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Abstract—The increase number of CubeSat based space mis-
sions in the last decade shows the new possibilities for cheaper,
faster but not so better projects. This lack of quality in a mission
completeness point of view is associated to lack of good practices
at developing, assembly and testing phases. Addressing such
problem, this work presents a fault injection tool for nanosatellite
robustness testing, named Failure Emulator Mechanism (FEM).
The goal of the FEM is to emulate at the subsystems interface
level faults that could be presented during the mission operation
of the spacecraft. Working at the communication bus, the FEM
is capable to intercept the exchanged messages between two
subsystems under test and inject different faults: (i) time related
faults, i.e. delay; (ii) value related faults, i.e. bitflip and; (iii)
specific communication bus faults, i.e. a verbose subsystem.
The FEM was developed to support the integration tests of
the software-intensive NanoSatC-BR2 On Board Data Handling
Software (OBSw) and its Payloads. The NanoSatC-BR2 is the
second scientific nanosatellite developed jointly by the Brazilian
National Institute for Space Researches (INPE) and Santa Maria
Federal University (UFSM). As this spacecraft works with a full
shared I12C communication bus, the FEM was implemented to
support and work at this communication protocol and electric
interface. The use of FEM has proved to be helpful along all
phases of nanosatellite development. In the early phase, FEM
supports robustness requirement validation by means models in
the loop (MIL). In the nanosatellite integration phase, FEM
supports robustness testing of the communicating subsystems
under integration, configuring hardware in the loop (HIL). In
this paper, we present the design, implementation and results of
FEM as MIL tool for robustness requirement validation of OBSw
and Langmuir Probe, a particular NanoSatC-BR2 Payload.

Index Terms—Fault Injection, Nanosatellites, CubeSat, testing,
MIL, robustness.

I. INTRODUCTION

The nanosatellite cubesat-based missions have become more
and more commercially attractive due to the low mission
development cost, being a great opportunity to test new
technologies at the hazardous space environment [1], [2], [3],
(4], [5], [6].

The main low-cost reasons are the standardization of Cube-
sat platform [7], [8] and the way nanosatellites are placed in
orbit, being pigback at big space vehicles. The former con-
tributes to reducing project lifetime, saving time for platform
subsystem design and testing; the last contributes to share
launch cost. However, studies have shown high mission failure
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rate due to lack of rigorous development and verification
system [9].

Best practices for CubeSats development have been pro-
posed in the last years to improve the success rates of these
missions. Examples at Systems Engineering try to create and
evaluate different approaches for the concept and development
of Cubesat-based missions [10], [11].

Rather than increasing quality assurance along the whole
mission lifecycle, which will make the mission unfeasible
under cost perspective, our approach focuses on the software-
intensive mission payload only. Assuming the payload is
usually new design to be integrated in the Cubesat standard,
much attention on it must be paid in order to assure the
robustness of other subsystems in the interaction with it, in
particular the On-Board Datahandling Software (OBSw).

Robustness is the system property of dealing with unex-
pected event at certain operational situations without affecting
the service provided [12]. Better robustness requirements lead
to better models development that leads to better software
implementations and, at the end, more reliable systems.

This work present a fault injection tool to support the
development, integration and tests of a given subsystem pay-
load of a cubesat-based nanosatellite mission, focusing on the
subsystems robustness verification at interface level.

The Section II shows the interface injection approach and
its two implementation possibilities (Subsections II-A and
II-B). In the next Section, III it is presented the Failure
Emulator Mechanism, objective of this paper, and its principal
characteristics (Subsections III-A and III-B). This paper ends
with the environment for tests on the Section IV and finally
its Conclusions about the tool capabilities and future work.

II. INTERFACE FAULT INJECTION

The interface fault injection is an approach for Software
Implemented Fault Injection — SWFI — which consists of
insert faults at a specific interface between two communicating
systems [13].

At this level is possible to inject faults and emulate fail-
ures on the messages exchanged between the two or more
systems. Commonly faults inserted at the interface layer are
faults related to robustness, e.g. change expected values and
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messages, and the implemented communication protocol itself,
e.g. change electric signals.

There are two ways to implement interface fault injectors,
using a driver or a interceptor, see Figures 1 and 2.
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Fig. 2. Interceptor Fault Injector Implementation

A. Driver Fault Injector

This implementation consists on a “dummy” system con-
nected to the target SUT emulating the behavior of another
communicating system. The role of this driver is to exchange
messages with the target System Under Test — SUT - like
a real system and inject possible faults from the systems
connected on chosen interface.

