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Abstract: The physical phenomena derived from an analysis of remotely sensed imagery provide a
clearer understanding of the spectral variations of a large number of land use and cover (LUC) classes.
The creation of LUC maps have corroborated this view by enabling the scientific community to
estimate the parameter heterogeneity of the Earth’s surface. Along with descriptions of features and
statistics for aggregating spatio-temporal information, the government programs have disseminated
thematic maps to further the implementation of effective public policies and foster sustainable
development. In Brazil, PRODES and DETER have shown that they are committed to monitoring the
mapping areas of large-scale deforestation systematically and by means of data quality assurance.
However, these programs are so complex that they require the designing, implementation and
deployment of a spatial data infrastructure based on extensive data analytics features so that users
who lack a necessary understanding of standard spatial interfaces can still carry out research on
them. With this in mind, the Brazilian National Institute for Space Research (INPE) has designed
TerraBrasilis, a spatial data analytics infrastructure that provides interfaces that are not only found
within traditional geographic information systems but also in data analytics environments with
complex algorithms. To ensure it achieved its best performance, we leveraged a micro-service
architecture with virtualized computer resources to enable high availability, lower size, simplicity to
produce an increment, reliable to change and fault tolerance in unstable computer network scenarios.
In addition, we tuned and optimized our databases both to adjust to the input format of complex
algorithms and speed up the loading of the web application so that it was faster than other systems.

Keywords: spatial data infrastructure; data analytics; thematic mappping

1. Introduction

Since the first artificial satellites were launched, there have been several advances in the area of
environmental sustainability, especially in developing countries such as Brazil [1]. Space agencies
have been tracking individual satellites, placed in orbit, to obtain a synoptic view with a multitude of
spectral signatures that are used to provide a rapid understanding of the dynamics of land use/cover
(LUC) changes, ranging from a regional to a continental scale [2]. The quality and flexibility of the large
amount of spatial information can assist the scientific community in a wide range of environmental
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applications: deforestation modelling [3], monitoring disasters [4], estimation of total water body [5]
and making a biodiversity assessment of agriculture [6,7]. As a result, some studies have led to the
design of thematic maps to assist their scientific research by highlighting spatio-temporal patterns in
urban and rural areas.

Brazil is one of the quality-assured [8] and spatially extensive examples of a country that has taken
advantage of remote sensing to maintain Earth’s natural resources by creating thematic maps with
open source software. Brazil’s continuous data-based monitoring programs of clear-cut deforestation
(PRODES) [9], and the alert warning system for near-real time deforestation detection (DETER) [10,11],
conducted by the Brazilian National Institute for Space Research (INPE), have operated in response to
evidence of shifts in anthropology resulting from changes in native vegetation and laid the groundwork
for a detailed examination. Since 1988, PRODES has systematically estimated the official annual
rates (http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes) based on the known
deforestation increment areas. DETER addresses the sparser and scattered deforestation activities on a
daily basis in constrast with PRODES [12].

Technical requirements have triggered a concern on the part of government agencies to improve
the interoperable web services that are employed so that they can be used to discover, retrieve,
integrate and share a large amount of digitalized spatial data across different locations in an effective
way [13–15]. This top-down approach, known as Spatial Data Infrastructure (SDI), relies on the
technologies, principles, policies, specifications and people involved in the established procedures
and mechanisms adopted in every initiative (e.g., INSPIRE (https://inspire.ec.europa.eu/), US NSDI
(https://www.fgdc.gov/nsdi/nsdi.html)) to provide non-proprietary access to both time stamped
and topologically structured data [16,17]. The first attempts at developing SDIs focused on monolithic
processes (i.e., large single web applications) with centralized governance and data management based
on space, time and thematic attributes [18]. However, the SDIs did not follow the recent technological
trends in their attempt to answer more precise questions (e.g., the availability of data in specific regions,
or the use of specific thematic parameters in defined periods of time) which are raised by those users
that either do not have a background in geo-informatics or seek to analyze these data in an easier
way [19].

This is because SDIs rely on web service interface standards to exchange spatial data via
Hyper Text Transport Protocol (HTTP), which hampers the power boost of analytics with regard to
pre-defined libraries designed for script languages such as Python and R. This means that there is still
a need to transform current infrastructure-based approaches into algorithmic strategies with flexible,
modularised and advanced analytical methods [20]. Apart from the fact that novel object-oriented
interfaces that are guided by statistical analysis include a partial configuration of core and back-end
enhancements (e.g., the management for semi- and unstructured datasets), they still might be able to
overcome the challenges posed by data analytic capabilities. In addition, the new Big Data era requires
less complex services and reproducible environments for rapid analysis [21,22].

What needs to be emphasized here is that an analysis of heterogeneous scientific data [19,20] that
scale dynamically [23] result in a great effort to harmonize, pre-process and analyze the coupled spatial
data after downloading them from SDIs [24]. In summary, the challenges faced when developing
an SDI to disseminate deforestation data have the following very distinct aims: (1) to adapt the
heterogeneous environmental programs to the emergence and expansion of novel SDIs [25]; (2) to
handle the integrated and adaptive management of spatial data [26]; and, (3) to be aware of constant
innovative technological advances regardless of the platform that is used, as long as it remains generic
and flexible with a certain degree of modularity [27].

Our hypothesis is to build on the research findings of a previous study [28] and design a spatial
data analytics infrastructure called TerraBrasilis (http://terrabrasilis.dpi.inpe.br), that splits the main
components of SDI into micro-services. It is an ongoing project in so far as it is designed for both a fully
automated building and deployment process to leverage dynamic scenarios such as those that require
fine spatio-temporal resolution. TerraBrasilis is a web-based platform that seeks to arrange, access and
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disseminate spatial data from thematic maps produced by INPE environmental projects. It seeks
to satisfy the requirements of GIS (geographic information system) interoperability standards and
ensure compliance with the Brazilian National Spatial Data Infrastructure (INDE), while at the same
time employing ubiquitous and more cost-effective analytical Application Programming Interfaces
(API). The underlying purpose of developing these APIs is to increase data availability since they
allow users to adjust their analysis to specific regions without further prefiltering of geometry clipping.
The second aim relies on an analysis based on analytic capabilities in the environment which can make
ready-to-use methods easier, and thus, allow a shift from traditional SDIs to a spatial data analytics
infrastructure. As a result, less processing time is necessary to aggregate different data in spatial
on-demand and display them in the visualization layers.

