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Abstract. The Brazilian Savanna, also known as Cerrado, is considered a global hotspot for
biodiversity conservation. The detailed mapping of vegetation types, called physiognomies, is
still a challenge due to their high spectral similarity and spatial variability. There are three major
ecosystem groups (forest, savanna, and grassland), which can be hierarchically subdivided
into 25 detailed physiognomies, according to a well-known classification system. We used
an adapted U-net architecture to process a WorldView-2 image with 2-m spatial resolution
to hierarchically classify the physiognomies of a Cerrado protected area based on deep learning
techniques. Several spectral channels were tested as input datasets to classify the three major
ecosystem groups (first level of classification). The dataset composed of RGB bands plus 2-band
enhanced vegetation index (EVI2) achieved the best performance and was used to perform
the hierarchical classification. In the first level of classification, the overall accuracy was 92.8%.
On the other hand, for the savanna and grassland detailed physiognomies (second level of
classification), 86.1% and 85.0% were reached, respectively. As the first work that intended
to classify Cerrado physiognomies in this level of detail using deep learning, our accuracy rates
outperformed others that applied traditional machine learning algorithms for this task. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.15.044504]
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1 Introduction

The ecosystems of savanna cover ∼20% of the Earth’s terrestrial area. Especially in tropical
regions, they are rich in biodiversity1 and water resources2 and play an important role in carbon
stock due to their content of above and below-ground biomass.3 The Brazilian Savanna, also
known as Cerrado, is considered a global hotspot for biodiversity conservation, containing
around 4800 endemic species.1,4 In addition, its water resources feed the three largest watersheds
in South America: the Amazon, Prata, and São Francisco. The Cerrado comprises 24% of the
Brazilian territory, being the second largest biome in the country. However, despite its ecological
relevance, only 8.6% of its native vegetation is in protected areas, i.e., specific regions estab-
lished to protect biodiversity, water bodies, and other environmental resources.5 Approximately
47% of the Cerrado native vegetation have already been converted to other land uses, especially
pasture (29%) and annual agriculture (9%).6 Moreover, from 2008 to 2019, the deforestation
rates in the Cerrado have been higher than in the Amazon biome in 9 of these 12 years
interval.7 This heavy loss of native vegetation has severe environmental consequences, such
as vegetation fragmentation, habitat loss,8 and reduction of water yield and carbon stocks.9,10
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In this scenario, accurate mapping of Cerrado vegetation is essential to support policies against
deforestation and, consequently, to maintain the provision of ecosystem services, since these
maps are crucial to assess biodiversity, improve carbon stock estimation within the biome, and
guide conservation policies.

The use of remote sensing imagery to perform Cerrado vegetation mapping is still a challenge
due to the high spatial variability and spectral similarity among its vegetation types, also known
as physiognomies. According to the well-known classification system proposed by Ribeiro and
Walter,11 there are 25 physiognomies, which vary in vegetation structure, tree density, edaphic
conditions, and floristic composition. These physiognomies can be grouped into three major
ecosystem groups: grasslands, savannas, and forests. Therefore, this classification system has
an intrinsic hierarchical structure, where the previous identification of the three major ecosystem
groups in a first level of classification may improve the identification of more detailed phys-
iognomies in subsequent levels. Nevertheless, only few studies have been exploring the
hierarchical aspect of the classification system to map Cerrado vegetation.12,13 Neves et al.12

used geographic object-based image analysis (GEOBIA) techniques and the random forest (RF)
algorithm to compare hierarchical and nonhierarchical approaches to classify seven Cerrado
physiognomies. Although the authors have observed the superiority of the hierarchical approach
over the nonhierarchical one, the accuracy for some physiognomies was still low. More recently,
Ribeiro et al.13 used GEOBIA and RF and also included a spatial contextual ruleset to represent
other environmental factors (e.g., soil type, slope, and elevation) to improve the Cerrado
vegetation classification. They classified 13 classes, including 11 vegetation types, with an over-
all accuracy (OA) of 87.6%. However, their semiautomatic methodology still relied on some
subjective tasks, such as the selection of image segmentation parameters.