This implementation is normally used to simulate the envi-
ronment and test one target system in a hardware in the loop
approach. Acceptance test phases normally use this kind of
test driver in a way to evaluate functional characteristics of
the target SUT.

B. Interceptor Fault Injector

The interceptor implementation consists on monitoring the
exchanged messages between the two target SUT and insert
or not faults at the communication channel.

The role of the interceptor is to emulate a faulty commu-
nication channel, intercept the messages with the minimum
interference and inject faults, if necessary.

This implementation can be used at integration tests without
need to know the exactly behaviour of the target systems,
“black box” tests. But it requires a well-defined and well-know
interface and communication protocol to keep low interference
delays and enable the fault injector to interoperate properly
with the SUT.

Previous works of fault injection on interface level [14],
[15], [16] and robustness tests [17] prove the utility of
this approach and the NASA Software Safety Guide Book

(NASA-GB-8719.3) recommends fault injection for assessing
the system behaviour against faulty third party components
(e.g. COTS), provoking transitions that are not allowed by the
requirements [18].

III. FAILURE EMULATOR MECHANISM

The Failure Emulator Mechanism — FEM - is an interface
fault injector based on the interceptor implementation. It is
idealized as a robustness testing tool to support the develop-
ment and integration of nanosatellite subsystems, in special
the spacecraft On Board Computer — OBC — and its Payloads
— PLD.

This tool is capable of intercepting all the messages ex-
changed between the OBC and one of its PLD, emulating
failures through the injection of controlled faults at commu-
nication level based on a criteria [19].

For this role, the FEM was implemented as a device that can
take the role of a slave device when communicating with the
OBC (original master device) and take the master role from
the PLD (original slave device) point of view.

The Figure 3 represents the architecture for the FEM
implementation.
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Fig. 3. FEM Architecture

To a proper functionality of the interceptor, two items
must be determined: the interface (logic and electric) and the
faultload (the possible faults to be inject and the script for
FEM actuation).

A. The Interface

As an interceptor fault injector, the FEM needs a well-
known interface description at electric and logic levels.

As described, the interface between the SUT is the I2C,
communication protocol and electric interface. The I?C' was
created by Philips as Inter-IC, a fast and simple communica-
tion protocol for Integrated Circuits with the minimum use of
pins [20].

This protocol is being used by the great majority of the
CubeSat mission due to its adoption by the commercial
nanosatellites developers around the world and easily im-
plementation on COTS microcontrollers. The plug-and-play
strategy of the most of the CubeSat-based missions made the
I2C the first choice for the industry as communication bus.
Even with new projects, using SPI, UART or CAN, major
nanosatellite enterprises and universities projects still use the
Phillip’s protocol as a simple way to achieve they objective.

The I?C works as a Master-asks/Slave-responds protocol
with broadcast messages. Only two bus lines are required, a



serial data line (SDA) and a serial clock line (SCL), and all
the devices are identified by a unique 7-bit address.

The Master device starts all the communications and con-
trols the messages synchronisation. The Figure 4 shows the
common [2C' frame structure. All messages have the same
structure:

START BIT + SLAVE ADDRESS +..
..+ READ/WRITE BIT + ACKNOWLEDGE +..
..+ DATA + ACKNOWLEDGE +..
..+ DATA + ACKNOWLEDGE +..
.+ .. + ACKNOWLEDGE + STOP BIT

The electric interface for 72C' communication is a two
wire interface  TWI — one for the SDA and another for the
SCL. Both are pulled-up to the logic high level by resistors
connected to a single positive supply, usually +3.3 V or +5 V.
All connected devices have open-collector driver stages that
can transmit by pulling the bus low, and high impedance sense
amplifiers that monitor the bus voltage to receive data.
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Fig. 4. I?C Frame Structure

B. The Faultload

The Faultload is the FEM main conductor during the tests.
This role is performed by two files uploaded to an SD card
where the FEM downloads and stores the information of these
files as an guide to how will be its behaviour during each test
phase.

The two files are (i) a configuration file (CONFIG.TXT)
with the identification of the test case, the systems under test
(the I2C' addresses in decimal representation of each SUT)
and the number of faults to inject; and (ii) a faultload script
file (FEM.TXT) with information about the faults to inject,
i.e. where to inject, when to inject, what to inject and how to
inject.

Both files are an array of integers, the first one is a 1 x 4
array and the second one, a n x 4 array, where the n is the
number of faults to inject captured from the configuration file.

int array CONFIGI[id,
..nbr-of-faults];

SUT1, SUTZ, ..

int array FEM[where, when, what, how];

The faults chosen are based on emulate the degradation
of the service delivered, early study [21] defined on fault
injection to suppose three major types of faults: as value
faults (the transmission of incorrect values), provision faults

(transmission of unexpected information) and time faults (time
related faults).