Thus, the main research contributions made by this study can be summarized as follows:

1. Engineering and designing requirements at an architectural level to implement and assess
an open-source SDI across a cluster of virtualized computer resources. This entails using a
micro-services architecture (a) to improve fault tolerance in unstable computer network scenarios,
(b) to add simplicity so that new changes can be incremented, and (c) to make it easier to deploy
and maintain;

2. Making continuous thematic mapping projects more available (such as DETER and PRODES) to
provide information not only by means of conventional GIS interoperability but also through
semi- and unstructured formats in the analytics environment;

3. Making an improvement in the TerraBrasilis platform; this is based on the lessons that can be
learnt from the examination of deforested areas taken from a real-world deforestation scenario
such as that found in Brazil.

2. A Spatial Data Infrastructure for Big Earth Observation Data Analytics

SDIs can be defined as a means of employing technologies, policies, standards and stakeholders
to assist in providing access to spatial data [29] and enabling them to be disseminated. SDIs are
centralized from the standpoint of data management. They also support multi-participant involvement
in long-term environmental projects. Examples of initiatives such as INSPIRE and NSDI illustrate
the efforts made by government agencies to catalog, discover and download datasets with different
scales [17]. However, SDIs still require enhancements for analyzing scientific data [19,20], which scale
dynamically from heterogeneous sources [23] and must be harmonized and pre-processed when they
appear in a large quantity [24]. One solution involves carrying out a consistent kind of processing with
the server-side model which is able to avoid the data communication overhead between the client and
server. This feature requires novel approaches called big Earth observation data (BEOD) architectures.

BEOD architectures were designed to break away from the standardized web services used in
SDIs since it is not clear yet whether or not they can adjust to new Big Data era that has emerged [30].
This is the case with Google Earth Engine (GEE) which is built on top of the Map-Reduce model,
one of the most efficient user-friendly platforms for widely distributed and concurrent computing and
large-scale analysis [31]. Its non-proprietary spatial variations [32–34] and alternative interfaces for
image processing [35,36] raise cutting-edge challenges for back-end computing. Since there is a lack of
skilled labor in the computing infrastructure (e.g., for replication, redundancy and communication),
scientists have relied on cloud providers to virtualize computer resources. The classic example in
the private sphere that adopts a platform-independent approach, is Amazon Elastic Compute Cloud
(EC2) [37,38], which is transforming the Earth-Science domain by enhancing scientific reproducibility
and preparing analysis-ready-data for the next GIS generation such as CloudGIS [39].

Since spatio-temporal data suffered over a long time from a lack of scientific representation,
multidimensional array databases have emerged as useful alternatives. SciDB [40] relies on the
mathematical concept ofa 3-D array and improves interoperability at the algebraic level [41]. In another
example, Rasdaman [42] provides similar features with an SQL-like lightweight interface, which
include, tuning parameters such as vertical partitioning and compression in a chunk-based storage
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mechanism [43,44]. These functionalities deploy an overlapping strategy to balance computational
load and memory consumption. This means that they can store data between many computing nodes
with high availability and perform multiple aggregated tasks of great complexity independently. There
is an emerging logical model called data cube which is also designed to remove the burden from
scientists of having to compile BEOD and offer “analysis ready data” (ARD) [45]. This term stands
for providing Earth Observation data with a reduced learning curve in real time for data wrangling
satellite imagery and the reuse of processing methods for analysis [46–48].

Inlight of this, our studyhas made a significant advance by enhancing the capabilities needed
for conducting a complex analysis within SDIs [49]. Their limitations with regard to dealing with
incremental programming and carrying out a scalable innovative analysis, can be overcome bymeans
of statistical software packages such as those contained in the CRAN repository (https://cran.r-project.
org/). In addition, if a database design is created it makes it faster and easier to conduct an analysis
than using the structured data formats provided by standard web services (e.g., Sensor Observation
Service). These analytical and functional requirements are incorporated by SDIs along with the web
mapping and cataloguing services. This means that an analysis-friendly environment allows spatial
data and their particular features to be handled in a much more sophisticated way than only relying
on infrastructure-based implementations.

3. The Requirements of Spatial Data Infrastructure for Producing Thematic Maps
for Dissemination

The requirements of SDI for thematic mapping correspond to the structure and behavioral
patterns needed to establish priorities and draw up the guidelines for developing a system [50].
By means of an evolving analytical model designed from a business perspective, this task synthesizes
the basic functional and non-functional requirements that can represent the dynamics of LUC
applications and additional features inherent in domain-related software. With this in mind, our
aim is to summarize the principal functions (Figure 1) specified by three key players: the developer,
administrator and user. The functional requirements include the following: spatial data visualization
with maps and dashboards, different integrated services, security access control mechanisms,
administration and governance management, metadata query and storage tools, exporting large
databases, and data analysis. At the same time, the approach adopted for non-functional requirements
includes the following attributes: (1) quality, (2) performance, (3) security, (4) usability, (5) testability,
and (6) traceability.

In addition, we designed a structured diagram (Figure 2) with three packages (interface,
infrastructure and storage) to represent the software components at both a business and technical
architectural level. Each of these components contains stereotypes represented by «» and is connected
to a mounting connector to represent the provider or customer of the information/service. The interface
package contains the web application core component that is connected to both the visual interface and
the model-view-controller (MVC) framework. The MVC framework plays a key role since it brokers
the use of the service and is connected to the load balancing component in the infrastructure package.
As well as this, the MVC framework is connected to the auxiliary libraries, together with the mapping
resources and their web map providers.

