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ABSTRACT
Clustering problems are common in several fields of science. In the graph theory context,

a clustering can be made by transforming a graph into a disjoint union of complete subgraphs
(clusters) by performing changes to the edge set. This problem is known as the cluster editing
problem. However, there are situations when clusters may overlap, i.e., they can share vertices.
There are few practical studies regarding the overlapping cluster editing problem in the literature.
Then in this paper we propose a hybrid heuristic for the overlapping cluster editing problem. Our
hybrid heuristic is based on coupling two metaheuristics, to generate solutions for the cluster editing
problem, and a mixed-integer linear program, also introduced in this work, that is solved by using
the cluster editing solutions as input. Experimental results show that the proposed hybrid heuristic
is able to find good-quality solutions.
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1. Introduction
Clustering problems are found in several science areas such as bioinformatics [Ben-Dor

et al., 1999; Sharan et al., 2003; Rahmann et al., 2007; Böcker et al., 2009], image processing
[Wu and Leahy, 1993], computer vision, multimedia data analysis, facility location problems, data
compression, marketing, pattern recognition and machine learning [Bansal et al., 2004; Shamir
et al., 2004; Demaine et al., 2006; Aggarwal, 2013]. On an overview, considering a set of elements,
the main objective of a clustering problem is to partition them into subsets according to the values
of a given metric. Thus, elements belonging to the same subset have metric values more similar
than elements belonging to different subsets. These subsets are also known as clusters.

Several methods and algorithms have been proposed over the years to perform data clus-
tering and there is no method or technique that can be used to solve all clustering problems opti-
mally [Xu and Wunsch II, 2005]. However, graph theory is a widely used approach to model these
problems and obtain good quality clusterings [Shamir et al., 2004; Guo et al., 2009]. From a graph
theoretic point of view, given an unweighted graph, a clustering problem can be modeled by con-
sidering elements as vertices and making them adjacent if the similarity value between the elements
is larger (or smaller) than a threshold. Then, a cluster can be interpreted as vertices that are highly
connected, that is, a dense subgraph or a complete subgraph (clique).

In this context, a clustering can be obtained by adding and deleting edges of an input
graph so that it becomes a disjoint union of cliques. This is a well-known problem in combinatorial
optimization referred to as cluster editing problem, also known as correlation clustering problem
[Bansal et al., 2004]. The cluster editing problem is, probably, the most studied edge modification
problem [Fellows et al., 2011] and has applications, mainly, in gene expression [Ben-Dor et al.,
1999; Matsuda et al., 1999; Chesler et al., 2005; Jiang and Pei, 2009]. Transforming an input graph
into a disjoint union of cliques by the minimum number of edge modifications is a NP-hard problem
which was proved, independently, by Delvaux and Horsten [2004], Shamir et al. [2004] and Bansal
et al. [2004]. Then, several heuristics, approximation algorithms and theoretical studies have been
carried out in the literature for this problem. For a briefly survey of practical and theoretical results
on this subject, see Il’ev et al. [2016].

In some problems, however, there are situations when clusters may overlap, i.e., they can
share vertices. For example, in social networks users can be assigned to more than one cluster
[Bonchi et al., 2013]. As Fellows et al. [2011] explain, the concept of the cluster editing problem
fails to model these problems where clusters may overlap and has been criticized in the literature
[Dehne et al., 2006; Maiza et al., 2016]. Therefore, it is necessary to relax the definition of the
cluster editing problem that allows overlapping between clusters.

Overlapping clustering applications can be found in many areas. For example, Andersen
et al. [2012] applied the definition of overlapping cluster editing in distributed computing. Benelal-
lam et al. [2016] used overlapping clustering concept applied to distributed model transformations.
Also, Maiza et al. [2016] and Pérez-Suárez et al. [2013] cite other areas where the overlapping
cluster editing problem is important, such as image and video processing. In addition, variations of
the overlapping cluster editing problem were presented by Damaschke [2010], Fellows et al. [2011]
e Bonchi et al. [2013].

As mentioned previously, the cluster editing problem is hard. Thus, exact methods are
only practical in instances with few vertices. For larger ones, heuristics are used to generate solu-
tions at a reasonable computational cost. However, the solution quality is not guaranteed. Hence,
hybrid heuristics, also known as matheuristics [Maniezzo et al., 2009], are alternatives to produce
good-quality solutions with reasonable computation cost. Hybrid heuristics are formed by cou-
pling exact methods and metaheuristics and have been used successfully in current combinatorial
optimization research [Pereira et al., 2015; Fonseca et al., 2016; Wang et al., 2017].

There are few practical studies regarding the overlapping cluster editing problem in the
literature. To the best of our knowledge, there are no heuristics or hybrid heuristics for this problem.
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Then, in this paper, we propose a hybrid heuristic for the overlapping cluster editing problem. Our
hybrid heuristic is based on coupling two metaheuristics, to generate solutions for the cluster editing
problem, and a mixed-integer linear program, also introduced in this work, that is solved by using
the cluster editing solutions as input.

The remainder of this work is organized as follows. The necessary notation and problems
definitions are presented in Section 2. The proposed hybrid heuristic is detailed in Section 3. Section
4 shows the tests results. Our concluding remarks and discussing future work are presented in
Section 5.

