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ABSTRACT
The goal of this paper is to develop a simplified model to describe the gravitational fields of elongated asteroids. The proposed
model consists of representing an elongated asteroid using a triple-particle-linkage system distributed in the three-dimensional
space and it is an extension of previous planar models. A nonlinear optimization method is used to determine the parameters
of our model, minimizing the errors of all the external equilibrium points with respect to the solutions calculated with a more
realistic approach, the Mascon model, which are assumed to give the real values of the system. The model considered in this
paper is then applied to three real irregular asteroids: 1620 Geographos, 433 Eros, and 243 Ida. The results show that the current
triple-particle-linkage three-dimensional model gives better accuracy when compared to the axisymmetric triple-particle-linkage
model available in the literature, and provides an advantage in terms of accuracy over the mass point model, while keeping
computational time low. This model is also used to carry out simulations to characterize regions with solutions that remain
bounded or that escape from around each asteroid under analysis. We investigated initial inclinations of 0◦ (direct orbits) and
180◦ (retrograde orbits). We considered the gravitational field of the asteroid, the gravitational attraction of the Sun, and the
SRP. Our results are then compared to the results obtained using the Mascon gravitational model, based on the polyhedral shape
source. We found good agreement between the two models.
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1 IN T RO D U C T I O N

For the past few decades, space agencies have focused their attention
on visiting the small objects that make up the Solar System, sending
spacecraft to asteroids and comets, and having plans to send more in
the future.

Most asteroids and comets have an irregular shape. When planning
a space mission to visit these objects, a question is raised: ‘how to
effectively represent the gravitational field of these small irregular
bodies?’ (Bartczak & Breiter 2003; Elipe & Lara 2003). Several
mathematical models have been proposed to overcome this difficulty.

Spherical harmonic expansion is often used to model planets, as
these celestial bodies have a sphere-like geometrical shape (Elipe
& Lara 2003). However, when the object has an irregular shape,
harmonic expansion is no longer convenient and, often, convergence
cannot be guaranteed (Riaguas, Elipe & Lara 1999; Lan et al.
2017; Jiang & Baoyin 2018). A model widely used to represent
the gravitational field of irregularly shaped objects is the polyhedral
model (Werner 1994; Werner & Scheeres 1996; Scheeres, Williams
& Miller 2000), which is considered an accurate model and does not
present convergence problems (Scheeres et al. 2000). Due to its high
accuracy, the polyhedral model has been widely used in projects of
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real missions to analyse the dynamics of the spacecraft near asteroids.
As a drawback, the polyhedral model generally contains thousands
of parameters (vertices and facets) that are necessary to guarantee its
high accuracy. Therefore, this model requires a high computational
effort and time to perform the simulations. Besides, an investigation
regarding the general properties of the dynamics of the spacecraft as
a function of the parameters of the model becomes very difficult. It
happens because, in the polyhedral model, the parameters used are
mixed, producing a mixed influence on the effective gravitational
field of irregular bodies.

Simplified models can often be used to approximate the gravita-
tional field of irregular bodies, requiring less computational effort
and producing considerable results in a short amount of time. This
topic has been addressed in Chanut, Aljbaae & Carruba (2015a) and
Aljbaae et al. (2017) where the authors applied the Mascon model
using the polyhedral data to place the mass particles. As shown by
Aljbaae et al. (2017), the maximum difference between the classical
polyhedral approach (Werner 1994; Werner & Scheeres 1996) and
the Mascon 8, considering a uniform density, which occurs at the
location of the equilibrium point represents 0.11 per cent of the
distance from the centre of the body, which, in our opinion, may
be considered satisfactory. This motivated us to use the Mascon
approach to validate our model later on in this work.

Besides that, a simplified model can often determine a simple
analytical expression for calculating the gravitational field of irreg-
ular bodies (Yang, Li & Xu 2018). Another advantage of using a
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simplified model is that we can easily analyse the consequences
of a given parameter on the dynamics around asteroids, such as,
for example, the stability of the equilibrium points (Zeng et al. 2015;
Barbosa Torres dos Santos, Bertachini de Almeida Prado & Merguizo
Sanchez 2017), the distribution of stable periodic orbits (Lan et al.
2017), as well as the permissible hovering regions (Yang, Zeng &
Baoyin 2015; Zeng et al. 2016a). Moreover, simplified models can
be used to assist orbit design (Wang et al. 2017) and feedback control
(Yang et al. 2017). Particular trajectories can be studied under more
accurate models when considering the final steps of a real mission,
but a general knowledge of the gravity field based on a small number
of parameters is very useful in the first stages of mission design.

Thus, several simplified models have been proposed to represent
irregular asteroids, such as the ones in Riaguas et al. (1999), Riaguas,
Elipe & López-Moratalla (2001), Bartczak & Breiter (2003), Elipe
& Lara (2003), who investigated the dynamics of a particle under the
gravitational field of an asteroid modelled as a straight segment. Other
work that also investigated the motion of a particle around small
celestial bodies considering a simplified model used a simple planar
plate (Blesa 2006), a homogeneous cube (Liu, Baoyin & Ma 2011b),
a triaxial ellipsoid (Gabern et al. 2006), a rotating homogeneous cube
(Liu, Baoyin & Ma 2011a), a double and finite straight segments
(Jain & Sinha 2014), and a rotating mass dipole (Chermnykh 1987;
Kirpichnikov & Kokoriev 1988; Kokoriev & Kirpichnikov 1988).
In 2015, for the first time, Zeng et al. (2015) presented a method
for adjusting the rotating mass dipole model to a real asteroid. An
improvement of this model was carried out considering the oblateness
of the primary bodies (Zeng, Baoyin & Li 2016b,c; Zeng, Liu & Li
2017), and the dipole segment model (Zeng et al. 2018). Based on
the elongated asteroid binary systems, Barbosa Torres dos Santos
et al. (2017) used the restricted synchronous three-body problem
model. These works, among others, showed that it is useful to apply
simplified models to identify the main parameters that dominate the
motion of a particle around certain asteroid systems.

Inspired by the work of Zeng et al. (2015), Lan et al. (2017)
proposed the rotating mass tripole model with symmetrical rotation.
In the work developed by Lan et al. (2017), it is argued that small
convex bodies can be modelled using the mass tripole model. Lan
et al. (2017) showed that, from five parameters (which are determined
with the help of the polyhedral model), it is possible to define the
geometric shape and to obtain the physical characteristics of a real
asteroid and to obtain its gravitational field. In order to generalize
the work of Lan et al. (2017), Barbosa Torres dos Santos et al. (2020)
investigate the qualitative dynamics in the vicinity of an asteroid with
a convex shape using a rotating tripole model from a semi-analytical
study.

