam structure

6. FINAL REMARKS

A hybrid approach using the MPCA metaheuristic coupled with the Hooke-Jeeves method
was considered for solving the inverse problem of damage identification in structures. Three
different simple structures were used to evaluate the feasibility of the approach, employing
noiseless and noisy displacement measurements as experimental data. Perfect results were
achieved when using noiseless experimental measures, while satisfactory results were reached
when noisy experimental data are used.

It should be pointed out that the proposed methodology is able to always identify the dam-
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aged elements. Actually, a bad situation will occur if the damage was not detected. The damage
quantification is more precise depending on the quality of the measurement data used in the
inverse solution procedure. Nevertheless, the proposed hybrid scheme shows robustness.

In future works, the proposed hybrid method should be evaluated assuming experimental
data in frequency domain and when considering more realistic structures.
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