2. Mathematical notation
Let G = (V,E) be a simple, undirected and unweighted graph, where V is the set of

vertices, E is the set of edges, n = |V | and m = |E|. Two vertices v, u ∈ V are adjacent if, and
only if, (v, u) ∈ E. A graph G is complete if, and only if, ∀v ∈ V and ∀u ∈ V , where v 6= u,
(v, u) ∈ E. In complete a graph, m = n·(n−1)

2 . A subgraph of G induced by a subset of vertices
U ⊆ V is a graph GU = (U,EU ), where ∀v ∈ U and ∀u ∈ U , (v, u) ∈ EU if, and only if,
(v, u) ∈ E. A subset of vertices U ⊆ V is a clique if the subgraph of G induced by U , GU , is
complete.

Two sets A and B are disjoint sets if A ∩B = ∅. The symmetric difference of two sets A
and B is given by A∆B = {(A− B) ∪ (B − A)}. The Jaccard coefficient, between two sets A e
B, is defined by J(A,B) = |A∩B|

|A∪B| . Then, two sets A and B have all the elements in common when
J(A,B) = 1. If J(A,B) = 0, then A and B have no elements in common, i.e., A ∩B = ∅.

A graph G is a cluster graph if G is a disjoint union of cliques [Shamir et al., 2004]. In
this work, a cluster C is a vertex subset of G, that is, C ⊆ V . Note that a cluster is not necessarily a
clique. A clustering is a vertex partitioning C = {C1, C2, . . . , Cl} such that, for 1 ≤ i ≤ l, Ci ⊆ V ,
Ci 6= ∅, and

⋃l
i=1Ci = V . A clustering C is disjoint if, and only if, ∀Ci ∈ C and ∀Cj ∈ C, with

Ci 6= Cj , Ci ∩ Cj = ∅. C is an overlapping clustering if, and only if, ∃Ci ∈ C and ∃Cj ∈ C,
with Ci 6= Cj , such that Ci ∩ Cj 6= ∅. Given a vertex v ∈ V and a clustering C, the clusters set
containing the vertex v is defined by `C(v) = {Ci | v ∈ Ci, Ci ∈ C}. In addition, |`C(v)| = 1 if C
is a disjoint clustering and |`C(v)| ≥ 1 if C is an overlapping clustering.

LetEV be the set of all possible edges of a graphG = (V,E). The cluster editing problem
aims at finding an edge subset F , such that F ⊆ EV , so that the graph G′ = (V,E∆F ) is a disjoint
union of cliques. The subset F is denominated as edge edition set. In the minimization version of
the cluster editing problem, it is necessary to find the smallest edge edition set.

Given a graph G and a clustering C, the cost of a cluster editing solution is computed as
presented by Equation 1 [Charikar et al., 2005]. In this equation, variables xij , for 1 ≤ i < j ≤ n,
are equal to one when vertices i and j belong to different clusters and xij is equal to zero when i
and j belong to the same cluster.

Kce(G, C) =
∑

i<j, (i,j)∈E

xij +
∑

i<j, (i,j)/∈E

(1− xij). (1)

In the overlapping cluster editing problem we have to find an edge edition set F such that
the vertices of the input graph G are partitioned into cliques. Note that, unlike the cluster editing
problem, in the overlapping cluster editing problem the cliques are not necessarily disjoint. In other
words, cliques can share vertices. Then, the overlapping cluster editing solution cost computing
need to be modified. As a result, xij = 1 if `C(i) ∩ `C(j) = ∅ and xij = 0 if `C(i) ∩ `C(j) 6= ∅.
3. Hybrid heuristic

The hybrid heuristic proposed in this paper can be divided into three steps. Firstly, the
metaheuristics Biased Random-Key Genetic Algorithm (BRKGA) [Gonçalves and Resende, 2011]
and Simulated Annealing (SA) [Kirkpatrick et al., 1983] are used to generate a set of cluster edit-
ing solutions, without overlapping, of the input graph. Subsequently, all clusters belonging to the
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solutions set are grouped together to form a new set. Then this set is used as input by CPLEX
[IBM Corporation, 2017] to solve a mixed-integer linear programming model, which is described
in Subsection 3.1. The main reason for using the clusters set from metaheuristics is to provide a
good-quality input clusters to solve the mixed-integer linear programming formulation. An over-
lapping cluster editing solution is obtained with the resolution of this formulation.

The cluster editing solutions are obtained through the BRKGA and SA metaheuristics
execution. For this, a number hsol of solutions is passed as parameter to the hybrid heuristic.
Hence, hsol

2 solutions are selected from BRKGA execution and hsol
2 solutions are selected from SA

execution. In all experimental tests performed in this work we used hsol = 100.
A pseudocode of the hybrid heuristic is shown in Algorithm 1. The BRKGA and SA

metaheuristics are executed at lines 2 and 3. Then, at line 4, the clusters set is formed from meta-
heuristics solutions. Then, at line 5, CPLEX solves the mixed-integer linear program using the
clusters set as input. The function cplex_solve returns an overlapping cluster editing solution.

Algorithm 1: Hybrid heuristic.
input : graph G = (V,E); mixed-integer liner programming formulation model;

BRKGA number of generations genmax; BRKGA population size p;
BRKGA elite population size pe; BRKGA mutant population size pm;
BRKGA elite allele inheritance probability ρe; SA initial temperature ti;
SA final temperature tf ; SA cooling rate α; SA Metropolis algorithm step
size samax.

output: found solution s;
begin1

histsol ← brkga(G, genmax, p, pe, pm, ρe);2

histsol ← histsol ∪ sa(G, ti, tf , α, samax);3

clusters← get_clusters(histsol);4

s← cplex_solve(G,model, clusters);5

return s;6

end7

This section is subdivided as follows. In the next subsection, we present the proposed
mixed-integer linear programming model. Details about the BRKGA and SA implementation are
presented in Subsection 3.2.