Considering nonhierarchical approaches, some works have been mapping the Cerrado natu-
ral vegetation using remote sensing techniques.6,14–18 The TerraClass Cerrado project6 utilized
Landsat images and region growing image segmentation followed by visual interpretation to
map land use and land cover in the entire Cerrado biome in 2013. The forest and nonforest
(grasslands and savannas) classes from TerraClass map obtained accuracies between 60% and
65%. The MapBiomas Project14,19 classified the entire Cerrado from 1985 to 2017 using Landsat
images (30 m) and RF algorithm to identify forest, savanna, and grassland. Encompassing
smaller study sites, other works identified more detailed vegetation classes.15–18 Jacon et al.16

used a hyperspectral image (30-m spatial resolution) to perform automatic classification of seven
physiognomies based on time series and multiple discriminant analysis. Ferreira et al.17 and
Schwieder et al.18 used Landsat images to classify five and seven vegetation classes, respectively.
Ferreira et al.17 employed spectral linear mixture models and Mahalanobis distance, whereas
Schwieder et al.18 utilized the support vector machine (SVM) method and phenological metrics
extracted from dense time series.

Regardless of the classification methods, studies have shown that detailed Cerrado vegetation
mapping based on Landsat-like imagery is a challenging task since the Cerrado biome is com-
posed by heterogeneous and seasonal natural vegetation types. In addition, some works12,15,20

performed a semiautomatic classification using high spatial resolution image, such as
WorldView-2 (2-m spatial resolution)12,15 and RapidEye imagery (5-m spatial resolution).13,20

Despite the use of a more detailed spatial resolution, the misclassification in transition areas
remained an issue. Each physiognomy has a unique biodiversity and is responsible for a specific
amount of carbon stocked above and below the ground.10,11 For this reason, improving the
detailed physiognomies mapping is crucial, since so far the mapping initiatives handled well
the identification of the three major groups of ecosystems but reached low accuracies for indi-
vidual physiognomies.12,15–17

To improve the physiognomies discrimination to generate a detailed vegetation map, a large
variety of machine learning techniques have been employed. Convolutional neural networks
(CNNs) are able to perform end-to-end classification, learning features from an input dataset,
and presenting increasing complexity through the layers of the network.21 The results achieved
with such methods often outperform those obtained with traditional machine learning algo-
rithms, such as RF or SVM.22 For savanna vegetation, some efforts have already been made
with deep learning to delineate tree crowns.23,24 Nogueira et al.25 were the first to employ a
deep learning-based method to identify vegetation patterns, which include different tree heights,
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tree cover and shrub, and herbaceous vegetation. Using RapidEye imagery, entire regular image
patches were designated as only one class (forest, savanna, or grassland), resulting in a consid-
erable mixture of classes in a single patch. A semantic segmentation (also known as pixelwise
classification) of the three major ecosystem groups was performed by Neves et al.,26 using
a modified U-net architecture and eight spectral bands of the WorldView-2 satellite image.
Compared with the classification approach performed by Nogueira et al.,25 the semantic seg-
mentation results in a better class delineation.

The U-net27,28 belongs to the group of fully convolutional neural networks (FCNNs29).
Compared with more traditional CNNs such as LeNet30 and AlexNet31 that predict a single class
for each image patch, FCNNs are tailored to the task of semantic segmentation. In particular, they
take an image patch with an arbitrary number of channels as input and predict a label-map usually
of the same size as the input. The U-net is composed of a multilayer convolutional encoder that
successively reduces the spatial resolution and increases the number of filters per kernel and a
multilayer convolutional decoder, which upscales the features to the original spatial resolution.
They further use skip-connections between encoder and decoder layers, of the same spatial res-
olution, to preserve low-level details, required for the precise prediction of object boundaries.

In deep learning methods, originally developed in the computer vision field, the analysis of
the contribution of different spectral bands to improve the network accuracy is not yet well
explored. The spectral behavior of the physiognomies and their respective major groups rely
on the information contained in different wavelengths, represented here by satellite spectral
bands. However, the majority of works with deep learning approaches used only red, green,
and blue channels22,32 or included the near-infrared (NIR) one.25,33 In addition, very few initia-
tives have applied some hierarchical behavior in classification tasks.34,35

Therefore, the objective of this work is threefold: (1) to hierarchically classify the Brazilian
Savanna physiognomies based on deep learning techniques according to the classification sys-
tem proposed by Ribeiro and Walter;11 (2) to evaluate different combinations of spectral bands
taken as input dataset in the deep learning classification; and (3) to evaluate the deep learning
classification performance in relation to the different training samples selection methods. To the
best of our knowledge, this is the first work that produced a Brazilian Savanna map in this level
of detail based on deep learning techniques.