In the infrastructure package, the micro-service approach helps to improve scalability and
dynamism through individual service management based on the payload required. This means
that the greater the amount of services that change individually, the lower is the impact on the
infrastructure. The load balancing and dynamic routing component is able to balance the load for each
service. The routing component uses the service registry, which is regarded as a database with service
instances and their locations. The registry enables service instances to be activated at startup and
canceled at shutdown. In addition, the service registry checks the integrity of the service instances to
enable their requests. Business micro-services can assist with requests that involve application business
logic, while geospatial data services cover all requests that involve geospatial data. Both services

https://cran.r-project.org/
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communicate with the storage package, which contains three key components: the configuration
database, geospatial database, and file system.

Figure 1. Use Cases—Behavioral Diagram.
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Figure 2. Components—Structure Diagram.

4. TerraBrasilis: A Spatial Data Analytics Infrastructure

We have built TerraBrasilis based on the basis of the following set of six distributed services across
a cluster of machines: (1) web mapping; (2) cataloguing; (3) analytics; (4) filtering; (5) monitoring; and,
(6) authentication. They are decoupled from technological constraints caused by specific domain-based
SDIs. TerraBrasilis has a hexagonal architecture with adapters that hide the inner complexity of its
domain model from each service. These adapters transform exchanged data into generic invocation
objects so that they can be understood by web application logic and forwarded back to the respective
service by means of a specific output format. This hierarchical style of development allows services to
be replaceable (e.g., by undergoing changes in technology) and extensible (e.g., by revealing novel
functionalities) without affecting, or being affected by the web application core. Figure 3 depicts the
high-level representation of the TerraBrasilis layered architecture.
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Figure 3. TerraBrasilis—Hexagonal Architecture (Ports and Adapters Design Pattern).

These services are wrapped up in virtualized packages, called containers, by using a lightweight
operating-system-level virtualization. Furthermore, in this way a software-as-a-service approach can
be adopted through which the services can be put together with their dependencies. Services can
roughlybe divided into four key areas with regard to both the reliability of the computing environment
and future deployments in different information technology (IT) infrastructures. First, TerraBrasilis
maintains GIS interoperability by complying with internationally recognized open standards for spatial
data exchange, in which are stored in an object-relational database and connected to a spatial service
plug-in (see Section 4.1). Second, TerraBrasilis is in conformance with INDE specifications since it is a
government web portal that is designed to disseminate spatial data (see Section 4.2). Third, it offers
structural graphic designs with quick filtering of multi-dimensional datasets sent in the analytics
interface by a Representational State Transfer (REST) (see Section 4.3). Fourth, we monitor modularised
and digitally authenticated services to provide measurement resource metrics and thus establish a
data-driven culture (see Section 4.4). Finally, TerraBrasilis can enhance traditional spatial analysis since
it enables efficient algorithms to solve interdisciplinary problems (see Section 4.5).

4.1. Interoperability of the Geographic Information System

TerraBrasilis contains an open source map server (GeoServer (http://terrabrasilis.dpi.inpe.br/
geoserver/web/) for displaying interoperable spatial data. This map server is designed for GIS
interoperability. It is a Java software implementation, compliant with Open Geospatial Consortium
(OGC) standards such as Web Feature Service (WFS) and Web Map Service (WMS). By using these
protocols, users can customize the manipulation of vector and raster datasets to deliver near-real time
and flexible custom styled maps. Its capabilities include security mechanisms in a robust and scalable
production environment. In addition, GeoServer allows an efficient exploration of configuration options
(e.g., database connection pooling, tiling cache server and styling of map features on request) through
low-cost scripting. Finally, it eliminates redundant request processing and avoids the need to conform
to complex schemes.

TerraBrasilis also integrates customized mapping API https://github.com/Terrabrasilis/
terrabrasilis-api procedures and utilities (https://github.com/Terrabrasilis/terrabrasilis-util) as a
simple means of creating interactive maps. These maps can be used across platforms with different
screen resolutions and are given configuration parameters, at start up. They are then stored in a
No-SQL database called MongoDB, provided by a business API implemented in Java. Its source code is

http://terrabrasilis.dpi.inpe.br/geoserver/web/
http://terrabrasilis.dpi.inpe.br/geoserver/web/
https://github.com/Terrabrasilis/terrabrasilis-api
https://github.com/Terrabrasilis/terrabrasilis-api
https://github.com/Terrabrasilis/terrabrasilis-util
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well-documented and allows other technical staff to extend its existing plug-ins. Figure 4 represents
the general map controls that are implemented in Javascript to handle, change, select, add and remove
satellite baselayers and deforestation overlayers. The map options include clickable/draggable control
methods for dealing with the map zoom level, drawing polygons and markers, and transforming a
place name into a spatial coordinate by means of a short-form gazetteer. There is a side navigation
menu containing a layer tree, with a list of subjects, where each layer contains specific tools such as basic
information in pop-ups, metadata, a transparency slider, a time component and a download button.

Figure 4. TerraBrasilis Web Portal.

With the aid of the standard protocols, users can also retrieve layers using any GIS platform
(e.g., QGIS and ArcGIS). For example, they can create a WMS connection to add a new layer from
the TerraBrasilis map server within their desktop with no authentication configuration, i.e., without
having to store encrypted credentials in the GIS database. Figure 5 shows a current WMS connection
that uses QGIS to obtain deforestation layers.

Figure 5. Adding Deforestation Layers from Legal Amazon using WMSClient in QGIS.