3.1. Mixed-integer linear programming model
The mixed-integer linear programming model proposed in this work to find overlapping

cluster editing solutions is shown in the formulation 3. Given a cluster set S = {C1, C2, . . . , CN} of
the vertices V of an input graphG, in the proposed model, the objective is to produce an overlapping
clustering C ⊆ S, where |C| = r and

⋃
C∈C C = V . The C set is composed by r clusters with the

best costs and, depending on the established criteria, have more or less overlaps with each other
cluster belonging to C.

In the formulation 3, with the binary variables yi, for 1 ≤ i ≤ N , it is defined which
Ci clusters belong, or not, to the final overlapping cluster editing solution. Also, there is a cost di
associated with each cluster Ci that represents how good this cluster is. The di values are given by
the Equation 2.

di =
Ein

Ci

Emax
Ci

−
Eout

Ci

|Ci| · (|V | − |Ci|)
. (2)

In the Equation 2, Emax
Ci

is the maximum number of edges between Ci vertices, that is,

Emax
Ci

= |Ci|·(|Ci|−1)
2 . In addition, Ein

Ci
is the number of edges that connect vertices belonging to Ci
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and Eout
Ci

is the number of edges connecting a vertex from Ci and a vertex that does not belong to
Ci. Moreover, the maximum number of edges between vertices from Ci and vertices not belonging
to it is given by |Ci| · (|V | − |Ci|).

max

N∑
i=1

(di · yi − ui) (3a)

subject to
N∑
j=1

∣∣∣ |Ci ∩ Cj |
|Ci ∪ Cj |

− zi
∣∣∣ · (yi + yj − 1) ≤ ui, i = 1, 2, . . . , N, (3b)

N∑
i=1

yi = r, (3c)

N∑
i=1

aji · yi ≥ b, j = 1, 2, . . . , n, (3d)

yi ∈ {0, 1}, ui ∈ R, i = 1, 2, . . . , N. (3e)

Since the object function 3a must be maximized, the lowest values of the real variables
ui are obtained. This is because the ui variables, in this function, have negative coefficients. With
these variables, clusters with the smallest differences between the Jaccard coefficient, related to the
other clusters, and the overlapping control parameters zi are selected. Constraint 3b controls, with
zi ∈ [0, 1], the overlaps between clusters. The closer zi parameters values are to one, the greater
the overlaps between clusters. The closer zi parameters values are to zero, the smaller the overlaps
between the clusters. The reason is that the overlap between a pair of clusters Ci e Cj is quantified
by means of the Jaccard coefficient. Therefore, if clusters Ci e Cj have maximum overlap, that is,
Ci = Cj , then J(Ci, Cj) = 1. If clusters Ci and Cj have no overlap, that is, Ci ∩ Cj = ∅, then
J(Ci, Cj) = 0. Thus, if zi = 1, variable ui will have the lowest value when J(Ci, Cj) = 1. On the
other hand, if zi = 0, variable ui will have the lowest value when J(Ci, Cj) = 0.

In the constraint 3c is ensured that exactly r clusters are selected. It is guaranteed by
constraint 3d that each graph vertex belongs to at least b clusters. In this constraint, for 1 ≤ i ≤ N
and 1 ≤ j ≤ n, aji = 1 if vertex j belongs to cluster Ci and aji = 0 otherwise. Also, constraint 3e
defines variables yi as binaries and ui as reals ones.

For all experimental tests performed in this paper, we used b = 1 and r as the average
number of clusters of the solutions set generated by metaheuristics. Furthermore, as shown in
Section 4, we used two fixed values for the overlapping control parameters: zi = 0 and zi = 1, for
all 1 ≤ i ≤ N .

3.2. Metaheuristics
The BRKGA and SA metaheuristics were implemented to produce a set of solutions of the

cluster editing problem. This set is used as input to solve the model presented in the Subsection 3.1.
The SA metaheuristic was used because it is a classic and well-know metaheuristic. The BRKGA
metaheuristic was implemented because it is relatively recent one and was successfully used in a
variation of the overlapping cluster editing problem [Andrade et al., 2014].

In the BRKGA metaheuristic a solution is represented by means of a random-key array
(chromosome). In this work we used chromosomes with n + 1 positions (alleles), where n = |V |.
The last position (n+ 1) of each chromosome represents the maximum number of clusters that the
decoded solution has. The n first chromosome positions represent the cluster in which each vertex
belongs. The chromosome decoding step starts at allele n + 1 to determine the maximum number
of clusters of the solution. For this, an upper bound, defined a priori, is utilized for the maximum
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number of clusters (maxclst). Let A be an array with n + 1 positions which represents a BRKGA
chromosome. The number of clusters in a decoded solution is given by l = dmaxclst ×A[n+ 1]e.
In all tests carried out in this paper we used maxclst = 200. This value was empirically defined.
Subsequently, the first n alleles are decoded to determine which of l clusters each vertex will belong
to. This decoding is executed regarding l and is given by k = dl ×A[i]e, with 1 ≤ i ≤ n and
1 ≤ k ≤ l, where Ck is the cluster which has vertex i. The BRKGA decoding step was parallelized.