The next points present a brief explanation about each
element of the FEM’s array in FEM. TXT file.

1) Where: Defines where a fault will be inject. For the 12C'
protocol, on a READ or on a WRITE message. This column
could have two values: 0x00 (WRITE) or Ox01 (READ).

enum WHERE {
READ
WRITE =

0x00,
0x01

}

2) When: Defines the exact instant to inject a fault, could
be in time or counting the number messages exchanged. For
the I?C protocol it is used the number of messages, READ or
WRITE.

int WHEN;

3) What: Defines the fault to be inject. For this imple-
mentation it is used four different fault types: (i) value fault,
implemented through a bitflip fault, (ii) provision fault, im-
plemented changing the message information, (iii) time fault,
insertion of delays on exchanged messages, and (iv) protocol
specific fault, for this implementation lock down the data I°C
bus line. Each fault is identified at the array as an integer, as
demonstrated, the addition of new faults must be followed by
an unique identification too.

enum WHAT {
BITFLIP = 0x01,
DELAY = 0x03,
CHANGE = 0x05,
LOCK = 0x07

}

4) How: Defines the argument for each implemented fault,
i.e. which bit to flip on a bitflip fault, how many milliseconds
to delay on time faults, the new byte to transmit on a provision
fault, how many milliseconds to lock down the data bus.

int HOW;

IV. THE MIL ENVIRONMENT

To validate the capabilities of FEM it is necessary to insert
it in a controlled environment with two well-known SUTs.

For that, it is used a Model-in-the-Loop — MIL — environ-
ment with the OBC and one of its PLD modeled as describe
by the Spacecraft Interface Control Document [22]. This
document is part of the NanoSatC-BR2 mission documents.

The NanoSatC-BR2 mission is the second spacecraft of the
scientific nanosatellites concepted by the Brazilian National
Institute for Space Researches INPE with the objective to
study the Earth Magnetosphere.

In this paper we present the use of FEM on the verification
by testing robustness properties of the OBSw embedded in
OBC when communicating with a particular NanoSatC-BR2
payload, named Langmuir Probe (SLP), which is also software



intensive subsystem. The expected interaction of these two
SUT is presented at the sequence diagram on Figure 5.

OBC SLP
o
slp_on (0xF0)
slp_rdy (OxFA)

state2
send_time (Ox4C,0xACBB)

rdy
state3
start_tx [0x3C, 0-32, 0-32]

data [0x00 — OxFF]

A l

data [0x00 — OxFF]

Fig. 5. OBC-SLP Interface Sequence Diagram

The communication starts with a handshake between the
two systems, with the OBSw sending a slp_on to wake up the
SLP who answer with a slp_rdy to indicate that it is ready to
continue. The next thing to do is to set up the the initial time,
send_time for the data recording with the OBSw sending a
timestamp, here a two byte data <OxACBB>. From now the
OBSw consider the SLP ready to start the data acquisition
and begin the transmission as soon it is called again. With
the start_tx command followed by the start and end pointers
for the SLP 32-byte-register the SLP is allowed to start the
transmission of the acquired data to the OBSw, byte-at-byte
(0x00-0xFF)

All the MIL environment is supported by Arduino Uno
boards. This choice was made looking for cheap and easy solu-
tions for development environment as part of the COTS (Com-
mercial Off the Shelf) philosophy attached to the nanosatellites
projects.

The use of these kind of boards was at the beginning a
problem, once the Uno boards have only one TWI ports.
Looking for a solution it is used an open-source library
<I2CSoftMaster.h>, library to transform two other Uno
digital pins into TWI pins.

With this problem solved the Figure 6 shows the FEM class
diagram implemented at the final version.

The Table I shows the information of the configuration and
faultload files representing a particular test case generated to
validade the FEM capabilities during a test at the OBSw and
SLP model integration level.

All the faults were software implemented as described, the
exception, the lock fault injection. Once this is a physical fault,
it is necessary to realy force the SDA bus down and keep it
down for how long it is necessary. For that it is used one of
the Arduino Digital pins (e.g. pin 8) connect to the base

SUT1 SuUT2

i2¢ RequestFrom,
i2¢.SendTo(),

idle.read(CONFIG. TXT) 2c. onRequest()

i2c.onReceive();

idle_read(FEM.TXT)

fem value(int);
fem.provision(int);
fem time(int);
fem.lock();

Fig. 6. FEM Class Diagram

of a bipolar junction transistor, in a "NOT GATE” connection
logic, with the collector with the SDA bus (between the master
device and FEM) and the emitter grounded.