2 Materials and Methods

This study was performed according to the flowchart presented in Fig. 1. In phase A of the
methodology [Fig. 1(a)], we investigated several combinations of spectral bands as input in the
processing to perform a semantic segmentation of three major Cerrado ecosystem groups
(grassland, savanna, and forest). Figure 1(b) shows the steps required to perform the semantic
segmentation approach using an adapted U-net CNN architecture.28 Following, we applied the
best input dataset resulting from the first part to perform the hierarchical Cerrado vegetation
mapping [Fig. 1(c)]. All processing procedures are described in detail in the following sections.

2.1 Study Site

As study site, a Brazilian protected area was chosen to ensure the native Cerrado vegetation
analysis. The Brasília National Park (BNP) (Fig. 2), located in the Federal District, Brazil, com-
prises ∼423 km2 of native Cerrado vegetation, which encompasses the major physiognomies
found in the Cerrado biome.17,36 It contains several endangered species37 and a dam that is
responsible for 25% of the Federal District’s water supply. This protected area was also used
as study site in several other works,12,15,17,18,36 which attests its representativeness and facilitates
a comparison among the results.

According to the existing physiognomies in the study site and the classification system pro-
posed by Ribeiro and Walter,11 we differentiated two hierarchical levels of classes. In the first
level, three major ecosystem groups (also known as formations) were classified: forest, savanna,
and grassland. In the forest formations, there is a predominance of arboreal species, forming
continuous or discontinuous canopy. In the second level, forest was maintained as gallery forest
(Mata de Galeria), since it is the only forest physiognomy with significant presence in this area.
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In savanna formations, the presence of continuous canopy is uncommon, and there are trees and
shrubs scattered over grasses. The areas identified as savannas in the first level were subdivided
into woodland savanna (Cerrado Denso), typical savanna (Cerrado Típico), Rupestrian savanna
(Cerrado Rupestre), shrub savanna (Cerrado Ralo), and Vereda in the second level.

Fig. 2 Location of the BNP image (true color composite) in the Brazilian savanna.

Fig. 1 Methodological flowchart presenting: (a) the analysis of spectral input data, which gener-
ates the most accurate input dataset that will be used in the next part. (b) The semantic segmen-
tation approach. (c) The hierarchical mapping methodology, where the semantic segmentation
icon is used to indicate every time the semantic segmentation is performed.
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In grasslands, there are predominantly herbaceous species and some shrubs. Four subclasses
were differentiated in the second level: shrub grassland (Campo Sujo), open grassland (Campo
Limpo), Rupestrian grassland (Campo Rupestre), and humid open grassland (Campo Limpo
Úmido). The humid open grassland is a subtype of open grassland, but it was considered an
independent class due to its significant presence in the study site. The Cerrado physiognomies
hierarchy and their individual definitions and characteristics are presented in Table 1. Besides,
their patterns in a WorldView-2 image true color composite can be observed in Fig. 3.

2.2 Remote Sensing Data, Preprocessing, and Feature Extraction

The WorldView-2 image (tile ID 103001003373A600), with spatial resolution of 2 m and
acquired on July 22, 2014, was utilized in this work. Although the Cerrado vegetation is strongly
influenced by the seasonality, the chosen image is from the dry season. According to Jacon
et al.,16 the spectral separability of the physiognomies increases during the dry season. This
image has eight spectral bands: coastal (400 to 450 nm), blue (450 to 510 nm), green (510
to 580 nm), yellow (585 to 625 nm), red (630 to 690 nm), red-edge (705 to 745 nm), NIR
1 770 to 895 nm), and NIR2 (860 to 1040 nm). Initially represented in digital numbers, the
image was converted to surface reflectance using the fast line-of-sight atmospheric analysis of
hypercubes (FLAASH) algorithm38 available in the ENVI 5.2 software.

Besides the spectral bands, other features were included as input data in the experiments:
two-band enhanced vegetation index39 and three components of LSMM40 (vegetation, soil, and
shade components). The EVI2 is given as

EQ-TARGET;temp:intralink-;e001;116;276EVI2 ¼ 2.5
ρNIR − ρR

ρNIRþ 2.4ρRþ 1
; (1)

where ρNIR is the reflectance in the NIR band and ρR is the reflectance in the red band.
To create the LSMM, 10 endmembers (pure pixels) were selected for each component, which

is calculated as

EQ-TARGET;temp:intralink-;e002;116;197ri ¼
XN

j¼1

ðaij × xjÞ þ ei; (2)

where ri is the spectral reflectance mean for the i’th band of a pixel with N components; j is the
number of components; i is the number of bands; aij is the spectral reflectance of the j’th com-
ponent of a pixel for the i’th band; xj is the proportional value of the j’th component of the pixel;
and ei is the error for the i’th band.

