
Facilities for Remote Execution of High
Performance Applications in Astronomy

Ana Luisa Solórzanoa, Vinicius Monegoa,
Haroldo Fraga de Campos Velhob, Andrea Schwertner Charãoa,

Alice Kozakeviciusa and Renata Sampaio da Rocha Ruizb

aUniversidade Federal de Santa Maria, RS, Brazil
bNational Institute for Space Research, São José dos Campos, SP, Brazil

Abstract

The field of Astronomy deals with a large amount of observational
and simulated data. There are several algorithms and software to pro-
cess this data, revealing information about star dynamics, the center
of galaxies, or even the structure of the Universe. Virtual observatory
(VO) is a strategy to take advantage of distributed computer systems
integrated by the Internet, sharing hardware and software resources
for data storage, processing and analysis. This work is a VO effort
for remote execution of high performance applications in Astronomy.
The VO tool was developed using the Python programming language
with the Django web framework and the Celery distributed task queue.
Currently, the platform offers new parallel versions of the Friends-
of-Friends algorithm for astronomical objects classification, and algo-
rithms for image restoration using wavelet filtering. The web platform
is hosted in an in-house cluster with different parallel architectures to
be explored. Users can set their execution parameters or use the de-
fault ones. In addition, they can choose input files from the portal’s
database or provide their own. At the end of each execution, the user
can download the output file and a log file.

Keywords: astronomy, virtual observatory, remote execution, high per-

formance computing.

1 Introduction

Due to scientific advances in the Astronomy area with more powerful tele-
scopes and detectors, for example, the amount of data generated in simula-
tions is increasing. Allied to this, advances in the computing area, especially
in the processing and networks fields, allowed the generation of more power-
ful computers to process, store and analyze a huge amount of data, even if
stored in different computational environments needing faster communica-
tion networks. However, many of these algorithms are not available to the



community, especially because they are implemented by private initiatives
dealing with license issues or because they do not practice the reproducibility
of their work.

Seen this, virtual observatories (VO) initiatives are great alternatives
to keep applications documented and available for execution in the same
environment easily accessible via web-based tools. A VO is capable of gen-
erating significant benefits for the astronomy research community and any
other interested group as students and educators, at the same time taking
advantage of distributed computer systems integrated by the Internet.

This work is based on a previous web portal framework implementation
for remote execution of a specific algorithm in Astronomy [7]. The main ob-
jective is to provide a VO that allows registered users to execute Astronomy
applications using different data and obtaining the result of their execu-
tions after completing. It is developed as free and open source software that
anyone can self host and add their own data and applications as services.

The project includes two high performance applications: the Friends-of-
Friends algorithm implemented in serial and parallel versions and algorithms
for image restoration using wavelet filtering. The platform is hosted in a
cluster maintained by LAC/INPE containing different parallel architectures
including CPUs, GPUs and FPGAs. For the executions, users can set their
parameters and upload their input files using the VO interface, generating
at the end output files about the executions.

2 Virtual Observatories

Virtual observatories are an international community-based initiative to pro-
vide information on astronomical data archives in easily accessible worldwide
environments. There are some VO projects available, that share similarities
and differences with ours. Some of them are:

• The European Virtual Observatory 1 (EURO-VO): It aims at deploy-
ing an operational VO in Europe and provides a set of scientific ap-
plications that can be used as a service. However, registration is not
public and it couldn’t be tested.

• The Chilean Virtual Observatory2 (ChiVO): It was developed in Chile
due to the large amount of data coming from the astronomical ob-
servatories in the country that needed to be stored, processed and

1https://aladin.u-strasbg.fr/aladin.gml
2https://chivo.cl/



analyzed using tools and algorithms. ChiVO tends to be useful to as-
tronomers and students, specially from schools of rural areas. Some
of the Official Software available are a Python library to stack images
of astronomical objects, a Python package to provide an easy inter-
face and I/O operations for using astronomical libraries over Jupyter
notebooks, a virtual service to generate synthetic spectroscopic data
that can be used to assess advanced computing algorithms for astron-
omy and a package with algorithms for Astronomers, including some
produced by ChiVO and their High Performance Computing versions.
Like EURO-VO, registration is not public and the service is not useful
outside of Chile.