ISPRS Int. J. Geo-Inf. 2019, 8, 513 9 of 27

4.2. Compliance with the Brazilian National Spatial Data Infrastructure

TerraBrasilis provides technical information and details about each layer through a robust catalog
application that allow these data to be harmonized and handled by anyone with access to the Internet
even if they lack any specialized knowledge. It has a full-text search engine with a map viewer for
the spatially referenced layers, although it describes non spatial datasets. The metadata editor, also
known as Geonetwork (http://terrabrasilis.dpi.inpe.br/geonetwork/srv/eng/catalog.search#/home),
complies with a set of ISO standards (e.g., 19110/115/119) with geographic metadata guidelines to
publish any content type online. However, only the administrators are able to manage the user and
groups account permissions, or add, validate and suggest enhancements to improvethe metadata
quality. In addition, they can use a dashboard to schedule metadata harvesting and have quick access
to the catalog configuration. As can be seen in Figure 6, each map layer has information related to
the following: update frequency, representation type, scale, the coordinate reference system, format,
lineage, contact, the identifier and metadata information. This kind of information is based on the
implementation of the Brazilian Geospatial Metadata profile (MGB Profile) requested by INDE.

Figure 6. Metadata Catalog Search.

INDE has its own geo-portal to visualize registered catalog servers with the metadatabase and
their data services. It also has a search engine mechanism for receiving data from several Brazilian
public institutions such as IBGE, IBAMA and INPE. This is because the INDE specifications are in
accordance with international spatial web service standards. Figure 7 shows how an INDE visualizer
that is integrated with the Cerrado deforestation layer can be stored in map server that belongs
to TerraBrasilis.

http://terrabrasilis.dpi.inpe.br/geonetwork/srv/eng/catalog.search#/home
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Figure 7. INDE geoportal with TerraBrasilis layers.

4.3. Graphics for Visualization of Multi-Dimensional Data

As a supplementary feature of the map layers, TerraBrasilis provides dashboards to show how
the multi-dimensional data can be visualized by adopting an incremental data-driven filtering
approach. By implementing these dashboards, a million of records can be effectively explored.
They contain flexible charts with coordinated views and smooth transitions. Moreover, the transformed
features of the graphic design is a means of summarizing dynamic behaviors and animations.
They provide a lively style-friendly format for fast interactions. Their source code includes reusable
components and are in an open software registry https://www.npmjs.com/package/terrabrasilis-api
file. As well as this, its declarative programming and functional implementation reduces the overhead
of graphic variations.

The implementation is a variant of the grammar of graphics [51] (the layered grammar of
graphics [52]) embedded in a non-proprietary JavaScript library that can provide full capabilities
of web standards. Its main goal is to build graphics in a formal structure for statistical purposes.
Through a perception of elementary graphical elements (e.g., position, length, angle, slope, area,
volume, color and density) and their respective degree of accuracy, users can visualize quantitative
information in a concise way. This kind of visualization helps to acquire more meaningful and deeper
perceptions from spatial data. The following charts exemplify this through an analysis of deforestation
data (see Figure 8).

Figure 8. TerraBrasilis Analytics Dashboards.

https://www.npmjs.com/package/terrabrasilis-api
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The dashboard analytics for the disseminating of deforestation contain a tab for each place
of interest, including federation units, municipalities, conservation zones and indigenous areas.
It displays a vertical bar chart with temporal aggregation data, a horizontal bar chart with absolute
values, a choropleth map with spatially aggregated data, a time series comparison and a Table with the
deforestation areas per years http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/
amazon/increments showing annual variations. All the graphs provide snapshots of a specific biome
(e.g., Cerrado or Amazon). As well as, the presentation of deforestation increment areas and rates,
there are also additional tools to meet the needs of particular users such as the downloading of
cross-filtered data (e.g., which municipalities by states).

A model database was created to generalize and answer the tripod survey questions based on the
question words “what” (e.g., which classes), “where” (e.g., which place of interests or locality) and “when”
(e.g., which periods) contained in the dashboards, and this includes different datasets that provide
additional filters (e.g., features over 6.5 hectares) and applications information (e.g., the PRODES
Cerrado) information. Since it is time consuming to intersect a plethora of spatial polygons of a
complex nature that change over time and in different place of interests, we created a features table to
store the final output with the classes, periods and local of interests. Figure 9 shows this organization
and the measures taken to abstract these concepts and aggregate the spatial data operations that often
occur in different thematic maps.

Figure 9. Dashboard data model.

4.4. A Decentralized, Virtualized and Authorized Monitoring Platform

TerraBrasilis contains an advanced monitoring stack of services that is optimized to deal with the
unified metrics of physical assets over time. The platform automates a rapid and secure deployment
of services, including the analysis of the availability (e.g., reachability), responsiveness (e.g., latency),
and consumption (e.g., bandwidth load) of computing resources such as memory, CPU, the file
system, and the network. On the basis of this information, it can provide not only a holistic view of
TerraBrasilis in a healthy way but also provide consistent and predictable warning alerts before it
completely reaches its saturation point. These measures are centralized in a time series database called
InfluxDB. This database stores data about the performance monitoring, which is especially important
in environments with unstable scenarios. Its proven resistance against potential attacks and resource
misuse, means that it can provide continuous changes in a sustainable and scalable manner.

http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/amazon/increments
http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/amazon/increments
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The virtualized containers with services (e.g., Geoserver, Geonetwork, MongoDB, Redis, PostgreSQL)
allow the collection, aggregation and processing of their resource usage by the monitoring platform
in background. A Google application called Cadvisor performs these kinds of tasks and stores the
information inside InfluxDB. Cadvisor also assists in the automated recovery from service failures.
All the historical information was summarized by leveraging a flexible service called Grafana to show
which data is connected with InfluxDB. The security of the container services was ensured by providing
an encryption between the parties that use a compact and self-contained authentication on the client
side that is based on signed tokens.

4.5. Conducting Spatial Data Analysis

An API was designed to accompany this new paradigm called Data Science. This involves
scientists initially collecting raw data, and then cleaning and pre-processing it so as to conduct an
exploratory data analysis with basic statistics and plots; following this, statistical models are classified
and validated by means of machine learning algorithms. The purpose of the API is not only to supply
the visualization layer discussed above with multi-dimensional data but also to empower scientists
working within a scripts analytics environment such as R. This analytics API increases the thematic
mapping data available, which previously was only sent to GIS experts in response to WMS and WFS
HTTP requests. The API follows a design pattern in which there is a responsibility segregation between
where the updates in the raw thematic mapping data occur (those that are stored in a relational and
“normalized” database called PostgreSQL), and ready-to-exhibit output data are queried (those stored
in an in-memory and “denormalized” database called Redis). This additional cache layer allows
us to separate “writes” and “reads” operationsindependently. This representation speeds up data
recovery, and avoids bottlenecks when daily and seasonal flat data access reaches its peaks, therefore,
we decided to replicate the thematic mapping data.