The axisymmetric triple-particle-linkage model, proposed by Lan
et al. (2017), considers that the points of mass are located in the
xy plane of the asteroid (two-dimensional configuration). But we
know that asteroids have a spatial mass distribution (xyz axes). Given
this, the purpose of this work is to improve the two-dimensional ax-
isymmetric triple-particle-linkage model (2D tripole) maintaining a
simplified format, but considering a three-dimensional mathematical
modelling, taking another step towards a more realistic scenario.

We rely on nonlinear optimization to find the parameters of our
proposed model, as we will see later in this paper. The advantages of
this model are described next.

Because the proposed model considers the distribution of mass
in three dimensions, this model reproduces the dynamics of the
spacecraft more realistically when compared to the two-dimensional
axisymmetric rotating mass tripole (Lan et al. 2017), and, conse-
quently, the rotating mass dipole model (Zeng et al. 2015).

Figure 1. The rotating mass tripole in xy plane.

Although this is a simplified model, it is beneficial to carry out
a qualitative investigation to analyse the effects of the model’s
parameters on the orbital dynamics. Qualitative analyses can be
used to investigate the effects of some parameters, such as relating
the characteristics of the motion around elongated asteroids and the
dynamical properties of the body (Yang et al. 2015), or to analyse the
distribution of stable periodic orbits close to the equatorial plane (Lan
et al. 2017), etc. Furthermore, qualitative analysis has the potential to
conduct preliminary real mission design (Yang et al. 2018), leaving
detailed studies for a later stage, based on more accurate models
that require more computer time, but will study a small number of
trajectories.

This paper is organized as follows. Section 2 provides the normal-
ized equation of motion of a particle around elongated asteroids that
can be modelled as a two-/three-dimensional axisymmetric rotating
mass tripole. A general equation is provided, from where we can
derive the equation of motion for the situations of the planar or spatial
mass of the asteroid, in the inertial and in the rotating frame. Subse-
quently, the methodology adopted to determine the parameters of the
simplified model using a nonlinear optimization method is presented
in Section 3. In Section 4, the proposed methodology and model
are applied to three irregular asteroids: 1620 Geographos, 433 Eros,
and 243 Ida. A comparison of the three-dimensional axisymmetric
rotating mass tripole and two-dimensional axisymmetric rotating
mass tripole with respect to the Mascon gravity framework using a
shaped polyhedral source is performed in Section 5, whose objective
is to show the advantage of this new model. In Section 6, we perform
numerical simulations where we construct grids of initial conditions,
relating semimajor axis and eccentricity, to characterize bounded and
unbounded regions around the asteroids 1620 Geographos, 433 Eros,
and 243 Ida. Finally, Section 7 provides our conclusions.

2 EQUAT I O N O F MOT I O N

In this section, we present the mathematical model of the restricted
four-body problem, which is a basis for the three-dimensional
rotating mass tripole model.

Fig. 1 shows three points of mass (M1, M2, and M3) arranged
inside a body (asteroid or comet) that has an irregular shape. The
equations of motion developed in the rotating frame consider the
asteroid–spacecraft system, which means that perturbations from
other celestial bodies and other external forces are not considered.
The rods that connect M1 to M3 and M2 to M3, shown in Fig. 1, are
assumed to have negligible mass and the same length L. This length
L (in canonical unit, c.u.) can vary depending on the asteroid (or
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Figure 2. Perspective of the positions of bodies M1, M2, and M3 in the
three-dimensional space.

comet) under study. The distance between M1 and M2 is denoted by
d and it defines 1 c.u.

Note, from Fig. 1, that it is possible to see the arrangement of
the points of mass in the xy plane. Since this study uses a three-
dimensional model, we have to analyse the arrangement of these
points of mass in space. Fig. 2 provides a representative image of
the position of M1, M2, and M3 in the xyz space. To determine the
locations of the primary bodies, we use two angles, called azimuth
(�) and elevation angle (�). Note that the geometric configuration
of the asteroid (or comet) depends on � and �. Fig. 2 shows the
same geometric configuration of the primary bodies. The segment
green represents the position of the bodies M1, M2, and M3 with
respect to the centre of mass of the asteroid. Note that when M1

and M2 have a positive location on the y axis, M3 has a negative
position on the same axis. Likewise, when bodies M1 and M2 have
a positive position on the z axis, M3 has a negative position on this
same axis, such that the centre of mass of the system remains at the
origin of the Cartesian coordinate system (red vectors). From Fig. 2,
we can see that the position of M1 depends on the angles � and �.
M2 is spatially positioned symmetrically to M1. Although it does not
appear in Fig. 2, the position of all primary bodies (M1, M2, and M3)
depends on the angles � and �, as we will see in the equations of
motion. We chose not to place all the spatial geometry of the primary
bodies with respect to � and � to avoid visual pollution in the figure.

When � = 90◦ and � �= 0◦, we have the particular case of the
rotating mass tripole model (two-dimensional). On the other hand,
if � = 90◦ and � = 0◦, which means that M1, M2, and M3 are
aligned on the x axis, there is symmetry with the equatorial plane.
We consider that the asteroid’s centre of mass is the origin of the
reference system (xyz).

In this work, we consider that both rods have length L, make the
same angle �, in magnitude, with the x-axis and the same angle �

with the z-axis.
Next, we suppose that a body with negligible mass (spacecraft) is

located at P(x, y, z). It is convenient to write the equations of motion
on a unit scale. For this, let us assume that the distance between M1

and M2 is the unit of length. The time unit is selected such that the
rotational period of the tripole 3D is given by 2π. It is also assumed
that the sum of the masses (M = m1 + m2 + m3) of the primaries is
the unit of mass, where m1, m2, and m3 are the masses of M1, M2,

and M3, in kilograms, respectively. The coordinates of the bodies
M1, M2, and M3, in canonical units, are, respectively, given as

x1 = −L cos � sin �,

y1 = (1 − 2μ∗)L sin �, (1)

z1 = L cos � cos �,

x2 = L cos � sin �,

y2 = (1 − 2μ∗)L sin �, (2)

z2 = L cos � cos �,

x3 = 0,

y3 = −2μ∗L sin �, (3)

z3 = −2μ∗L cos � cos �/(1 − 2μ∗),

where μ∗ is the mass ratio defined by

μ∗ = m2

m1 + m2 + m3
. (4)

Note that the distance d, in canonical unit, between M1 and M2

depends on L, �, and �, which can be expressed by

x2 − x1 = d = 2L cos � cos � = 1. (5)

In this work, we will use the notation d to represent the distance
between M1 and M2 in canonical unit and d∗ to represent the distance
between M1 and M2 in metres.