• Virtual Astronomical Observatory3 (VAO): The U.S. National Science
Foundation and NASA funded this international effort to bring a large-
scale electronic integration of astronomy data, tools, and services to
the global community. VAO seeks to put efficient astronomical tools
in the hands of U.S. astronomers, students, educators, and public out-
reach leaders. Some of the available tools run online and others have
to be downloaded and installed locally. Also, they make available
a database to use in the executions, in which the user can see the
progress of their task and download the files used.

3 Web Platform

3.1 Implementation

The platform is built upon the tools: (i) Django Web Framework, because it
offers access to several extensions which facilitated the project development,
such as object-relational mapping and a Model-View-Template (MVT), (ii)
Celery, an asynchronous task manager based in message exchanges between
the application that will launch the tasks and the workers (processes that
execute the tasks), making possible to expand the number of workers in dis-
tinct machines and (iii) Redis[11], which coordinates sending and receiving
messages between the machines that will act like workers and the machine
that will keep the application available for the users.

To host the VO in the cluster of the authors’ institution, there was a
strong dependence on the IT management sector to authorize the installation
of tools and enabling access to network services necessary for the deploy-
ment of the platform. The development and tests presented in this work

3http://www.virtualobservatory.org/



were tested and executed locally, meanwhile we are preparing the execution
environment on the cluster for deployment.

The project is divided into classes that inherit the Django model base.
The classes of the available algorithms were implemented separately, since
each one uses different attributes including their description, execution com-
mand and parameters. There is an execution class that keeps all the infor-
mation about one execution: the user ID, the date requisition, the execution
status, the algorithm used, the input, output and log files, and the execu-
tion time. The last one is the portal class, that keeps the user’s information,
needed for authentication, and other user preferences related to the VO
interface.

There are three distinctive users types:

• Anonymous: can visualize information about the platform and the
registered algorithms, register as a new user and contact the system
administrator;

• Registered: can execute experiments with all available algorithms, vi-
sualize the executions of the experiments monitoring the status of their
job and download its respective input, output and log data or cancel
the execution;

• Administrator: can register new algorithms, edit the users’ account
and any other operation related to the database.

3.2 Functionalities

Compared to the original implementation, which was unmaintained since
2015, the software stack was upgraded to the latest versions as of the date
of publication: Django 2.1, Celery 4.2, Bootstrap 4.3. The most noticeable
architectural change is the division of specific functionalities into Django
apps, a change referred here as modularization, that was important to ease
the addition of new applications.

During development we had to modify some Django models in order
to facilitate the storage in the database and to add more information. In
the templates we modified some navigation options to improve the user
experience.

Besides the platform functionalities we also had to fill some web pages
with textual information about the VO, the project’s idea, the usage in-
structions and the available algorithms. The source code of the algorithms



also had to be adapted to run easily by command line, and the outputs had
to be translated and standardized for better understanding.

To obtain and validate the forms’ information, we used the Django
Crispy Forms application. When a user incorrectly fills a form, Crispy
Forms tries to render a new one by making changes to the fields filled in-
correctly, making it clear where the errors are. For user registration, we use
the Django-Registration-Redux, which has specific templates and forms for
registration. We implemented the user account activation via email using
this extension.

To guarantee the performance of the remote executions, avoiding that
the same process dealt with user requests and the execution of tasks, the
project was divided into two types of software servers:

• Front-end server: runs a web server developed in Django, that imple-
ments the user interactions with the workers. The machine that hosts
the portal maintains a process for implementing the broker Redis.

• Workers: are independent processes responsible for managing the ex-
ecution of algorithms. They should be started on the server machine
that will run the applications and exchange messages with the process
that requested the execution. We use the Python package Celery [2],
which is an application to manage job queues by exchanging messages
to other processes and/or machines.

4 Currently implemented applications

Modularization allowed each application to have its own distinctive Django
app, making it easier to add new applications. The currently available algo-
rithms hosted in the platform are:

4.1 Friends-of-Friends

Friends-of-Friends (FoF) [6] is a percolation algorithm used to identify struc-
tures in the Universe based on physical proximity. This is one of the most
used percolation methods, due to its simplicity (it has only one free param-
eter) and reproducibility (to a given linking length it produces one catalog
of unique groups) [9].