The updates in the “write” model are asynchronous andsporadic, and triggered when there is a
change in domain rules while the cache layer synchronizes the updated information so that it can feed
the visualization layer in a periodic and scheduled process. In addition, it is unnecessary to query and
return all the data whenever an application starts up. In contrast, we can only query a fraction of the
data to save a precious time in the visualization layer. For example, users can check deforestation data
from a wide range of places of interests and periods when there is no need to load all of them at once.
The application responsible for feeding data from PostgreSQL to Redis is a Java program, while the one
responsible for querying data from Redis anddelivering them dynamically into the visualization layer
is a Javascript application.

This alternative analytics API can be employed to answer the following questions: (1) what
are the stored thematic mapping datasets (e.g., PRODES from Cerrado)?, (2) which places (e.g.,
federation units, municipalities, conservation zones, and indigenous areas) and places of interest (e.g.,
Mato Grosso, Amazonas, Pará) do they contain?, (3) what periods of time (e.g., from 1988 to 2000,
from 2010 to 2012, from 2016 to 2017) do they correlate with?, which classes are they (e.g., deforestation,
pastureland, soyabean) linked with?, and (4) which filters (e.g., for areas of land above 6.5 hectares) do
they use for processing? With these back-end enhancements, the analytics API is able to provide a
flexible and rapid delivery of semi- and unstructured datasets, particularly for those that do not have a
GIS expertise (see Listing 1).

Listing 1: TerraBrasilis Analytics API Calls.
GET apiPath/ l i s t _ d a t a s e t s
GET apiPath/ c o n f i g u r a t i o n / l i s t _ l o c a l s
GET apiPath/ c o n f i g u r a t i o n / l i s t _ l o c a l _ o f _ i n t e r e s t s
GET apiPath/ c o n f i g u r a t i o n / l i s t _ c l a s s e s
GET apiPath/ c o n f i g u r a t i o n / l i s t _ p e r i o d s
GET apiPath/ c o n f i g u r a t i o n / l i s t _ f i l t e r s
GET apiPath/data / . . . class_name . . . / . . . l o c a l _ o f _ i n t e r e s t _ i d . . .
GET apiPath/data/query ? c l a s s = . . . loiname = . . . s t a r t d a t e = . . . enddate = . . .
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Since analytics environments help to improve the interoperability of analytics API, we created an R
client (shown here using a Jupyter notebook, which is essential to explore reproducibility. The R package
abstracts the manipulation of handlers with customized headers as inputs to curl https://curl.haxx.se/
requests to endpoint resources. These server responses are in JSON format and transformed into a
tidy version data, one table has all the required attributes in which each observation represents a
column with a suitable name, and each observation represents a row. With this information, we can
then explore all of the thematic mapping data. Figure 10 shows the first stages of the installation and
the loading of the terrabrasilisAnalyticsAPI R package. A variable apiPath is responsible for defining
the Analytics API path. After this, it is possible to list datasets. On the basis of this information, users
can make specific requests to other API endpoints. These requests involve the intervals, localities and
classes contained in the datasets.

Figure 10. First steps with TerraBrasilis Analytics API R Client.

Figure 11 shows how to obtain final data through the acquisition of other parameters.
After obtaining places such asthe state, municipality, conservation zone and indigeneous areas,
we included less granularity with regard to places of interests. Owing to their compatibility with
other environmental programs, specific filters are available for all of the data. With this in mind,
users can input those information to the function as parameters so that they can receiveas much data
as they desire.

https://curl.haxx.se/
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Figure 11. Obtaining further configuration parameters to request deforestation data.

5. Experiments

In this section, we begin by designing the experimental setup and describe how the server runtime
environment was configured when the TerraBrasilis micro-services were deployed. In addition,
we depict the resource usage datasets that were collected from the TerraBrasilis working monitoring
system. Following this, there is an analysis of a load testing report that takes account of the latency
and scalability with regard to the users’ requests for web applications with similar purposes which is
then compared with the performance of TerraBrasilis. We also show the performance testing SDI of
our APIs (business, analytics, and synchronization) under real-life load conditions. After this, there is
an explanation of how we tuned our spatial database to carry out complex spatial data operations
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without overloading the server. Finally, a complex analysis is conducted to highlight how analytics
APIs can be used.

These tests were chosen based on the basis of the initial parameters that were defined for the
server-side spatial data processing. We wanted to compare their performance with those that are
employed for spatial data processing on the client-side. The performance testing serves as a means of
measuring the TerraBrasilis quality since it is designed to evaluate how the resources are managed.
In view of this, we linked the micro-services analytics API, analytical database and analytics feeder to
represent the analytics component. The business API, business database, map server cluster mode and
map server single mode comprise the web mapping component. The metadata catalog represents the
cataloguing component. The Home, Core Web Application and Daily Data Sync are represented in all
the micro-services components.

5.1. Experimental Setup

Runtime Environment: TerraBrasilis was deployed on a virtualized server using Proxmox
(https://www.proxmox.com/en/) with two Xeon cores (R) CPU E5-2650 v3 2.3GHz and 96 GB
RAM memory. The server contains two disks with 600GB SAS plus and six disks with 1.2TB SAS 10K.
It is runningPROXMOX 5.1 release.

Dataset: this is based on ISO/IEC 9126 which defines a set of parameters to standardize a
software quality assessment. Detailed information was collected about CPU, memory, the file system
and network usage in each of our container’s micro-services to measure the efficiency of TerraBrasilis.
The timeframe analyzed was from 1 January 2019 time (UTC 00:00:00) to 22 July 2019 time UTC 10:00:00.