As we did not have a detailed Cerrado vegetation map and FCNNs require classified patches
(rather than points) for training, the entire WorldView-2 image was classified through visual inter-
pretation and, then, used as reference data. This was performed by some specialists in remote

Fig. 3 Patterns of the physiognomies in the WorldView-2 image (true color composite).
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sensing, who have previous experience in mapping Brazilian Savanna vegetation. Considering
our intention to differentiate natural vegetation types (Fig. 3), the other minority areas were
masked in the reference data (built-up areas, water bodies, bare soil, and burned areas).

2.3 Network Architecture

In this work, a variation of the U-net architecture,27 proposed by Kumar,28 was used in all tasks of
pixelwise classification (semantic segmentation). The architecture28 mainly follows the design-
choices of Ronneberger et al.27 However, the architecture was modified to use zero-padding,
instead of unpadded convolution, to preserve the spatial size along the network. As a further
modification, the upsampling is based on transposed convolutions with a stride of two along
both spatial dimensions.

Network parameters such as the number of layers and number of filters per layer are shown in
Fig. 4. The input layer (gray color) represents the size of the sample patches (160 × 160). The
depth (N) is the number of bands. The output layer has the same size of the input layer, but the
depth is represented by the number of classes C. Every other layer is represented according to the
legend; a 2 × 2max-pooling layer, for instance, is illustrated in pink. The numbers in brackets are
the image sizes in each layer followed by the number of filters. As in the original U-net, skip-
connections are used to concatenate information of high spatial resolution (but low complexity)
with information of low spatial resolution (but high complexity).

While the last network layer for semantic segmentation is usually modeled by softmax func-
tion, here we chose the sigmoid function because it presented higher OAs in the preliminary
tests. This allows the model to predict independent probabilities per class and per pixel.
Final class predictions are obtained by choosing the respective classes with highest probabilities.
The network was implemented in a Python environment, using Keras41 with TensorFlow42 as
backend. The NVIDIA GeForce RTX 2070 super (8 GB) GPU was used.

2.4 Analysis of Spectral Input Data

To test the network performance according to the spectral data used as input, eight datasets were
created. The first one is composed by the red, green, and blue bands, and it was considered the
baseline dataset, since it is the simplest one and presents the spectral bands commonly used in
deep learning approaches. Then, we added one type of information (e.g., NIR spectral bands or
EVI2) at each of the following datasets to evaluate how it could improve the model performance.
An additional dataset using only the LSMM components was also used. Since the LSMM veg-
etation component is highly correlated to the EVI2, we did not include a dataset using them
together. The datasets are summarized below:

Fig. 4 Modified U-net architecture (adapted from Ref. 28). The N, in the input size, is the number
of bands, while the C, in the output size, corresponds to the number of classes.
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• RGB (red, green, and blue bands)
• RGB + EVI2
• RGB + LSMM
• RGB + rededge
• RGB + NIR1 + NIR2
• RGB + NIR1 + NIR2 + rededge
• 8 WorldView-2 bands
• LSMM (three LSMM components: vegetation, soil, and shade).

All datasets were divided into regions A, B, and C (Fig. 5), which contain roughly similar
distributions of the three classes of the first level of classification. Thereafter, the datasets and
the reference data were cropped into nonoverlapping and adjacent tiles of 160 × 160 pixels to be
used as samples. Tiles with any no-data value were excluded from further processing (i.e., pixels
originally covering built-up areas, water bodies, bare soil, and burned areas). To increase the
amount of samples, six data augmentation techniques were employed: transposition, horizontal,
and vertical flips and three rotations: 90 deg, 180 deg, and 270 deg (clockwise direction).

The samples selected from regions A, B, and C were combined as follows: 70% of the sam-
ples from two regions (e.g., A and B) were randomly selected for training, and 30% for val-
idation. The resulting network was then tested in the remaining region (e.g., C). This experiment
was repeated three times, i.e., until the three regions had a semantic segmentation resulting from
the cross-validation approach. Table 2 shows the number of samples used in each experiment.
For the training and validation sets, those numbers include samples generated through a data
augmentation procedure.