As input, FoF receives data from N-body cosmological simulations and
classifies them considering a percolation radius, defined by the user. Each



line of the input file defines a particle, that may be a star, a galaxy, a cluster
or a cluster of galaxies.

The algorithm considers a sphere of radius R around each particle of
the total input set. If there are other particles within this sphere, they will
be considered belonging to the same group and will be called friends. The
procedure continues considering a sphere around each friend and using the
rule of ”any friend of my friend is my friend”, until no new friends can be
added to the group. The expected result of the algorithm is to identify
groups of objects that interact gravitationally.

To improve FoF’s performance taking advantage of modern CPU designs,
there are several implementations of the algorithm using parallel-based ap-
proaches. Other works presented some FoF versions using parallelization
tools, such as MPI, OpenMP and OpenACC [10, 1, 12]. Table 1 presents
the four FoF implementations available in the VO.

Table 1: Friends-of-Friends algorithms available in the VO

Complexity Serial Parallel Runs in Tools

O(NlogN) X CPU
O(N2) X CPU
O(N2) X CPU OpenMP
O(N2) X CPU + GPU OpenACC

4.2 Image Restoration

Visual data acquired by astronomical instruments more than often are af-
fected by some form of corruption. Technical difficulties like vibrations and
electromagnetic interference can profoundly degrade the result [8]. Acquired
images in their raw form may not be useful at all for researchers, requiring
some form of post-processing.

Digital image restoration is about finding the best estimation of the
original image knowing only the degraded result. There are many forms
of degradation. In this work, however, we focus on the Additive Gaussian
White Noise (AWGN) form of degradation.

Several techniques exist to reduce noise from images, of which only
wavelet filtering is currently implemented. In a nutshell, the wavelet trans-
form decomposes the signal into low and high frequency sub-bands. Since
noise adds a lot of amplitude variation into the signal, noise propagates to
the high frequency sub-bands, and those are the bands to be filtered by
applying a threshold operation on them.



Wavelet filtering is a vast area by itself. Several wavelet families and
threshold estimators exist. We focus on the Daubechies family and the
VisuShrink [5] and BayesShrink [3] threshold estimators.

VisuShrink is the simplest estimator. It uses a Universal Threshold
calculated from the standard deviation of the high frequency diagonal sub-
band and applies it to every sub-band with a high frequency decomposition
in some dimension. BayesShrink is adaptive, meaning each of these sub-
bands have their own threshold value and generally yields better results.

In addition, the algorithm of cycle spinning [4] was included. For differ-
ent choices of the number of shifts and the shift amount itself, the filtering
process is applied on each shifted signal and the result is unshifted by the
corresponding shift quantity. The final result is the signal obtained by the
average of all unshifted results. This procedure is useful to reduce artifacts,
for instance, caused by the Gibbs phenomenon generated by the periodized
wavelet decomposition, at the expense of complexity and consequentially
higher execution time. With the maximum number of shifts assumed for
computing the average, cycle spinning has O(Nlog(N)) complexity, while
regular wavelet filtering is O(N).

The image restoration algorithms included in the VO are from the scikit-
image [13] project, version 0.14. Being developed in Python, it integrates
seamlessly with Django.

5 Remote execution

As soon as a registered user logs in for the first time, they will be presented
with an “empty” home page saying “You have no experiments”. This is an
empty experiment table, or execution panel, that will begin to pile up as
the user run experiments.

Registered users can perform experiments using the navigation bar, where
the algorithms are. Since many distinct FoF and image restoration al-
gorithms exist, it is a drop-down menu where the user chooses a specific
algorithm before hitting the experiment configuration page.

Each experiment chosen from the navigation bar has it’s own input form
for configuration. Figure 1 shows the Django forms where the user can input
their data and set execution parameters for both implemented apps.

As soon as the user hits the “Run” button, they are redirected to their
home page and the execution panel is updated. The user will be notified by
email when the task is completed and can then refresh the page to enable
the download button.