A solution produced by the SA metaheuristic is an arrayAwith n positions. Each position
i of the array A, with 1 ≤ i ≤ n, represents the cluster that the ith vertex belongs to. The SA initial
solution is randomly generated. This solution is created by assigning to each position of array A a
random value in the integer interval [1, l].

The BRKGA and SA parameters values used in this work are presented in Table 1. Specif-
ically, CALIBRA software [Adenso-Díaz and Laguna, 2006] was executed to obtain these values.
The CALIBRA tests were performed in 13 instances of Bastos et al. [2016] with sizes ranging
between 25 vertices and 100 vertices.

Table 1: BRKGA and SA parameters values used in the experimental tests carried out in this work. These
values were obtained by CALIBRA software [Adenso-Díaz and Laguna, 2006].

BRKGA SA
Parameter gen p pe pm ρe tinit tfinal samax α
Value 696 820 0.19·p 0.23·p 60% 750 10−6 750 0.98

In Table 1 are shown, in relation to the BRKGA metaheuristic, the number of generations
(gen), the size of population (p), the elite population proportion (pe), the mutant population propor-
tion (pm) and the elite allele inheritance probability (ρe). Still, in relation to SA the metaheuristic,
the values of the initial temperature (tinit), final temperature (tfinal), the step size of Metropolis
algorithm (samax) and the cooling rate (α) are also presented.

4. Results and analysis
In this section results of the hybrid heuristic tests are presented. All implementations

were written in C++ language. For the resolution of models we used the IBM® ILOG® CPLEX®

12.8 [IBM Corporation, 2017]. All the computational tests were executed on a computer with
Intel® Xeon® E5-2687W v2 CPU 3.40GHz × 8 processor with 25MiB cache memory and 62GiB
of RAM. The operating system installed on this machine is Ubuntu 14.04.1 64bits with kernel
3.19.0-32-generic. In addition, in all CPLEX [IBM Corporation, 2017] executions were used 3h as
time limit.

Two sets of instances were used to evaluate the hybrid heuristic. The first one consists
of 112 instances generated by Bastos et al. [2016] of the cluster editing problem. These instances
have sizes ranging between 21 vertices to 1000 vertices and can be obtained at http://www2.
ic.uff.br/~lbastos/. The second one consists of 30 instances, with sizes ranging between
25 vertices to 1000 vertices, generated by Lancichinetti and Fortunato [2009] algorithm. Instances
belonging to this second set have ground truth overlapping clustering solutions. These instances
can be obtained at http://www.lac.inpe.br/~rafael.santos/OCI/. With this set
the main objective is to verify if the hybrid heuristic is able to reproduce the original clustering.
For this reason, we used the FBCubed Amigó et al. [2009] metric to evaluate the hybrid heuristic
solutions in relation to the ground truth solution. The FBCubed metric, with values ranging in the
real interval [0, 1], is a supervised measure for evaluating overlapping clusterings. The closer to
one is the FBCubed value, the better is the overlapping clustering relative to the ground truth. The
closer to zero, the worse the clustering relative to the ground truth.

Table 2 shows results of the tests in Bastos et al. [2016] instances with up to 100 ver-
tices. The costs, calculated by the equation 1, of the solutions generated by the BRKGA and SA
metaheuristics and their execution times, in seconds, are shown. With regard to hybrid heuristic
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results, in table 2, the solution costs, calculated by modifying the Equation 1, the execution time, in
seconds, and the number of vertices belonging to more than one cluster (ovlp) are presented. Two
versions of the hybrid heuristic were used with different overlapping control parameters values, one
with zi = 0 and another with zi = 1. Furthermore, the optimal costs of some Bastos et al. [2016]
instances with up to 100 vertices were obtained by CPLEX [IBM Corporation, 2017] solving the
Charikar et al. [2005] linear integer programming model. The CPLEX [IBM Corporation, 2017]
computational cost for solving this model are also shown.

Table 2: Tests results of hybrid heuristic, with zi = 0 and zi = 1, on Bastos et al. [2016] instances with
sizes ranging from 21 vertices to 100 vertices. In addition, metaheuristics results are presented. Costs of
Charikar et al. [2005] model solved by CPLEX [IBM Corporation, 2017] are also shown.

Instance n CPLEX BRKGA SA Hybrid heuristic (zi = 0) Hybrid heuristic (zi = 1)
cost t (s) cost t (s) cost t (s) cost ovlp t (s) cost ovlp t (s)

cmpr_101_1_22 22 8 0.04 9 0.61 8 0.37 23 1 0.04 8 1 0.59
cmpr_101_1_25 25 8 0.05 9 1.95 8 0.41 24 1 0.09 10 1 0.63
cmpr_101_2_21 21 15 0.06 15 1.85 15 0.34 24 2 0.04 15 2 0.40
cmpr_101_2_25 25 19 0.15 19 1.08 19 0.42 34 0 0.08 19 2 0.52
cmpr_101_3_23 23 21 0.08 21 2.13 21 0.40 46 2 0.08 57 1 0.39
cmpr_101_3_25 25 26 0.09 26 0.48 26 0.45 42 1 0.08 101 4 0.49
cmpr_101_4_25 25 37 0.38 38 0.66 37 0.47 76 0 0.09 34 5 0.37
cmpr_101_5_25 25 44 1.19 46 0.61 44 0.48 68 0 0.05 42 11 0.35
cmpr_101_6_25 25 65 3.85 65 0.86 65 0.50 95 1 0.42 121 11 0.36
cmpr_101_7_25 25 72 4.61 75 0.66 72 0.46 133 0 0.09 73 7 0.32
cmpr_101_8_25 25 80 6.87 81 0.72 80 0.48 95 1 0.41 81 4 0.31
cmpr_101_9_25 25 99 10.39 105 0.68 100 0.52 137 0 0.38 121 13 0.08