During training, the early stopping criterion (also known as “patience” in Keras) was set to
50, i.e., if after 50 epochs the validation accuracy did not increase, the training process was halted

Fig. 5 Regions A, B, and C used to generate sample patches in the spectral input data analysis,
according to Table 2.

Table 2 Regions and number of samples used for training, validation, and testing procedures
in each cross-validation experiment.

Experiment Training regions Validation regions Testing region

1 A + B: 70% (5439 samples) A + B: 30% (2331 samples) C (645 samples)

2 B + C: 70% (6951 samples) B + C: 30% (2982 samples) A (336 samples)

3 A + C: 70% (4802 samples) A + C: 30% (2065 samples) B (774 samples)
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to avoid overfitting. To reduce the misclassification in the tile borders, the resulting image was
created through a sliding window approach with steps of 20 pixels. All procedures [Fig. 1(a)]
were executed for each one of the eight datasets to classify the three first level classes (forest,
savanna, and grassland). The outputs of this phase are some thematic maps, accuracy measures
as well as the best set of input data to be utilized in the next processing phase to achieve the
hierarchical classification.

2.5 Hierarchical Semantic Segmentation

Using the input dataset, which yielded the best performance in the previous processing phase, we
carried out the semantic segmentation approach to hierarchically classify the Cerrado physiog-
nomies. Differently from the first level, the classes of the second level are unbalanced, i.e., they
do not present similar distributions across the three image regions (Fig. 5). As the unbalanced
class distribution can create artifacts, a different approach for sample generation was employed.
Initially, the WorldView-2 image was partitioned into so-called superpixels43 using the simple
linear iterative clustering (SLIC), implemented in the Scikit-Learn Python package.44 SLIC is an
adaptation of the k-means algorithm,45 which computes the weighted distance measure through a
combination of color (in the CIELAB color space) and spatial proximity. As input for SLIC, we
use the red, green, and blue bands, since the CIELAB color space is defined by the lightness
(color brightness). It is also possible to control the superpixels compactness. If its value is large,
spatial proximity is more relevant, therefore superpixels are more compact (close to a square in
shape). However, when the compactness value is small, they adhere more to image boundaries
and have less regular size and shape.46 In this study, a compactness value equals to 400 was used.
This value depends on the data values range used and was chosen empirically to create the super-
pixels that adhere well to the interest patterns.

Figure 6 shows how sample patches are generated. For each superpixel, a class was assigned
based on the majority of corresponding pixel classes in the reference image. Thereafter, super-
pixels centroids were calculated and used as the center point for each sample of 160 × 160 pixels.
Each sample corresponds to the pair composed of one patch for the reference image and one patch
for the WorldView-2 image. For each class of interest, 1000 centroids were randomly selected to
generate sample patches. The sample patches may contain transition areas between physiogno-
mies, which is a positive aspect, because it enables the network to learn the context in which each

Fig. 6 Generation of sample patches. RP1 andWP1 are the reference andWorldView-2 patches of
sample 1, respectively, and RP2 andWP2 are the reference andWorldView-2 patches of sample 2.

Neves et al.: Hierarchical mapping of Brazilian Savanna (Cerrado) physiognomies based on deep learning

Journal of Applied Remote Sensing 044504-9 Oct–Dec 2021 • Vol. 15(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 14 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



physiognomy occurs. Similar to the previous experiment (Sec. 2.4), all samples that contain any
no-data value were excluded. Thus, the six data augmentation techniques mentioned before were
applied for the remaining training and validation samples.

The complete samples set was randomly split: 70% and 30% were assigned for training and
validation, respectively. The sliding window approach was also employed to create the results.
To use the same sample generation approach in the entire hierarchical process, the semantic
segmentation was repeated for the first level (forest, grassland, and savanna). Subsequently, the
semantic segmentation approach was employed for each resulting savanna and grassland maps.
The final Cerrado physiognomies map (and the respective accuracy metrics) is composed of the
forest map (gallery forest), the savanna map (shrub savanna, typical savanna, woodland savanna,
Rupestrian savanna, and Vereda), and the grassland map (open grassland, shrub grassland,
Rupestrian grassland, and humid open grassland). These last two were generated in the second
level of classification. These methodological steps are represented in Figs. 1(b) and 1(c).