Using the canonical units mentioned before, the Lagrangian
function of the system is given by

Lrotating(x, y, z, ẋ, ẏ, ż) = (ẋ2 + ẏ2 + ż2)/2 + (xẏ − yẋ)

+ (x2 + y2)/2 + k(μ∗/r1 + μ∗/r2

+ (1 − 2μ∗)/r3), (6)

where

r1 =
√

(x − x1)2 + (y − y1)2 + (z − z1)2, (7)

r2 =
√

(x − x2)2 + (y − y2)2 + (z − z2)2, (8)

r3 =
√

(x − x3)2 + (y − y3)2 + (z − z3)2. (9)

k is called the force ratio and is given by equation (10) (Zeng et al.
2015):

k = GM

ω2d∗3 . (10)

Note that k is a dimensionless quantity and depends on the angular
velocity vector of the asteroid, denoted by ω = [0, 0, ω]T, in radians
per second, M is the mass of the body under study in kilograms, d∗

is the distance between M1 and M2, in metres, and G is the universal
gravitation constant, given in the international system of units (Zeng
et al. 2015; Lan et al. 2017)

The Hamiltonian formulation can be obtained from the Lagrangian
formulation. The conjugate momenta (p) are given by

px = ∂Lrotating

∂ẋ
= ẋ − y, (11)

py = ∂Lrotating

∂ẏ
= ẏ + x, (12)
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pz = ∂Lrotating

∂ż
= ż. (13)

Using Legendre transformation (q, q̇)
�→ ( ∂Lrotating

∂q̇
), where q, q̇

are coordinates and velocities of the particle, respectively, we get

H = ẋpx + ẏpy + żpz − Lrotating. (14)

After some simplifications, we obtain the corresponding Hamilto-
nian:

H(x, y, z, px, py, pz) = p2
x + p2

y + p2
z

2
− xpy + ypx

− k

(
μ∗

r1
+ μ∗

r2
+ 1 − 2μ∗

r3

)
. (15)

Note that the Hamiltonian H is a function of the coordinates and
the conjugate momenta p of the spacecraft. Due to the fact that the
Hamiltonian is independent of time, it is possible to say that its value
is conserved (Broucke 1968; Benacchio 2007; Worthington 2012).
px, py, and pz are associated with the spacecraft’s conjugate momenta
with respect to the x-axis, y-axis, and z-axis, respectively.

We define the effective potential by

� = x2 + y2

2
+ k

(
μ∗

r1
+ μ∗

r2
+ 1 − 2μ∗

r3

)
. (16)

From the Hamiltonian function, given by equation (15), it is
possible to determine the spacecraft’s equations of motion in the
rotating reference system, given by

ẍ − 2ẏ = �x, (17)

ÿ + 2ẋ = �y, (18)

z̈ = �z, (19)

where �x, �y, and �z are the gradients of the effective potential, as
a function of x, y, and z, respectively.

The equations considered in this section, in particular the Hamil-
tonian function (equation 15) and the equations of motion given by
equations (17)–(19), can be used for the two-dimensional (tripole
2D) or three-dimensional (tripole 3D) rotating mass tripole model.

In Section 6, we perform numerical simulations considering the
gravitational force of the body in which we want to place a spacecraft
to orbit (asteroid or comet), taking into account the solar radiation
pressure (SRP) and the gravitational attraction of the Sun. The
equations of motion used in the numerical simulation consider an
inertial system whose origin of the reference system coincides with
the centre of mass of the asteroid. The equations of motion used in
the numerical simulation are shown next:

ẍ = −kμ∗(x ′ − x ′
1)

r ′
1

3
− kμ∗(x ′ − x ′

2)

r ′
2

3
− k(1 − 2μ∗)(x ′ − x ′

3)

r ′
3

3

−Pradx
+ ksun

Msun

Mast

(
(xsun − x ′)

r ′3
sun

− xsun

r3
sun

)
, (20)

ÿ = −kμ∗(y ′ − y ′
1)

r ′
1

3
− kμ∗(y ′ − y ′

2)

r ′
2

3
− k(1 − 2μ∗)(y ′ − y ′

3)

r ′
3

3

−Prady
+ ksun

Msun

Mast

(
(ysun − y ′)

r ′3
sun

− ysun

r3
sun

)
, (21)

z̈ = −kμ∗(z′ − z′
1)

r ′
1

3
− kμ∗(z′ − z′

2)

r ′
2

3
− k(1 − 2μ∗)(z′ − z′

3)

r ′
3

3

−Pradz
+ ksun

Msun

Mast

(
(zsun − z′)

r ′3
sun

− zsun

r3
sun

)
, (22)

where ksun is the force ratio of the Sun, Msun/Mast is the mass of the
Sun in canonical unit, and xsun, ysun, and zsun define the position of the
Sun on x, y, and z axes, respectively. In the simulations, we consider
that the Sun is in the plane xy, consequently, zsun = 0. The positions
of the primary bodies M1, M2, and M3, in the inertial frame, are given
by the next equations, respectively:

x ′
1 = −L cos � sin � cos T − (1 − 2μ∗)L sin � sin T ,

y ′
1 = −L cos � sin � sin T + (1 − 2μ∗)L sin � cos T , (23)

z′
1 = L cos � cos �,

x ′
2 = L cos � sin � cos T − (1 − 2μ∗)L sin � sin T ,

y ′
2 = L cos � sin � sin T + (1 − 2μ∗)L sin � cos T , (24)

z′
2 = L cos � cos �,

x ′
3 = 2μ∗L sin � sin T ,

y ′
3 = −2μ∗L sin � cos T , (25)

z′
3 = −2μ∗L cos � cos �/(1 − 2μ∗),

where T is the time in canonical unity. The distances from the point
mass particle to the bodies M1, M2, and M3 in the inertial system are,
respectively, given by equations (26)–(28).

r1 =
√(

x ′ − x ′
1

)2 + (
y ′ − y ′

1

)2 + (
z′ − z′

1

)2
, (26)

r2 =
√(

x ′ − x ′
2

)2 + (
y ′ − y ′

2

)2 + (
z′ − z′

2

)2
, (27)

r3 =
√(

x ′ − x ′
3

)2 + (
y ′ − y ′

3

)2 + (
z′ − z′

3

)2
. (28)

On the other hand, r ′
sun and rsun are the Sun–spacecraft distance

and Sun–asteroid distance, respectively, given by equations (29) and
(30):

r ′
sun =

√
(x ′ − xsun)2 + (y ′ − ysun)2 + (z′ − zsun)2, (29)

rsun =
√

x2
sun + y2

sun + z2
sun, (30)

where xsun, ysun, and zsun define the position of the Sun in the inertial
system on the x, y, and z axes, respectively. Pradx

, Prady
, and Pradz

represent the components x, y, and z, respectively, of the acceleration
due to the SRP (Montenbruck, Gill & Lutze 2002; Beutler 2005;
Pinheiro Lopes Masago et al. 2016), given by equation (31):

Prad = Cr
A

m
Ps

r2
0

r ′2
sun

r̂ , (31)

where Cr is the radiation pressure coefficient. In the simulations we
use Cr = 1.5. m is the mass of the spacecraft and A is the area of the
straight section of the spacecraft illuminated by the Sun. Ps is the
SRP in the vicinity of the Earth–Sun distance and its numerical value
is approximately 4.55 × 10−6 N m−2; r0 is the distance between the
Sun and the Earth and r̂ is the radial unit vector of the Sun with
respect to the spacecraft. The value we adopted for the mass of the
spacecraft in the simulations was m = 100 kilograms (kg) and the
area of the solar panel was A = 1.0 m2, so A/m = 0.01 m2 kg−1.
Recall that equation (31) is written in the asteroid-centred inertial
frame.
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Table 1. Physical and Mascon parameters of 1620 Gegraphos, 433 Eros, and 243 Ida.