cmpr_101_10_25 25 91 6.04 92 0.66 92 0.50 141 0 0.38 92 11 0.12
cmpr_102_1_24 24 20 0.08 20 0.66 20 0.40 29 1 0.05 18 1 0.50
cmpr_102_1_25 25 21 0.07 21 2.52 21 0.46 39 1 0.05 20 3 0.49
cmpr_102_2_21 21 19 0.08 19 0.64 19 0.35 28 2 0.04 19 6 0.45
cmpr_102_2_25 25 24 0.19 24 0.80 24 0.43 37 0 0.08 24 2 0.43
cmpr_102_3_25 25 34 0.47 34 0.58 34 0.45 74 2 0.07 39 3 0.49
cmpr_102_4_25 25 45 0.31 45 0.47 45 0.47 66 0 0.38 45 3 0.29
cmpr_102_5_25 25 55 1.60 55 0.50 55 0.49 71 0 0.08 56 4 0.29
cmpr_102_6_25 25 77 7.23 78 1.58 78 0.46 111 1 0.28 81 7 0.21
cmpr_102_7_25 25 83 8.23 85 0.60 83 0.46 105 0 0.28 87 4 0.49
cmpr_102_8_25 25 80 4.60 81 0.53 80 0.50 128 1 0.26 84 8 0.16
cmpr_102_9_25 25 89 18.24 91 0.50 89 0.55 135 0 0.36 114 13 0.13

cmpr_102_10_25 25 102 12.87 103 0.56 102 0.50 134 0 0.26 115 10 0.11
cmpr_105_1_45 45 33 1.18 34 2.61 33 1.19 162 1 0.16 30 6 2.04
cmpr_105_1_50 50 42 1.78 43 1.10 42 1.33 165 1 0.16 38 7 2.50
cmpr_105_2_50 50 88 5.14 94 0.91 90 1.33 138 1 0.16 81 6 1.52
cmpr_105_3_50 50 137 77.52 140 2.59 137 1.34 204 0 0.12 134 8 1.79
cmpr_105_4_50 50 209 7349.68 221 1.07 212 1.33 267 0 0.48 206 10 1.52
cmpr_105_5_50 50 - - 245 0.95 243 1.40 291 2 0.44 475 13 1.63
cmpr_105_6_50 50 298 10696.43 382 0.92 303 1.40 355 0 0.60 293 10 1.25
cmpr_105_7_50 50 - - 314 1.09 311 1.40 367 1 0.41 304 14 1.21
cmpr_105_8_50 50 - - 416 1.32 408 1.47 459 2 0.50 386 13 1.06
cmpr_105_9_50 50 - - 420 0.98 420 1.47 504 1 0.36 402 12 0.76

cmpr_105_10_50 50 - - 448 1.08 449 1.53 604 2 0.71 464 34 0.48
cmpr_106_1_50 50 48 0.53 55 1.03 52 1.39 314 1 0.09 49 5 1.19
cmpr_106_2_50 50 111 1.34 116 0.84 112 1.37 189 0 0.44 108 6 1.31
cmpr_106_3_50 50 177 117.23 179 0.86 179 1.36 230 0 0.12 174 7 1.24
cmpr_106_4_50 50 230 2780.21 234 0.92 231 1.36 335 1 0.17 223 15 1.34
cmpr_106_5_50 50 - - 304 1.30 292 1.41 322 1 0.36 288 26 1.13
cmpr_106_6_50 50 - - 308 2.12 307 1.48 453 1 0.14 693 20 0.94
cmpr_106_7_50 50 - - 392 0.84 386 1.50 439 0 0.60 369 20 0.98
cmpr_106_8_50 50 - - 394 1.04 394 1.43 451 0 0.37 381 20 0.61
cmpr_106_9_50 50 - - 431 1.31 430 1.49 536 1 0.41 414 26 0.54

cmpr_106_10_50 50 - - 468 0.94 459 1.54 570 1 0.07 478 27 0.36
cmpr_109_1_98 98 186 47.45 198 2.73 193 4.72 579 2 0.37 183 7 7.75