5.2. Performance Analysis

Each measurement comprises a resource description SDI, its associated container hostname
identifier and a field set containing successive values with time-stamps. The datasets that resulted from
the near-real time monitoring of specific micro-services were taken from InfluxDB with a familiar query
syntax using Grafana. The main micro-services responsible for the working core of TerraBrasilis were
analyzed. These included the following: the analytics API, the analytics database (Redis), the analytics
feeder, the business API, the business database (MongoDB), the synchronization client of deforestation
alerts that supply map and dashboard alerts, both the map server (GeoServer) configurations in which
the first was in a cluster mode while the latter was in a single instance mode, the metadata catalogue
(Geonetwork), the web application core and the home website.

Figure 12 shows how the map server (GeoServer) makes more use of CPU and memory resources
than other micro-services. Map server configurations (cluster and single modes) have very high peaks
since the maps interoperability requires access to their data whenever an user comes in, which is a
part of the TerraBrasilis’ routine approval requests. Both CPU and memory make a clear distinction
between episodic and periodic calls, the former is the case of the business API while the latter is
the case of the analytics API. The second receives intermittent inputs every 5 min from its feeder
program. We only analyzed data from January 2019 although the TerraBrasilis alpha release occurred
in October 2018. The beta release occurred in March 2019 with subsequent new patches. This includes,
for instance, the downgrade map server, from cluster to a single instance mode because of its high
complexity in the first mode. The file system resources remained stable with around 70 GB in use.
The cluster mode map server, however, achieved high values mainly with regard to the network
although the monitored noise data were rejected. For example, we found six overheated values and
one underheated value of CPU usage. We also removed any measures that were not available such as
those obtained when TerraBrasilis operations were unstable.

https://www.proxmox.com/en/
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(a) CPU (b) Memory.

(c) File System. (d) Network.

Figure 12. Main Micro-Services Performance Analysis.

Table 1 provides a summary of how these micro-services resources are used. CPU is used less in
the web application core, while the single instance mode of the map server has the highest rates with
the highest mean and standard deviation. In addition, once a day we had to estimate the efficiency of
the service responsible for (1) synchronizing the remote alert data, and (2) incorporating it into the
TerraBrasilis spatial data storage system (PostgreSQL) and map server. Memory resource usage has a
similar behaviour. As well as the web application, the business database and analytics database are
the most efficient since they have almost 0 MB of usage. While the file system displays uniform values
for all the analyzed micro-services, they have similar alternate network values. We approximated the
minimum values to 0 in the network and file system owing to the large number of mantissa digits.
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Table 1. Main Micro-Services Resources Usage Summarization.

CPU in MHz Memory in MBps File System in GB Network

min max avg std min max avg std min max avg std min max avg std

Analytics API 33.5 72.8 59.8 9.09 22 103 65.1 16.8 0 71.7 26.8 28.4 0 0 0 0

Analytics Database 0.0595 72.8 25.8 23.4 0 1702 289 502 0 71.7 26 27.5 0 0 0 0

Analytics Feeder 5.63 21.1 12.4 3.57 436 1789 1106 334 71.7 24.7 25.9 0 0 0 0

Business API 4.12 28.5 19.5 4 9.47 997 14.4 181 0 71.7 27.3 28.9 0. 5.20 × 10−3 1.21 × 10−3 8.52e-4

Business Database 10.5 42.7 26.8 6.55 0.807 358 49.9 68.6 0 71.7 35.7 35.8 0 0.107 3.53 × 10−3 0.0114

Daily Data Synch 0.0399 1.77 0.350 0.403 0.321 696 88.9 152 0 71.7 35.9 35.9 0 0.0222 4.46 × 10−3 6.79 × 10−3

Home 0.226 25.4 4.57 4.45 10.3 340 164 79 0 71.7 26 27.5 0 0.0242 5.33 × 10−3 4.36 × 10−3

Map Server Cluster Mode 43.7 615 177 105 593 7161 3764 1648 0 71.7 28.5 29.9 0 2.95 0.0429 0.206

Map Server Single Mode 108 1155 278 168 152 7297 4025 1299 0 71.7 36 35.9 0 0.312 0.0572 0.0603

Metadata Catalog 21.8 328 46.4 23.9 54 2506. 1612 349 0 71.7 22.7 23.1 0 0.0403 2.45 × 10−3 4.50 × 10−3

Web App Core 4.56 × 10−3 0.697 0.125 0.112 1.12 62.7 18.4 18.5 0 71.7 24.4 25.6 0 0.273 0.0226 0.0380
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5.3. Web Application Load Testing

Unstable conditions were introduced such as those provided by load testing to detect
and repair any features that were impairing the runtime performance of TerraBrasilis. This
strategy helped us to determine whether our audience finds it more satisfactory than other
similar web applications. We estimated the median time performance for fetching all the static
files (e.g., CSS, JavaScript, images) so that the users could have a smooth interactive experience.
These metrics represent 100 sample requests that are repeatedly emulated by 10 users with
a ramp-up period of 10 seconds for a loop to run 10 times. This simulates the behaviour of
a web browser. TerraBrasilis loads quickly compared with data infrastrature that receive a
similar number of bytes received per second (see Figure 13). The list contains web mapping
applications such as those provided by: IBGE (https://bdiaweb.ibge.gov.br/#/consulta/vegetacao),
INPE (http://terrabrasilis.dpi.inpe.br), Terraclass (https://www.terraclass.gov.br/webgis/),
INDE (https://visualizador.inde.gov.br/), LAPIG (http://maps.lapig.iesa.ufg.br/lapig.html),
MapBiomas (http://mapbiomas.org/map), CAR (http://www.car.gov.br/publico/imoveis/index),
Open Street Map (OSM) LUC (https://osmlanduse.org/#8/8.18828/49.16024/0/), Incra
(http://acervofundiario.incra.gov.br/i3geo/interface/openlayers.htm), and Amazonia Protege
(http://www.amazoniaprotege.mpf.mp.br/).