Asteroid Bulk density Rotation period M Verticies & facets
(g cm−3) (h) (kg)

1620 Geographos 2.15 ± 0.5 5.2233 1.65 × 1013 1022 & 2040
433 Eros 2.67 ± 0.03 5.2702 6.69 × 1015 856 & 1708
243 Ida 2.35 ± 0.29 4.63 3.82 × 1016 1022 & 2040

3 D E T E R M I NAT I O N O F TH E PA R A M E T E R S
F O R TH E S Y M M E T R I C A L 2 D A N D 3 D T R I P L E
PA RT I C L E L I N K AG E M O D E L

Two different particle-linkage models were presented in the previ-
ous section (2D and 3D tripole). Each particle-linkage model has
unknown parameters, and these parameters need to be determined
to give a complete set of equations for the model. In this study,
considering the simplified model, the total mass and angular velocity
of the asteroids are equivalent to the actual values of those same
asteroids. Therefore, the 2D triple-particle linkage model only has
four unknown parameters, which are � (rad), L (canonical unit),
k (dimensionless), and μ∗ (canonical unit). The three-dimensional
triple-particle linkage model is more complicated. It has five un-
known parameters, which are � (rad), � (rad), L (canonical unit), k
(dimensionless), and μ∗ (canonical unit).

The unknown parameters are determined using the locations of
the external equilibrium points obtained from the Mascon approach,
similar to the approach used by Zeng et al. (2015, 2016a) and Yang
et al. (2018). The main idea is to find the parameters that generate
equilibrium points as close as possible to the ones obtained by
using the Mascon model. The locations of the equilibrium points
[x̂E, ŷE, ẑE] can be determined as shown by equation (32). This
method can be used for asteroids that have external equilibrium
points. On the other hand, there are some asteroids do not have
external equilibrium points, for example, the asteroid 1998 KY26.
For this type of asteroid, the method that minimizes the errors of the
effective potential or gradient of the effective potential can be used
(Zeng et al. 2018):

�x(x̂E, ŷE, ẑE) = �y(x̂E, ŷE, ẑE) = �z(x̂E, ŷE, ẑE) = 0. (32)

The idea is to find the parameters of the tripole model that
minimize the differences of all external equilibrium points between
the simplified and the polyhedron model. The method used to
determine the parameters for the two-/three-dimensional triple-
particle-linkage model is described below. The optimization vari-
ables for the simplified model are X = [�, �, L, k, μ∗]. Before
the optimization, we define the constraints for each variable using
the lower limits [�min, �min, Lmin, kmin, μ

∗
min] and the upper limits

[�max, �max, Lmax, kmax, μ
∗
max] for those parameters. For the nonlin-

ear optimization problem, the performance index is defined as

J(�, �,L, k, μ∗)

=
n∑

i=1

√
(x̂Ti

d∗ − xPi
)2 + (ŷTi

d∗ − yPi
)2 + (ẑTi

d∗ − zPi
)2, (33)

where [x̂Ti
, ŷTi

, ẑTi
] are the positions, in canonical units, of the

equilibrium points obtained by the simplified models (tripole 2D
or 3D). Note that d can be obtained from equation (10). On the other
hand, [xPi

, yPi
, zPi

] represent the locations of the equilibrium points
(in metres) obtained by the Mascon model. The index i corresponds
to the ith equilibrium point and, finally, n is the total number of

external equilibrium points. The equality (ceq = 0) constraints for
tripole 2D and 3D models are shown in equations (34) and (35),
respectively,

ceq =
[
m1 + m2 + m3 − 1

L cos � − 1/2

]
, (34)

ceq =
[

m1 + m2 + m3 − 1
L cos � sin � − 1/2

]
. (35)

Mathematically, we can write the performance index as a restricted
minimization, as shown in equation (36):

min J(�, �, L, k, μ∗) such that ceq = 0, (36)

where J(�, �, L, k, μ∗) is a function that returns a scalar value
and ceq are functions that return vectors. Here we used nonlinear
optimization routines developed in Matlab to find the optimal
solutions that minimize J. The optimization problem is defined and
solved with a nonlinear programming method (NLP).

4 A PPLI CATI ON TO R EALI STI C ELONG ATED
ASTEROI DS

In this section, we apply the particle-linkage models mentioned in the
previous sections to three realistic elongated asteroids. The asteroids
are 1620 Gegraphos, 433 Eros, and 243 Ida. The optimization method
is used to determine the parameters of the simplified model, as shown
in this section. After that, we demonstrate the improved performance
of the symmetric three-dimensional triple-particle-linkage model
with respect to the two-dimensional axisymmetric triple-particle-
linkage model.

4.1 Parameters of the sample elongated asteroids

The physical and orbital parameters of the asteroids 1620 Ge-
ographos, 433 Eros, and 243 Ida were obtained from Rozitis &
Green (2014), Carry (2012), and Baer, Chesley & Matson (2011),
respectively, and can be found in Table 1. In this study, we also
applied the Mascon gravity framework using a shaped polyhedral
source to precisely represent the gravitational field of these asteroids
(Chanut et al. 2015a). We recommend the readers to review the
details of this method in Venditti, Rocco & Almeida Prado (2013)
and Aljbaae et al. (2017).

After adapting the shape of each asteroid in our study according to
the procedure presented in Chanut et al. (2015b), we used the Mascon
approach to precisely calculate the positions of the equilibrium
points. Table 2 provides the results.

We recall that we will only consider the external equilibrium
points, due to the fact that the internal equilibrium points have no
physical meaning.

To perform the simulations, it is necessary to determine the
boundary restrictions of each asteroid under study using the particle-
linkage model. They are chosen as follows:
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4282 L. B. T. Santos et al.

Table 2. Positions of equilibrium points for 1620 Gegraphos, 433 Eros, and 243 Ida.