cmpr_109_1_100 100 187 69.98 205 1.96 194 5.06 226 1 0.59 184 6 6.94
cmpr_109_2_100 100 - - 453 1.83 442 4.98 487 1 0.39 427 16 6.33
cmpr_109_3_100 100 - - 641 1.97 633 4.90 1354 2 0.32 608 12 5.43
cmpr_109_4_100 100 - - 901 1.99 883 4.93 983 1 0.86 862 30 5.68
cmpr_109_5_100 100 - - 1112 1.87 1083 5.05 1199 1 0.68 1037 24 4.70
cmpr_109_6_100 100 - - 1313 1.85 1272 5.04 1333 1 0.77 1234 29 4.27
cmpr_109_7_100 100 - - 1602 1.86 1551 5.03 2070 1 0.32 2371 30 3.58
cmpr_109_8_100 100 - - 1759 1.84 1677 5.09 1708 2 0.60 1664 48 2.77
cmpr_109_9_100 100 - - 1954 1.85 1923 5.22 1940 1 0.89 2071 47 1.66
cmpr_109_10_100 100 - - 2121 1.83 2088 5.29 2410 4 0.19 2121 55 0.87
cmpr_110_1_100 100 256 4.05 380 1.83 345 4.99 782 3 0.46 276 54 4.24
cmpr_110_2_100 100 468 69.39 565 2.64 558 4.90 567 3 0.22 486 38 3.44
cmpr_110_3_100 100 739 2347.71 887 1.81 788 5.06 886 9 0.68 757 37 4.24
cmpr_110_4_100 100 - - 1125 1.89 1026 4.99 1069 1 0.61 987 44 3.95
cmpr_110_5_100 100 - - 1367 1.70 1265 5.01 1273 4 0.59 1240 20 4.12
cmpr_110_6_100 100 - - 1517 2.46 1476 5.09 1628 3 0.85 1444 36 3.42
cmpr_110_7_100 100 - - 1699 1.78 1666 5.03 1860 3 1.52 1613 21 3.20
cmpr_110_8_100 100 - - 1850 1.95 1829 5.27 1989 6 2.68 1715 59 2.35
cmpr_110_9_100 100 - - 1963 2.22 1946 5.24 2211 4 0.25 1847 67 1.37
cmpr_110_10_100 100 - - 2041 1.77 2039 5.71 2311 5 0.15 2083 56 1.00

Best costs - 25 - 12 - 24 - 0 - - 39 - -

Since the BRKGA and SA metaheuristics were only used to generate solutions that are
used as input to solve the proposed model, it can be considered that these metaheuristics obtained
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reasonable results regarding the costs of the cluster editing problem. For example, from 40 known
optimal costs, obtained by CPLEX [IBM Corporation, 2017] in the resolution of the Charikar et al.
[2005] model, the BRKGA and SA metaheuristics presented 12 and 25 optimal costs respectively.

Considering the hybrid heuristic results, it can observed that the best overlapping cluster
editing cost where achieved with zi = 1. This is because, as can be seen at columns “ovlp” of
Table 2, when zi = 1 the model 3 is solved by selecting the most overlapping clusters. Then, the
number of vertices belonging to more than one cluster is greater than zi = 0. Thus, clusterings
generated with zi = 0 have more edges connecting vertices from different clusters and, therefore,
have a higher overlapping cluster editing cost.

In addition, it is observed that the hybrid heuristic obtained better costs in 39 of the 67 in-
stances as compared to the metaheuristics and the optimal cluster editing costs. Also, it can be seen
that, in 12 of the 40 instances in which optimal cluster editing costs are known, the hybrid heuristic
achieved better costs than the optimal ones. This is because in an overlapping clustering vertices
can belong to more than one cluster. Hence, there are fewer edges between vertices belonging to
different clusters. Then allowing clusters to overlap may be a less costly alternative to the cluster
editing problem.

Table 3 presents results of the hybrid heuristic tests in Bastos et al. [2016] instances with
sizes ranging from 200 vertices to 1000 vertices. This table has the same structure as Table 2, except
for the results of the Charikar et al. [2005] model resolution. Since 3h was used as CPLEX [IBM
Corporation, 2017] maximum execution time, it was not possible to obtain cluster editing optimal
solutions for Bastos et al. [2016] instances with more than 100 vertices.

Table 3: Tests results of hybrid heuristic, with zi = 0 and zi = 1, on Bastos et al. [2016] instances with
sizes ranging from 200 vertices to 1000 vertices. In addition, metaheuristics results are presented.
Instance n BRKGA SA Hybrid heuristic (zi = 0) Hybrid heuristic (zi = 1)