Figure 13. Web Application Load Test.

MapBiomas is a collaborative project formed of an interdisciplinary group based on the Google
Earth Engine(https://earthengine.google.com/) platform. Its main aim is to provide automated
classification capabilities to carry out thematic mapping from Brazil’s biomes throughout the annual
LUC series. Amazonia Protege is a project aimed at combating illegal deforestation in the Brazilian
Amazon rainforest by means of satellite imagery and cross-validation based on public data. Unlike
Amazonia Protege, CAR provides a method for filtering spatial data from the National Rural
Environmental Registry System (SICAR). As well as this, Incra has a web portal for displaying
the Brazilian land database and integrated services so that access can be obtained to geospatial and
statistical data.

From a more academic perspective, OSM LUC can serve as a tool with data provided by volunteers.
IBGE also has an interactive LUC data portal. Its distinguishing feature is that it can allow an analysis
to be conducted that is based on spatial grids. It can also be integrated with other statistical databases

https://bdiaweb.ibge.gov.br/#/consulta/vegetacao
http://terrabrasilis.dpi.inpe.br
https://www.terraclass.gov.br/webgis/
https://visualizador.inde.gov.br/
http://maps.lapig.iesa.ufg.br/lapig.html
http://mapbiomas.org/map
http://www.car.gov.br/publico/imoveis/index
https://osmlanduse.org/#8/8.18828/49.16024/0/
http://acervofundiario.incra.gov.br/i3geo/interface/openlayers.htm
http://www.amazoniaprotege.mpf.mp.br/
https://earthengine.google.com/
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and its main objective is to assess what economic activities can be undertaken with Brazil’s natural
resources. With regard to the user interface, the geo-forestry institutional portal was found to be a
good source of ideas, although it was not possible to test its web GIS as it is not a sufficiently complex
analytical tool for large data.

Table 2 refers to the audition software created to provide actionable tips on our front-end
implementations. The Incra Map achieved minimum values since it has no loading overlayer at
startup, while OSM LULC obtained the worst results because of its distance from the server and the
amount of OSM data to load. All the throughput is very similar because of the used networking
capability. Embrapa TerraClass and INDE Visualizador did not respond in 2 and 1 of the requests,
respectively, which might represent that they had reached their saturation point. We set the baseline for
the experiment on 25 July at 19:00p.m. UTC 3. We did not intend to run a stress test although some web
application’s reached their saturation points. Finally, the web applications were in operation during
the tests, which their load could be therefore compromised if lots of users were online simultaneously.

The web application load testing which is treated here as a front-end test was supplemented by
back-end implementation testing which involved three APIs (business API, analytics API, and the
client synchronization of deforestation alerts). It also underwent a good deal of network performance
monitoring to maintain its responsiveness effectively no matter how widely distributed our resources
were. Figure 14 depicts the differences in performance achieved by these three micro-services.

Figure 14. APIs Load Testing.

In summary, as in the previous test we performed 100 requests by emulating 10 users at the same
time with a 10 s ramp-up in a loop count of 10 times (see Table 3). All of them responded with a suitable
degree of availability (# Error 0% equal to 0.00). Since the business API provides information about the
layers that are loaded inside the map, we thought that this kind of test could directly complement the
previous one to find the performance of TerraBrasilis through a full stack implementation. Since we
did not have any information about the back-end developments of other web applications, we did not
consider testing their back-end APIs.
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Table 2. Aggregate Report of the Web Application Load Test.

Label Average Median 95% Line Min Max Error % Throughput Received KB/s Sent KB/s

0. Amazonia Protege 6012 5206 11,133 3123 13,917 0.000% 0.16334 546.90 2.49
1. CAR 1808 1688 2456 1394 3851 0.000% 0.16604 70.48 3.17

2. Embrapa TerraClass 10,500 9907 16,240 4967 17,321 2.000% 0.16194 2682.39 11.33
3. IBGE BDiaWeb 1241 947 2438 547 5178 0.000% 0.16354 92.75 0.64

4. Incra Map 383 349 615 226 1313 0.000% 0.16412 40.85 0.40
5. INDE Visualizador 4393 3854 7934 1870 11,162 1.000% 0.16576 449.23 3.21

6. Lapig Map 1228 1117 1907 880 2616 0.000% 0.16801 74.81 0.80
7. Mapbiomas 10,903 11,604 15,068 5233 18,502 0.000% 0.16499 328.65 1.58
8. OSM LULC 24,231 24,255 27,571 16,983 32,311 0.000% 0.15946 158.89 1.44

9. TerraBrasilis Map 4595 4231 7232 2676 10,134 0.000% 0.16321 1501.47 1.53

Table 3. Aggregate Report of the APIs to Collect Related Deforestation Data.

Label Average Median 95% Line Min Max Throughput Received KB/s Sent KB/s

Analytics API 1025 1091 1543 222 2101 3.59531 3.36 1.40
Business API 52 49 62 40 255 3.63491 21.86 1.30

Daily Data Sync 866 840 995 773 1857 3.54246 1729.21 1.52
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5.4. Subdividing Raw Data to Speed Up Spatial Data Operations

When handling the vectorial incremental data with large features produced by PRODES, it was
crucial to create spatial indexes beforehand, since databases are faster to compare bounding box than
any other feature format. More than this, small rather than large bounding boxes allow a better
processing time. In view of this, we have shrunk each PRODES feature recursively until they have
(at most) 256 vertices (https://postgis.net/docs/ST_Subdivide.html) each to optimize our intersection
operations. Figure 15 makes a comparison between raw and subdivided PRODES data.

(a) Raw Deforestation Polygons.

(b) Subdivided Deforestation Polygons.