TABLE I
TEST CASE TO VALIDADE THE USE OF FEM TESTING THE OBC AND SLP
ID SUT1 SUT2 NFAULTS
test-case02 OBSw SLP 10 faults
WHERE WHEN WHAT HOW
write 9 DELAY 5 ms
read 13 LOCK 100 ms
write 21 DELAY 5 ms
read 25 LOCK 100 ms
read 29 LOCK 100 ms
write 33 BITFLIP LSB 2
write 37 DELAY 5 ms
read 41 CHANGE 0x02
write 45 DELAY 5 ms
write 49 DELAY 5 ms

This test case was uploaded to the Arduino board through
the SD card. The selected values for each fault parameter was
chosen to confirm consistance at the results, i.e. the LOCK
fault to supress the messages (100ms is enough to perform a
supression at master point of view), 5ms for the delay, change
to 0x02 and bitflip at LSB 2.

The Tables II and III show the tests done with the FEM to
analyse its behaviour and intrusion at the SUT communication,
respectively on WRITE and READ demands.

TABLE II
SUMMARY OF FEM FUNCTIONS UNDER TESTS ON WRITE MESSAGES
MASTER Tx FAULT PARAM DELAY SLAVE Rx
0xFO null N/A 758 us FO
0x3C delay 5 ms 5628 us FF
0x3C delay 20 ms 5598 us FF
0xFO bitflip Isb 2 1543 us 0xFB
0xFO delay Sms 5543 us FF
0x3C delay 5 ms 5601 us FF
0x3C delay 5 ms 5599 FF

The results presented in both tables (ILIII) were observed
by Serial Monitor and using an oscilloscope with I?C' digital
decoder as show in Figure 7 which demonstrates a value (bit-
flip) fault injected at the attempt to WRITE OxFO and it



TABLE III
SUMMARY OF FEM FUNCTIONS UNDER TESTS ON READ MESSAGES

SLAVE Tx FAULT PARAM DELAY MASTER Rx
0xFA null N/A 1061 us FA
0xFA delay 5 ms 6744 us OxFF
OxFA lock 100 ms 101 ms 0xFF
OxFA lock 100 ms 101 ms OxFF
0xFA change 0x02 1077 us 0x02

becames 0xFB due to a the bit-flip at the LSB 2, third bit at
the byte transmitted.

Addr:3Ch:Read
[ol1[1]1]1]ofo]1]

[ Addr3ach:write

[o]1]1]1]1]o]ojo] o ["™halil1lolololadto
luuuy Uy ' LI
1 \ ‘

Fig. 7. Example of a VALUE fault injection during a WRITE transmission

V. CONCLUSION

The evaluation of robustness through testing software-
intensive systems is crucial for the success of space mis-
sions. The complete operation of the mission depends on
many different components/subsystems operating correctly
and delivering the correct services. So, it is a good practice
to anticipating verification and validation of functional and
robustness requirements of communicating software-intensive
subsystems as early as possible besides the environmental and
launch vehicle constraints only.

The FEM shows itself as an impressive tool to support the
robustness tests even in a MIL environment, less intrusive than
expected on the I?C protocol. Its capabilities, for emulating
by fault injection possible non-expected situations, support the
integration tests and exploit the development phase helping the
subsystem team to foresee events and reduce the rework.

The low memory of the Arduino Uno is one of the negative
points for this implementation and also its low processing
power, even not being responsible for big troubles. Future
works with other communication protocol may need more
processing budget.

The next steps of this work are: (i) continue with the second
phase using HIL and test the final implementations of the
OBC and NanosatC-BR2 payloads, (ii) exploit the use of the
FEM in a test chain where we can model the SUTs, automatic
generate test cases with faultload, inject the faults and get logs
to feedback the testers and, (iii) develop a FEM framework to
implement new solutions to fault injection and robustness test-
ing using different space communication protocols (CAN, SPI,

UART) and differrent boards, like Arduino Mega, Blue Pill,
STM, even Raspeberry Pi to give the FEM more capabilities.

A satellite, even a nano-one, is not all software-intensive and
the FEM demonstrates here one of its advantages. The use of a
model approach on the FEM implementation allows hardware
solutions to inject faults, e.g. lock down the I2C bus through
a transistor in an open-collector configuration. Exploiting the
other satellite interfaces and studying more hardware fault
effects on the system as whole could be a way to put the
FEM as a mid-term between software and hardware injector.
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