cost t (s) cost t (s) cost ovlp t (s) cost ovlp t (s)
cmpr_113_1_200 200 857 3.25 844 17.79 1103 0 0.78 808 18 26.09
cmpr_113_2_200 200 1873 3.23 1850 17.88 2428 0 0.81 1787 25 23.32
cmpr_113_3_200 200 2841 3.22 2813 18.54 3167 3 0.68 3011 52 17.59
cmpr_113_4_200 200 3847 3.70 3795 18.11 4722 5 0.72 3969 41 17.03
cmpr_113_5_200 200 4822 3.36 4736 18.26 5308 2 0.93 4935 60 16.10
cmpr_113_6_200 200 5628 3.22 5549 18.31 6257 3 0.51 5970 35 13.33
cmpr_113_7_200 200 6699 3.39 6618 18.66 6674 3 4.43 6969 72 11.54
cmpr_113_8_200 200 7573 3.32 7428 18.81 7436 9 2.75 7300 80 10.99
cmpr_113_9_200 200 8381 3.24 8239 19.15 8230 6 3.24 8111 92 10.02
cmpr_113_10_200 200 8712 3.54 9071 19.22 9531 11 0.67 8691 180 3.25
cmpr_114_1_200 200 2044 3.37 1988 18.56 1724 42 1.10 1420 150 15.13
cmpr_114_2_200 200 2981 3.33 2785 18.50 2694 13 2.09 2334 117 14.85
cmpr_114_3_200 200 3746 3.36 3687 18.60 3633 10 2.19 3343 91 14.47
cmpr_114_4_200 200 4930 3.26 4714 18.50 4714 7 1.01 4433 72 14.18
cmpr_114_5_200 200 5635 3.27 5463 18.48 5486 4 3.42 5714 56 11.52
cmpr_114_6_200 200 6627 3.35 6457 18.80 6485 3 2.86 6622 81 13.51
cmpr_114_7_200 200 7310 3.39 7227 18.95 7309 10 1.10 7035 94 10.99
cmpr_114_8_200 200 8065 4.16 7967 18.99 8013 21 1.72 8116 91 11.99
cmpr_114_9_200 200 8560 3.44 8549 19.68 9353 9 0.68 8359 105 4.99
cmpr_114_10_200 200 8907 4.47 8991 19.55 9866 13 0.29 9704 200 2.47
cmpr_117_1_500 500 5987 9.96 5769 107.60 9802 15 1.79 6373 26 81.51
cmpr_117_2_500 500 11976 10.64 11787 108.47 16240 5 1.89 11685 52 71.59
cmpr_117_3_500 500 18279 9.80 18120 108.17 22383 32 1.63 18016 215 71.59
cmpr_117_4_500 500 24951 10.04 24435 108.24 26368 0 2.74 30050 279 56.43
cmpr_117_5_500 500 30597 10.67 30481 108.32 31479 9 6.72 32097 83 55.40
cmpr_117_6_500 500 36741 10.67 36584 108.95 38340 9 3.39 38202 352 51.63
cmpr_117_7_500 500 42846 10.57 42645 109.17 45164 9 1.81 42373 405 45.32
cmpr_117_8_500 500 49076 10.15 48697 110.54 48821 5 22.37 49879 205 42.94
cmpr_117_9_500 500 55014 10.50 54634 111.75 56385 32 5.63 55502 339 39.58
cmpr_117_10_500 500 58618 11.37 59909 114.31 62108 39 0.71 62108 500 8.23
cmpr_118_1_500 500 16066 10.08 16135 109.13 15710 41 10842.13 13677 330 63.11
cmpr_118_2_500 500 21238 10.40 20534 109.30 20443 23 402.31 21345 286 53.90
cmpr_118_3_500 500 27442 10.54 26958 109.55 34720 38 1.54 26600 321 58.96
cmpr_118_4_500 500 32937 10.42 32587 108.63 37309 26 1.67 33933 271 52.00
cmpr_118_5_500 500 37558 10.47 37432 109.39 37638 22 34.71 38139 324 54.60
cmpr_118_6_500 500 43208 10.16 42897 108.97 43116 17 113.94 43617 187 46.95
cmpr_118_7_500 500 47451 9.83 47131 110.13 50697 18 1.70 51888 190 42.69
cmpr_118_8_500 500 52275 10.50 51897 111.05 53692 20 3.03 52067 220 41.58
cmpr_118_9_500 500 56652 10.50 56291 110.79 60537 35 1.74 56441 142 36.36
cmpr_118_10_500 500 58064 11.38 59147 114.33 61817 37 0.48 61128 487 8.18
cmpr_121_1_1000 1000 25737 29.04 24669 423.82 31678 172 10805.48 38112 679 94.32
cmpr_121_2_1000 1000 50162 28.97 49182 427.97 55110 163 1132.57 78464 643 103.54
cmpr_121_3_1000 1000 74694 30.17 73708 416.90 79203 114 1582.11 77423 668 102.67
cmpr_121_4_1000 1000 98716 29.22 97838 428.89 103842 110 15.72 111923 704 104.89

cmpr_121_10_1000 1000 238131 35.16 245233 437.15 248313 68 1.03 248989 1000 14.82
Best costs - 4 - 24 - 2 - - 15 - -
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In Table 3, for the two versions of the hybrid heuristic, we observe the same behavior of
the results presented in Table 2, that is, the hybrid heuristic obtained better results with zi = 1. It is
also observed that the SA metaheuristic achieved the best costs in 24 out of 45 instances. The hybrid
heuristic, with zi = 1, obtained the best costs in 15 out of 45 instances. Besides the Bastos et al.
[2016] instances being randomly generated without cluster formations, another reason that may
have influenced the hybrid heuristic results is the quality of solutions generated by metaheuristics.
This is because the size of instances presented in Table 3. Since theses instances have more vertices
than instances presented in Table 2, metaheuristics may take longer to converge. As a result the
metaheuristics solutions set could contain bad clusters. In addition, the number of clusters utilized
in a solution of model 3 is the average of clusters in the solutions set. Then, a solution from the
hybrid heuristic could use more clusters than the metaheuristics and, therefore, the solution cost
may be greater.

In Table 4 results of the hybrid heuristic tests on the 30 instances generated by Lanci-
chinetti and Fortunato [2009] algorithm are shown. These instances have sizes ranging from 25 to
1000 vertices. In order to differentiate each instance, the number of edges (m) is presented. For
each size, there are five instance that have graph density ranging from sparse to dense. In addition,
the hybrid heuristic results of the supervised metric FBCubed are shown. All the 30 instances have
ground truth overlapping clustering.