Figure 15. PRODES Data comparison.

https://postgis.net/docs/ST_Subdivide.html
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5.5. From the Basics to Advanced Analysis Using TerraBrasilis Analytics APIs

After defining the path for TerraBrasilis Analytics API and obtaining all the datasets, we defined
the variables needed to gather data related to periods, localities, places of interests, classes and
filters from the PRODES Cerrado. With this in mind, we created a tidy data for request input and
obtained deforestation data from all the places of interest (Tocantins, Minas Gerais, São Paulo, Piauí,
Paraná, Rondônia, Maranhão, Mato Grosso, Pará, Bahia, Goiás, Mato Grosso do Sul) or from one
specific place (states). Figure 16 shows an update loop of plots (https://github.com/Terrabrasilis/
terrabrasilisAnalyticsAPI/blob/master/demo/linear-regression.R) to gather analytics API data from
all the Cerrado biome States, except forthe Federal District, and a simple linear regression within it.

Figure 16. Linear regression of deforestation data for all the Brazilian Cerrado biome states.

Figure 17 also represents a trend that has emerged from a non-parametric analysis of each
PRODES year in the Cerrado municipalities. It follows the pattern of distribution found in all the areas
of deforestation, such as dispersion, skewness in the data and the outliers. The latter extrapolates the
view of the graphic. The demo code is available in the R package (https://github.com/Terrabrasilis/
terrabrasilisAnalyticsAPI/blob/master/demo/boxplot.R). We used the blue gradient color scheme to
differentiate between each year.

https://github.com/Terrabrasilis/terrabrasilisAnalyticsAPI/blob/master/demo/linear-regression.R
https://github.com/Terrabrasilis/terrabrasilisAnalyticsAPI/blob/master/demo/linear-regression.R
https://github.com/Terrabrasilis/terrabrasilisAnalyticsAPI/blob/master/demo/boxplot.R
https://github.com/Terrabrasilis/terrabrasilisAnalyticsAPI/blob/master/demo/boxplot.R
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Figure 17. Shape of the deforestation areas in Cerrado municipalities (center point and variability).

6. Discussions

6.1. Using Distributed Computing to Leverage a Spatial Data Infrastructure

The use of micro-services has led to the development of a distributed web application [53].
This micro-service composition offers SDIs a set of new Web-based software architectures. Unlike
traditional types, where it was difficult to re-implement and redeploy services because of the
centralized data governance and management system [18], we have achieved better maintenance
operations. Communication between micro-services relies on a REST architecture since it is a
simple means of overcoming the problem of incompatible interfaces. We have wrapped up these
micro-services up by adopting a virtualized approach to provide more availability in an unstable
network bandwidth environment.

Owing to the stateless characteristics of micro-services, it has become possible to mount a volume
of the web applications and keep it intact even when there is a need to update and disrupt its legacy
state without having to inform any user. As well as this, traditional SDIs [13–15] allow the source
code to be used again with greater simplicity, which is of crucial importance when updates need to be
speeded up. To achieve this kind of trade-off and take advantage of the micro-services architecture,
a safe and homogeneous network is required with a suitable latency and resilience against a large
number of topology changes. The micro-services in this study are not something new, butthey raise
questions about the nature of their composition, how they were implemented within the SDIand what
key rolethey play.

6.2. Providing Data Scientists with Refined Ways to Manage Thematic Mapping Data

TerraBrasilis mitigates the discovery, integration and dissemination of non-proprietary,
time-stamped and topological relations in spatial data. It includes interoperable web service
standards [16,17], and new capabilities for dealing with less complex and reproducible analytics
environments [19]. Although the complexity of deforestation dynamics makes it hard to control and
handle, an algorithm-based SDI makes it easier to employ complex algorithms with historical and
near-real time data which can result in further useful discoveries. This requires back-end developments
related to the developments for the storage of semi- and unstructured datasets [20], and the ability to
customize their usage in a flexible and modular statistical environment.

Since it has low implementation costs and the potential to carry out other environmental
monitoring projects, TerraBrasilis APIs can handle environmental data by means of SDI interoperability.
In summary, TerraBrasilis leverages emerging technologies by making it easier to handle open
environmental data produced by different spatial resolutions more flexibly and providing satellite
imagery on a regular daily basis. Compared with other web applications, TerraBrasilis offers a more
complete set of statistics, which are not just restricted to fixed set of places of interests and classes.
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6.3. The Acquisition of Knowledge from the Experience of Disseminating Deforestation Data

This study shows observations of the deforestation dynamics in four Brazilian biomes.
The purpose of this is to assist users who have access to annual deforestation rates and increments
(PRODES) and early warning deforestation alerts (DETER) within a carefully designed Web GIS.
PRODES and DETER programs are essential to guide strategic environmental planning by providing
an open and updated overview to any interested citizen. Without an appropriate management of
historical parameters, it would be hard to follow the trajectory of these evolving vectorial data in
the long-term.

The high availability of the platform helps to document the different LUC classes so that the spatial
data can be interpreted correctly by using the metadata annotation. This semantically describes the
LUC classes, provenance information, intended use, usage restrictions, and other factors. Both the data
and metadata are supplied by means of the open standards that were adopted by the geo-informatics
community and provided by INDE, an initiative that is aimed at cataloguing the current geospatial
data that is produced in the various departments of the Brazilian government.

7. Conclusions

Our development of TerraBrasilis involved assessing the functional and non-functional
requirements for the historical clear-cut deforestation rates and increments, and early warning alerts
in near-real time. This particularly applies to potentially dangerous suppression of forests. This task
combined the use of technological devices at an architectural level to represent the dynamics of
mapping projects and the examination of additional features inherent in domain-related systems.

On the basis of the characteristics outlined here, we implemented and then assessed an
open-source SDI within a cluster of virtualized containers by means of a micro-services architecture.
The results providedevidence that TerraBrasilis is fast and lightweight. In addition, it provides APIs
that interact with GIS and analytics environments. As a result, we were able to increase the web
application availability of DETER and PRODES by optimizing a spatial index for a fast web application
loading performance. Finally, it should be noted that TerraBrasilis was designed to improve its fault
tolerance in unstable computer network scenarios and make it simpler to increment new functionalities.
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