Asteroid E1 (km) E2 (km) E3 (km) E4 (km)

1620 Geographos [2.6318, 0.1782, 0.0046] [−0.0352, 1.9315, 0.0017] [−2.6812, 0.2003, −0.0039] [−0.0196, −1.9698, 0.0019]
433 Eros [19.1246, −2.5756, 0.1449] [0.4637,14.7338, −0.06604] [−19.6711, −3.2861, −0.1231] [−0.4469, −13.991, −0.0791]
243 Ida [29.7950, −2.5972, 0.6870] [−0.5688, 25.9245, −0.1113] [−30.3092, −1.8763, 0.3958] [−0.4906, −25.7145, −0.0993]

Table 3. Optimization results for the tripole 3D model.

Asteroid � � L k μ∗ J Jmax Jmin

(deg) (deg) (c. u.) (adim) (c. u.) (km) (per cent) (per cent)

1620 Geographos 7.1780 89.773 0.5039 0.2991 0.2024 0.120 1.5342 0
433 Eros − 19.892 88.7891 0.5318 0.5195 0.2815 1.743 3.313 0
243 Ida − 6.3105 87.2621 0.5036 0.6529 0.1636 2.005 2.975 0

Table 4. Optimization results for the tripole 2D model.

Asteroid � � L k μ∗ J Jmax Jmin

(deg) (deg) (c. u.) (adim) (c. u.) (km) (per cent) (per cent)

1620 Geographos 7.0884 90 0.5038 0.2843 0.1971 0.147 1.348 0.373
433 Eros − 18.935 90 0.5286 0.4454 0.2619 2.144 3.529 1.359
243 Ida − 7.3614 90 0.5041 0.7169 0.1672 5.020 7.438 3.125

(i) 3D triple-particle-linkage model:
For each asteroid, [�min, �max] are set to [−0.5, 0.5] rad, [�min,
�max] are set to [1.39626, 1.91986], [Lmin, Lmax] are set to [0, 2],
[kmin, kmax] are set to [0, 9], and [μ∗

min, μ∗
max] are set to [0.001, 0.999]

(ii) 2D triple-particle-linkage model:
For each asteroid, [�min, �max] are set to [−0.5, 0.5] rad, [Lmin, Lmax]
are set to [0, 2], [kmin, kmax] are set to [0, 9], and [μ∗

min, μ∗
max] are set

to [0.001, 0.999]

The boundary constraints of the geometric parameters �, �,
L are determined based on the actual shapes of the asteroids.
Due to the geometric shape of the body and the information we
obtain from the equilibrium points from the high-fidelity model,
we observed that the equilibrium points E1 and E3 do not have
high values on the y-axis, making us to consider the azimuth
angle varying from −30◦ to + 30◦. Observing the values of the
equilibrium points on the z axis, it is possible to notice that these
asteroids do not have a very high mass distribution on the z axis,
therefore, we consider the elevation angle varying between −20◦

and + 20◦. Finally, knowing that, by the theoretical definition of
our study, the distance between M1 and M2 is one canonical unit,
we concluded that the value of L is not much above the numerical
value.

The boundary constraints of the physical parameters, k and μ∗,
were determined as follows. Through the articles in the literature
that use the particle-linkage model (Zeng et al. 2015; Lan et al.
2017; Yang et al. 2018), we observed that the value of k found in
asteroids varies between 0.4 and 9, so we consider an initial guess
between 0 and 9. On the other hand, the contour restrictions of the
masses were defined based on their theoretical intervals.

After the optimization has been carried out, if the value of one
of the parameters is close to the contour limit, we modify its range
and carry out the optimization again. This procedure is carried out
until the values of the optimized parameters are located between the
specified limits. The initial guesses for the 2D and 3D model, were
chosen as follows:

(i) 3D triple-particle-linkage model:
For 1620 Geographos is [�, �, L, k, μ∗] = [0.36, 1.5, 1, 0.2, 0.24],
433 Eros is [�, �, L, k, μ∗] = [0.3, 1.5, 0.5, 0.2, 0.28], and for 243
Ida is [�, �, L, k, μ∗] = [0.3, 1.5, 1, 0.4, 0.2].

(ii) 2D triple-particle-linkage model:
For 1620 Geographos is [�, �, L, k, μ∗] = [0.36, π/2, 1, 0.2, 0.24],
433 Eros is [�, �, L, k, μ∗] = [0.3, π/2, 0.5, 0.2, 0.28], and 243 Ida
is[�, �, L, k, μ∗] = [0.3, π/2, 1, 0.4, 0.2].

The optimal values of �, �, L, k, and μ∗ parameters obtained using
the optimization method mentioned above are shown in Tables 3 and
4, where we see the performance index J1 and J2. These performance
indexes are calculated after the optimal parameters J0 are obtained.
These performance indexes, J1 and J2, provide the relative errors,
maximum and minimum, respectively, for a single equilibrium point
and are defined as follows :

Jmax(�, �, L, k, μ∗)

= max

(√
(x̂Ti

d∗ − xPi
)2 + (ŷTi

d∗ − yPi
)2 + (ẑTi

d∗ − zPi
)2

L

)

× 100 per cent, i = 1, 2, 3, 4, (37)

Jmin(�, �, L, k, μ∗)

= min

(√
(x̂Ti

d∗ − xPi
)2 + (ŷTi

d∗ − yPi
)2 + (ẑTi

d∗ − zPi
)2

L

)

×100 per cent, i = 1, 2, 3, 4. (38)

5 C OMPA RI SON BETWEEN THE SI MPLI FIED
A N D MA S C O N MO D E L S

We have verified that the positions of the equilibrium points in the
simplified model compared to the Mascon model are closer, giving
the first evidence of the validation of the simplified model. Next,
we analyse the classifications of the equilibrium points of the three
asteroids studied in this paper and we found that our analysis is
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Elongated asteroids with 3D mass distribution 4283

Figure 3. Relative error of the gravitational potential for the asteroid 1620
Geographos.

Figure 4. Relative error of the gravitational potential for the asteroid 433
Eros.

consistent with the analysis made using the Mascon model. After
that, we compared the relative errors between the potential estimated
by the 3D tripole model and the Mascon approach (Chanut et al.
2015a) to justify the simplified model.

Figs 3–5 show the relative errors of the gravitational potentials
between the two models (simplified and Mascon models) for the
asteroid 1620 Geographos, 433 Eros, and 243 Ida, respectively. The
black vertical line refers to the surface of the asteroid. The left-hand
side of the black vertical line is the relative error of the potential
inside the asteroid, and has no meaning for the purpose of this work.
On the other hand, outside the asteroid, we observe the relative error
of the potential when we consider the asteroid as a mass point (red),
2D tripole model (green), and 3D tripole model (blue).