Table 4: Hybrid heuristic results, with zi = 0 and zi = 1, on instances generated by Lancichinetti and
Fortunato [2009] algorithm. Results of metaheuristics are also presented.

n m BRKGA SA Hybrid heuristic (zi = 0) Hybrid heuristic (zi = 1)
cost t (s) cost t (s) cost FBCubed ovlp t (s) cost FBCubed ovlp t (s)

25 28 14 0.73 13 0.46 29 0.51 0 0.07 13 0.70 3 0.51
25 139 85 0.71 84 0.49 140 0.43 1 0.05 84 0.62 15 0.11
25 156 90 0.79 90 0.50 155 0.48 0 0.35 90 0.67 19 0.16
25 158 80 0.54 75 0.48 139 0.39 0 0.43 88 0.62 19 0.09
25 265 35 0.60 35 0.47 55 0.48 1 0.20 35 0.74 25 0.04
50 113 73 1.32 71 1.37 92 0.39 1 0.09 65 0.48 8 1.66
50 471 339 1.04 331 1.46 350 0.19 5 0.40 334 0.24 28 0.69
50 591 421 0.95 381 1.54 509 0.49 2 0.09 421 0.61 34 0.42
50 614 404 0.97 367 1.45 481 0.29 2 0.10 404 0.64 35 0.45
50 1039 186 1.37 186 1.55 186 0.52 2 0.07 186 0.69 50 0.14

100 264 187 1.83 174 4.92 787 0.27 4 0.29 149 0.50 9 7.00
100 1286 719 2.87 787 5.04 957 0.36 16 0.59 711 0.41 71 4.28
100 1703 1095 1.88 1123 5.19 1141 0.30 8 0.79 1082 0.36 70 3.20
100 2250 1559 1.76 1582 5.45 1542 0.39 19 0.68 1493 0.51 73 1.41
100 4121 829 1.94 829 5.54 829 0.25 3 0.04 829 0.94 100 0.14
200 450 344 3.42 316 17.81 1490 0.27 3 0.52 239 0.57 48 29.72
200 6330 4693 3.30 4390 18.87 4264 0.27 46 0.53 6852 0.30 117 11.69
200 7467 4564 3.51 4624 19.58 4897 0.38 78 1.32 4049 0.42 167 7.95
200 14051 5849 3.87 5849 21.00 5849 0.29 9 0.11 5849 0.78 200 0.22
200 16543 3357 3.39 4476 20.64 3357 0.20 8 0.10 3357 0.86 200 0.70
500 2440 2362 10.59 1977 107.69 3079 0.26 6 3.28 1841 0.35 119 71.05
500 21285 19692 10.58 18348 113.24 23303 0.08 75 1.96 18348 0.10 216 65.10
500 24177 22811 9.80 21044 112.52 21781 0.13 109 6.45 19730 0.08 341 64.34
500 33550 30793 10.54 27685 112.34 25772 0.16 89 15.40 24256 0.19 251 48.88
500 93255 31495 11.10 48172 124.93 31495 0.46 9 0.15 31495 0.63 500 0.42

1000 4996 6614 29.02 4139 421.07 13712 0.08 126 4.22 12202 0.25 574 102.73
1000 70857 69189 29.03 68377 433.11 80846 0.06 107 4.60 67075 0.08 754 101.28
1000 94399 91048 29.04 83608 427.27 88805 0.08 269 1229.49 81594 0.10 659 92.93
1000 129055 125019 28.98 107619 436.29 136973 0.05 88 4.55 102190 0.07 711 86.31
1000 306286 193214 33.44 193214 491.43 193214 0.20 12 0.21 193214 0.63 1000 0.73

Best costs - 8 - 14 - 7 - - - 24 - - -

As can be seen in Table 4, the hybrid heuristic, with zi = 1, obtained the best costs in
24 out of 30 instances. We also observe better costs, in relation to the tests in the Bastos et al.
[2016] instances, of the solutions generated by the hybrid heuristic with zi = 0. This is because
these 30 instances generated by the Lancichinetti and Fortunato [2009] algorithm originally have
overlapping clusters.

In relation to the results of the FBCubed metric, it is observed that the best results were
obtained with zi = 1. Also, the hybrid heuristic, with zi = 1, obtained FBCubed values greater
than 0.5 in 16 instances. With these values of the FBCubed metric, the generated solutions can be
considered good-quality clusterings.
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5. Conclusions
In this paper a hybrid heuristic for the overlapping cluster editing problem was introduced.

This hybrid heuristic is based on coupling the BRKGA and SA metaheuristics to generate solutions
for the cluster editing problem and the CPLEX [IBM Corporation, 2017] that uses these solutions as
input to solve a mixed integer linear program, also proposed in this work. To best of our knowledge
the proposed hybrid heuristic is the first heuristic for the overlapping cluster editing problem.

The proposed hybrid heuristic showed promising results in experimental tests carried out
in this paper. In the Bastos et al. [2016] instances, the hybrid heuristic achieved better costs in
54 of the 112 instances. In the tests with the instances generated by Lancichinetti and Fortunato
[2009] algorithm, the hybrid heuristic obtained better costs in 24 of the 30 instances. Furthermore,
regarding the execution time, the hybrid heuristic showed low computational costs in all 112 in-
stances of Bastos et al. [2016] and in all the 30 instances generated by Lancichinetti and Fortunato
[2009] algorithm. Although improvements have yet to be made, the hybrid heuristic has proved to
be promising.

For future work, some points of the hybrid heuristic should be improved. For example,
the number of clusters to be used in an overlapping clustering solution and increase the variety
of cluster editing solution set. To increase the variety of this set, other metaheuristics and other
methods, such as the column generation method [Oliveira et al., 2017], can be implemented.
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