(a) Friends-of-Friends (b) Image restoration

Figure 1: Django forms for both apps

Each job execution request generates an entry on a table which registers
all requests of a given user. This table is presented in a section of the web
portal (Figure 2). It has an interface for users to monitor and manage their
execution requests (select, view, remove). This interface also allows the user
to download output data after the execution is finished. The table also
presents the following information to the user:

• Execution time: elapsed time of a job execution (for finished jobs).

• Status: tells the user whether a request is already finished or still
waiting a worker to perform the task.

Figure 2: Experiments table



6 Conclusions

Virtual Observatories are an efficient framework to share knowledge and
data associated with Astronomy, allowing a secure spread of information.
This work presented a VO effort for remote execution of high performance
applications, which contribute for data storage, access and analysis.

The full source code along with instructions to locally run it can be found
in the Git repository at https://gitlab.com/monego/webfriends-imagens.
Thanks to modularization, the code should be easy to fork and to adapt for
custom applications.

As future works, we intend to finish hosting the platform in the cluster
and to study other applications to be inserted in the platform. Another
improvement we want to achieve is the implementation of the possibility
of scheduling executions, facilitating the user’s planning. More ideas for
further improvements can be found in the issue page of the repository.

Acknowledgments. The authors gratefully acknowledge financial sup-
port from the CNPq, Brazilian agency for research support, in partnership
with Universidade Federal de Santa Maria (UFSM) and the National In-
stitute for Space Research (INPE), that granted the Scientific Initiation
scholarship to the first and second authors.

References

[1] L. Berwian, E. T. Zancanaro, D. J. Cardoso, A. S. Charão, R. S.
da Rocha Ruiz, and H. F. de Campos Velho. Comparação de estratégias
de paralelização de um algoritmo friends-of-friends com openmp. In
Anais da XVII Escola Regional de Alto Desempenho do Estado do Rio
Grande do Sul, pages 279 – 252, 2017.

[2] Celery. Celery: Distributed task queue, 2015. http://celery.

readthedocs.org/en/latest/, acessado em Outubro de 2015.

[3] S. G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet thresholding
for image denoising and compression. IEEE transactions on image pro-
cessing, 9(9):1532–1546, 2000.

[4] R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. In
Wavelets and statistics, pages 125–150. Springer, 1995.



[5] D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet
shrinkage. biometrika, 81(3):425–455, 1994.

[6] J. P. Huchra and M. J. Geller. Groups of galaxies I. nearby groups.
The astrophysical Journal, 257:423–437, 1982.

[7] O. M. Madalosso, A. S. Charão, H. F. de Campos Velho, and R. S.
da Rocha Ruiz. A web portal framework for remote execution of high
performance applications in astronomy. In Proceedings of the 4th Con-
ference of Computational Interdisciplinary Science. Pan-American As-
sociation of Computational Interdisciplinary Sciences, 2016a.

[8] R. Molina, J. Núñez de Murga, F. J. Cortijo, and J. Mateos. Image
restoration in astronomy: a bayesian perspective. IEEE Signal Process-
ing Magazine, 2001, vol. 18, núm. 2, p. 11-29., 2001.

[9] R. S. d. R. Ruiz. Turbulência em cosmologia: análise de dados simu-
lados e observacionais usando computação de alto desempenho. PhD
thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
2011-05-26 2011.

[10] R. S. R. Ruiz, H. F. Campos Velho, A. Caretta, C., S. Charão A., and
P. Souto R. Grid Environment for Turbulent Dynamics in Cosmology.
Journal of Computacional Interdisciplinary Sciences, 2:87, 2011.

[11] S. Sanfilippo. Redis, Novembro 2015. http://redis.io/, acessado em
Novembro de 2015.

[12] A. Solórzano, A. S. Charão, R. S. da Rocha Ruiz, and H. F. de Cam-
pos Velho. Exploração de computação h́ıbrida com openacc em um
algoritmo friends-of-friends para classificação de objetos astronômicos.
In Anais da XVIII Escola Regional de Alto Desempenho do Estado do
Rio Grande do Sul, pages 133 – 136, 2018.

[13] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu. scikit-image: image
processing in python. PeerJ, 2:e453, 2014.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