We see in Fig. 3 that, when the spacecraft is close to the asteroid
1620 Geographos (less than 10 km from the centre), we cannot
consider the asteroid as a point of mass due to the high relative error
between the gravitational potentials. On the other hand, when we
model the asteroid as a rotating mass tripole (2D or 3D model), the
result shows a good agreement between the models. The 3D tripole
model has almost the same accuracy as the 2D tripole model due to
the fact that the mass distribution of this asteroid is pre-dominantly
on the xy axis.

Figure 5. Relative error of the gravitational potential for the 243 Ida asteroid.

Fig. 4 shows the relative error between the potentials for the
asteroid 433 Eros. In contrast to 1620 Geographos, the 3D tripole
model is more accurate than the 2D version, when the spacecraft is
less than 60 km from the centre of the asteroid.

Finally, Fig. 5 shows similar behaviour as in the case of 433 Eros.
The 3D tripole model for the asteroid 243 Ida is more accurate than
the 2D one.

These results indicate that the 3D tripole model approximates with
good accuracy the external potential of some asteroids with elongated
bodies. Besides that, it is worth to mention that the tripole model
can approximate external potentials for 1 030 225 points uniformly
distributed in the xy plane around an asteroid in about 3 s, using
an Intel processor of 3.6 GHz. It is about 200 times faster than the
Mascon approach shown in Chanut et al. (2015a), which takes about
10 min. Thus, for a first analysis of a space mission whose objective is
to visit an asteroid, it is possible to use the 3D tripole model to obtain
preliminary results, since this model is close to the high-precision
model (Mascon model) and demands well less computational time
to perform the simulations.

6 N U M E R I C A L I N V E S T I G AT I O N S

A spacecraft that is close to the surface of an asteroid undergoes
complex perturbation, which may lead it to collide with the asteroid or
even escape from the domain of its gravitational field. Understanding
these perturbations is extremely important to determine regions in
space where it is possible to find natural orbits around asteroids.
These regions allow a spacecraft to orbit an asteroid for a long time.
We will call these regions ‘bounded regions’. In contrast, the regions
around the asteroids where no natural orbit is possible will be called
‘unbounded regions’.

This section was developed with the objective of finding possible
regions in the vicinity of the asteroids 1620 Geographos, 433 Eros,
and 243 Ida capable of maintaining a spacecraft for a long time
without the need for orbital manoeuvres.

In the simulations performed here, we considered the gravitational
field of the asteroid (modelled as a three-dimensional rotating mass
tripole) in which it is desired to orbit, the gravitational field of the
Sun (modelled as a mass point), and the SRP. The results are shown
in the inertial frame with an origin coinciding with the centre of
mass of the asteroid under analysis. In the simulations where we
take into account the SRP we assume that the area-to-mass ratio is
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4284 L. B. T. Santos et al.

Table 5. Initial Keplerian elements.

Initial semimajor axis (m) ai ∈ [ainitial, afinal]

Initial eccentricity (adim) e0 ∈ [0, 0.99]
Initial inclination (deg) i0 ∈ [0 and 180]
Initial RAAN (deg) �0 = 0
Initial periselene anomaly (deg) ω0 = 0
Initial true anomaly (deg) f0 = 0

0.01 m2 kg−1. The methodology adopted and the results obtained are
described next.

6.1 Numerical simulations methodology

To determine the initial conditions of the spacecraft to start the
simulations, we initially consider the location of the spacecraft in
terms of the Keplerian elements κ = [a, e, i, �, ω, f ]. To perform
the numerical simulations and build the initial condition grids, we
start the orbit with eccentricity 0 and vary it until eccentricity =
0.99, in steps of 0.01. The spacecraft’s semimajor axis varies from
an initial value ai to a final value af, whose values depend on the
asteroid that we are analysing. In this study, we investigated direct
orbits (i0 = 0◦) and retrograde orbits (i0 = 180◦). The maximum
integration time is 365 d. We use the Runge–Kutta 7/8 method with
a time interval, in canonical unit, of 0.01. We consider the initial
Keplerian elements as shown in Table 5. The acronym RAAN in the
table means Right Ascension of the Ascending Node.

In this initial consideration, we assume that there is only the aster-
oid that we wish to orbit and the spacecraft. The asteroid, initially,
is modelled as a mass point. Based on the initial conditions (the
osculating orbit of the spacecraft), we obtain the initial conditions of
position (ρ0 = ([x′

0, y′
0, z′

0]T ) and velocity (η0 = ([ẋ′
0, ẏ′

0, ż′
0]T ) of

the spacecraft in the Cartesian system, given by X0 = [ρ0, η0], to
be used in the equations of motion. ρ0 and η0 define the state vector
of the spacecraft at t = 0 in the restricted problem, where the vector
X0 ∈ R6, ρ0 ∈ R3 (initial position) and η0 (initial velocity) ∈ R3.
The initial conditions obtained, in the Cartesian plane, can be written
as X0 = [x ′

0 0, 0, 0, ± ẏ ′
0, 0]T. We assign +ẏ ′

0 when the orbit is direct
(i0= 0◦) and −ẏ ′

0 for retrograde orbits (i0 = 180◦).
Once the initial conditions of the spacecraft are found with respect

to the asteroid’s centre of mass, in the Cartesian system, the numerical
integration is carried out including the spacecraft, the shape of the
asteroid (3D tripole) and the perturbation of the Sun. Regarding
the perturbation of the Sun, in some simulations, we consider only
the solar gravity perturbation, while in others we consider both, the
solar gravity perturbation and the SRP. This is done to represent the
situation where the area-to-mass ratio is very small. Initially (t = 0),
the three bodies (asteroid, spacecraft, and the Sun) are aligned, as
shown in Fig. 6 (out of scale). Every simulation is performed in the
asteroid-centred inertial frame. To determine the initial conditions of
the Sun, we assign the value of the semimajor axis and eccentricity
according to references Rozitis & Green (2014), Carry (2012), and
Baer et al. (2011) for the 1620 Geographos, 433 Eros, and 243 Ida,
respectively. The other Keplerian elements are considered equal to
zero. It means that, initially, the asteroid is located at the pericentre
of its orbit around the Sun. We chose this starting position because
the asteroid is in a region close to the Earth. After that, we convert
the initial Keplerian elements of the asteroid to Cartesian elements
and use them in equations (20)–(22).

During the numerical integrations, we monitor the particles that
survived during the integration time, the particles that collided with

Figure 6. Graphic representation of the system studied.

the asteroid and the particles that were ejected from the system. In the
dynamics of the spacecraft, a collision with the asteroid is considered
to occur when the spacecraft crosses the disc with a mean radius of
the asteroid. We consider an ejection when the spacecraft’s distance
from the asteroid reaches a value greater than the Hill radius of the
asteroid (Murray & Dermott 2000).

The results are presented in graphs that show the lifetime of the
spacecraft that survives, for each set of initial conditions, with respect
to the semimajor axis and eccentricity of the initial orbit. The regions
in which the spacecraft survives for 1 yr are called ‘bounded regions’.
The regions in which the spacecraft survives for a few days are called
‘unstable regions’.

Fig. 7(a) shows direct orbits and Fig. 7(b) retrograde orbits taking
into account the shape of the asteroid 433 Eros and the solar gravity
perturbation. They provide the duration of the orbits as a function of
the initial semi-major axis and eccentricity of the particle around 433
Eros. The colour code provides the time the particle remains in orbit
for each initial condition. The white area in Fig. 7 presents regions
where the initial conditions of the spacecraft are inside the asteroid, so
it has no physical significance. We investigated the orbital dynamics
of a spacecraft with 40 km ≤ a0 ≤ 1000 km around 433 Eros asteroid.
These values of a0 were chosen because it is the region where the
relative error of the gravitational potential of the rotating triple-
particle-linkage three-dimensional model is similar to the potential
using the Mascon model, as shown in Fig. 4. Note that the value of
af is below the Hill radius (≈3270 km) of this asteroid. That allows
us to safely neglect the gravitational effects of other celestial bodies.
The same reasoning was used to find the range of the semi-major axis
of the asteroids studied in this work (1620 Gegraphos and 243 Ida).

It is observed, in Fig. 7, that the solar gravity perturbation has
little effect on the dynamics of a spacecraft in the vicinity of asteroid
433 Eros, while the non-spherical gravitational field near the asteroid
significantly affects the motion of a particle.

A similar result was found in Ni, Baoyin & Junfeng (2014), in
which the author showed that solar gravity perturbation is not strong
enough to modify families of periodic orbits around the asteroid 433
Eros. In addition, the disturbance of the solar gravity also does not
change the stability of the periodic orbits obtained here.

Similar results were found for asteroid 1620 Geographos and 243
Ida. The next results take into account the shape of the asteroid (3D
tripole), the solar gravity perturbation and the SRP.

Fig. 8 provides the initial condition grids in the vicinity of the
asteroid 1620 Geographos, where Fig. 8(a) shows direct orbits and
Fig. 8(b) retrograde orbits. Note that the spacecraft cannot naturally
orbit the asteroid 1620 Geographos for a period of 365 d. The
maximum duration is around 10 d, but this time is long enough to
make observations around the asteroid, so the orbits found here can
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Figure 7. Plots of a0 versus e0 showing the evolution of the lifetimes in the
regions close to 433 Eros asteroid [(a) direct orbits and (b) retrograde orbit]
without SRP.

have practical applications. These results occur due to the small mass
of the asteroid 1620 Geographos, which makes the SRP to become
significant, making the spacecraft to collide with the asteroid or
escape the sphere of its influence.

Note that there is a narrow strip (NS) in Fig. 8, which initially
appears at a ≈ 11 km and e = 0 and extends to a = 30 km and
e ≈ 0.9. These regions exist both for direct and retrograde orbits.
The maximum survival time of these orbits around the asteroid 1620
Geographos is approximately 10 d. For times longer than this, the
spacecraft will escape the system or collide with the asteroid. It is
possible to observe that the orbits survive from 4 to 8 d in the regions
on the right-hand side of the NS, while the orbits in the region at the
left of the NS survive from 0 to 3 d, approximately. The radius of the
pericentre (rp = a(1 − e)) coinciding with the position of the NS are
called here rpNS .

The regions where rp < rpNS is close to the asteroid. In this region,
the asteroid’s gravitational field is strong, making the spacecraft to be
attracted by the asteroid or perform a swing-by and quickly escape
from the system. On the other hand, in regions where rp > rpNS , the
perturbation of the Sun, especially the SRP, dominates the dynamics
making the spacecraft to escape from the system in a few days.

Figs 9(a) and (b) provide information about the final destination
of the orbits after the integration time shown in Figs 8(a) and (b),
respectively. The yellow regions indicate that the spacecraft has
escaped the sphere of influence of the asteroid. The blue regions
show the initial conditions that lead the spacecraft to collide with
the asteroid. Proving our argument, note that, for orbits that start

Figure 8. Plots of a0 versus e0 showing the evolution of the lifetimes in the
regions close to 1620 Geographos asteroid [(a) direct orbits and (b) retrograde
orbits].

close to the Geographos surface, the spacecraft is captured, ending in
collision with the asteroid. Orbits with rp > rpNS makes the particles
to eject from the system. Observe that the boundary between the blue
and yellow regions is the narrow strip of 1620 Geographos. It is this
boundary that defines whether the orbit will be captured or ejected
from the system. Overall, we see that a spacecraft cannot orbit the
asteroid 1620 Geographos for a long period.

We also make an analysis considering 433 Eros. Some previous
studies have analysed the orbital dynamics around this asteroid,
neglecting the Sun’s disturbances or considering only the solar
gravity perturbation, due to the gravitational domain of the asteroid
(Scheeres et al. 2000; Chanut, Winter & Tsuchida 2014; Ni et al.
2014). To carry out an investigation complementary to the results
available in the literature, we investigated the orbital dynamics of a
spacecraft with 40 km ≤ a0 ≤ 1000 km, taking into account the effect
of the solar gravity and SRP. Our results are presented in Fig. 10(a)
for direct orbits and Fig. 10(b) for retrograde orbits. We see that there
is a narrow strip (starting near a0 ≈ 300 km and e0 = 0) where the
spacecraft survives around 30 d. This region corresponds to the rpNS

of the 433 Eros.
Note that, for direct orbits, when rp < rpNS , the movement of the

particle around the asteroid 433 Eros is unstable due to the shape of
433 Eros and the perturbations from the Sun. Observe that, making
a small variation in the initial conditions, it generates completely
different trajectories for the particle, reflecting on the lifetime of the
orbits and, consequently, in the final destination of the particle. On
the other hand, there are regions with solutions that remain bounded
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Figure 9. (a) Direct orbits and (b) retrograde orbit around Geographos.
Collision regions with the asteroid (blue) and regions of ejection from
the system (yellow). The white region represents the locations with initial
conditions inside the asteroid.

close to the asteroid 433 Eros when we consider retrograde orbits
(see Fig. 10b).

Space dust most commonly exists around asteroids and planets in
direct orbits. On the other hand, retrograde orbits are unlikely to arise
naturally. Thus, regions where retrograde orbits survive and direct
orbits do not survive are great options for placing a spacecraft, due
to the fact that, in these regions, the probability of having space dust
is low, decreasing the risk of a spacecraft colliding with some dust
particle (Araujo, Winter & Prado 2015; Araujo et al. 2017).

Note that, when we consider the SRP, as presented in this article,
the bounded orbits that once existed around 433 Eros cease to exist.
This fact shows that the effect of the perturbation of SRP is much
larger than the solar gravity perturbation. It happens because the
solar gravity perturbation involves direct and indirect terms, that is,
the difference between the action of the Sun in the spacecraft and
in the asteroid, as shown by equations (20)–(22). Those differences
are small when the spacecraft gets closer to the asteroid (∼10−7). In
contrast, the SRP acts directly on the vehicle, with no indirect term
to compensate it, and this makes the effect of SRP to be much larger
(∼10−4). There is no doubt that, if we decrease the area mass ratio
A/m, or if we use the lowest reflectivity coefficient (Cr), we can find

Figure 10. Plots of a0 versus e0 showing the evolution of the lifetimes in the
regions close to 433 Eros asteroid [(a) direct orbits and (b) retrograde orbits].

an increasingly larger regions where the spacecraft remains in orbit
around the asteroid for longer times.

Figs 11(a) and (b) provide information about the final destination
of the orbits after the integration time shown in Figs 10(a) and
(b). Note that, for direct orbits, when rp < rpNS km, the spacecraft
collides with the asteroid or escapes from the sphere of influence
of the asteroid due to the complex dynamics of the movement. For
retrograde orbits, we see that there are orbits close to the surface of
the asteroid (in black) that survives through numerical integration,
that is, that remain bounded.

Through Figs 10(a) and (b), we see that, when rp > rpNS , for
different initial conditions, the spacecraft’s lifetime is similar. Note
that for small variations of the initial conditions, the spacecraft
has approximately the same lifetimes, and probably the same final
destination. This statement can be seen in Figs 11(a) and (b). Note
that, for rp > rpNS , all orbits are ejected from the system (yellow).
This happens because, as we move away from the central body,
the disturbing effect of the Sun becomes larger and, consequently,
making the spacecraft (or dust particle) to escape the asteroid’s sphere
of influence.

Finally, grids of initial conditions were used to investigate the
motion of a spacecraft around 243 Ida, as shown in Figs 12(a) and
(b). The orbital elements used to build the grids of initial conditions
shown in Fig. 12 were identical to those used for asteroid 433 Eros.
Note that, for direct orbits close to the asteroid (50 km < a0 <

108 km) and low eccentricity, it is possible to observe solutions that
remain bounded around asteroid 243 Ida. It was precisely in this
region that a moon was observed orbiting the asteroid 243 Ida, called
Dactyl, which is a proof that the technique used here works very well.
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Figure 11. (a) Direct orbits and (b) retrograde orbits around 433 Eros.
Collision region with the asteroid (blue), orbits that survived for 365 d (black),
and regions of ejection from the system (yellow). The white region represents
the locations with initial conditions inside the asteroid.

On the other hand, there is a large region with solutions that
remain bounded around 243 Ida when we consider retrograde orbits
and a0 < 200 km, as shown in Fig. 12(b) (Sanchez & Prado 2019).
Note that this region exist even when the eccentricity is high.

Fig. 13 provides information about the final destination of the or-
bits after the integration time shown in Fig. 12. From the information
shown in Fig. 13(a), it is possible to conclude that the direct orbits
around asteroid 243 Ida are unstable when a0 > 120 km. Note that
small variations in the initial conditions make the final destination of
the spacecraft to change completely, causing the spacecraft to collide
or move away from the asteroid.

For retrograde orbits, note that, when 200 km < a0 < 850 km,
most of the orbits collide with asteroid 243 Ida. There are few orbits
that eject from the system when a0 ∼ 700 km. When a0 > 850 km,
due to the low gravitational force of 243 Ida, the orbits tend to escape
from the sphere of influence of the asteroid.

Similarly to the study made for the asteroid 433 Eros, it is possible
to find regions around asteroid 243 Ida in which for direct orbits
the regions are unstable, while for retrograde orbits the regions are
bounded, those are interesting locations to place a spacecraft, as
already explained.

Figure 12. Plots of a0 versus e0 showing the evolution of the lifetimes in the
regions close to 243 Ida asteroid [(a) direct orbits and (b) retrograde orbits].

7 C O N C L U S I O N

In this work, we developed a simplified model to represent the
gravity field of elongated asteroids (convex or not) with spatial
mass distribution, inspired by the existing particle-linkage model.
The purpose of this simplified model is to use a three-dimensional
axisymmetric triple-particle-linkage model that consists, essentially,
of three-point particles distributed in space and two rigid rods with
negligible mass. Compared to the mass point model, it was showed
that there are ranges of particle-asteroid distances where the accuracy
of the proposed model is better, but it still keeps a small processing
time compared to high-fidelity models. The simplified model was
then been applied to the asteroids 1620 Geographos, 433 Eros, and
243 Ida. The results indicate that the three-dimensional rotating
mass tripole has advantages over the two-dimensional rotating tripole
model in terms of accuracy, and get results close to the high-fidelity
models, using much less computer time.

The results focused on the dynamical study of a spacecraft around
the asteroids 1620 Geographos, 433 Eros, and 243 Ida, for direct
and retrograde orbits, considering an area/mass ratio A/m = 0.01 m2

kg−1. We found solutions that remain bounded in the vicinity of these
asteroids. Orbits that remain bounded are important, because they are
adequate locations to place a spacecraft. Furthermore, they indicate
good places to search for a new member of the asteroid system, as
exemplified by the asteroid 243 Ida.

It was observed that no orbit survives for 365 d around the asteroid
Geographos when we consider the SRP. On the other hand, we
found orbits that remain bounded around the 433 Eros and 243
Ida. Some solutions exist for direct orbits, while other solutions
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Figure 13. (a) Direct orbits and (b) retrograde orbit for 243 Ida asteroid.
Collision region with the asteroid (blue), orbits that survived for 365 d (black),
and regions of ejection from the system (yellow). The white region represents
the locations with initial conditions inside the asteroid.

exist for retrograde orbits. Considering the asteroid 433 Eros, the
orbits that remain bounded exist only for retrograde orbits. On
the other hand, when we investigated the asteroid 243 Ida, we
found orbits that remain bounded to both direct and retrograde
senses. Determining these regions is important when it comes to
astronautical applications, because regions in space where the orbits
remain bounded for retrograde orbits and that escape from asteroid
for direct orbits are adequate to place a spacecraft, due to the fact that
there is a low risk of collisions with dust particles and they provide
stability for the orbit, reducing the orbital manoeuvres required to
keep the spacecraft orbiting the asteroid. So, simplified models can
be used to assist in the pre-designing of real missions.

Finally, It is worth to mention that the small size of our targets
allow us to safely neglect the shadowing phenomenon in the SRP.
However, Future applications of this model could involve the study
of polar orbits considering the effects of the shadowing phenomenon
in the SRP.
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