The Vereda physiognomy has a minority presence in the BNP, so its area is not large enough
to be included into deep learning classification. Therefore, this physiognomy was included in the
first level of classification (as part of the overall savanna physiognomy), but it was manually
identified in the second level. Consequently, it is present in the final map but not considered in
the confusion matrices and accuracy metrics. Another relevant detail concerns the generation of
samples for the savanna and grassland physiognomies in the second level of classification. When
generating the samples of the four grassland types, for instance, any other class present in the
sample patch (e.g., forest or savanna) was considered as others, a temporary class. If the pixels
corresponding to others had simply been excluded, the network would be unable to understand
patterns of transitions between grassland physiognomies and other classes of forest and savanna,
for example. As the output of the network is a probability for each pixel and each class, when
the network tried to classify a pixel as others, the second highest probability was considered,
according to the example of Fig. 7.

2.6 Accuracy Assessment

The obtained semantic segmentation maps were then compared with the respective reference data,
and confusion matrices were generated. Since we are performing a hierarchical classification,
misclassifications on the first level will directly influence the results of the second level, i.e.,
if a pixel of shrub savanna was classified as grassland in the first level, it will still be considered
as an error in the confusion matrix of the second level. Based on each confusion matrix, the
following metrics were computed: OA, recall, precision, and F1-score. The OA corresponds
to the percentage of pixels with the respective labels assigned correctly. Precision, also known

Fig. 7 Example of savanna classification (second level of classification) demonstrating: (a) minor-
ity edges predicted as others (in black); and (b) replacement of the others class by the second
highest probability of the network output.
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as user’s accuracy, is the proportion of pixels predicted for a class and actually belonging to that
class; it is the complement of the commission error. Recall, also known as producer’s accuracy, is
the proportion of pixels of a particular class successfully identified; it is the complement of omis-
sion error. The F1-score is the harmonic mean of precision and recall, computed for each class.

3 Results

3.1 Assessment of the Spectral Input Information

Table 3 presents the accuracies of the training and validation steps for the assessment of the
spectral input information, as well as the number of epochs needed to stabilize the network for
each experiment. It took about 5 h to train each network. Due to the patience parameter of 50, all

Table 3 Training and validation accuracies for all datasets in the
three experiments (see description in Table 2). The highest values
in training and validation for the three experiments are given in bold.

Input data Exp. Epochs
Training
acc. (%)

Validation
acc. (%)

RGB + LSMM 1 23 88.5 89.8

2 52 91.7 88.2

3 16 89.1 87.9

Eight band 1 47 91.3 88.6

2 34 90.6 89.0

3 77 92.1 89.4

LSMM 1 25 89.9 89.8

2 31 89.8 89.4

3 89 93.5 89.3

RGB + NIR1 +
NIR2

1 5 87.7 88.9

2 35 89.4 88.6

3 93 93.0 89.5

RGB + NIR1 +
NIR2 + RedEdge

1 55 91.7 89.9

2 29 88.7 89.2

3 87 93.7 90.4

RGB+RedEdge 1 10 88.6 89.4

2 28 90.5 89.2

3 53 91.4 89.8

RGB (532) 1 47 89.2 89.1

2 70 92.5 88.7

3 28 90.1 89.2

RGB + EVI2 1 47 89.7 90.4

2 58 92.7 89.7

3 32 89.4 88.6
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trainings stopped before 100 epochs, and stabilization occurred between epochs 5 and 93.
In general, all accuracy values were higher than 87.5%. The highest accuracies in training were
reached using the RGB + NIR1 + NIR2 + RedEdge dataset in experiments 1 and 3, whereas, in
experiment 2, the highest accuracy was obtained for RGB + EVI2. In the validation step, the
highest accuracies for experiments 1 and 2 were reached using RGB + EVI2, whereas the highest
accuracy in experiment 3 was observed with the RGB + NIR1 + NIR2 + RedEdge dataset.

For the test step, the OAs and F1-score per class are presented in Table 4. The OAvaried from
87.4%, using RGB + LSMM, to 89.3% with the RGB + EVI2 dataset. It could be expected that
the eight band dataset would achieve the highest performance, since it contains more bands and,
consequently, most of spectral information. However, it obtained the second worst OA value of
87.6%. Despite presenting the lowest OA, the RGB + LSMM dataset had the highest F1-score
(0.91) for the forest class. This is also reflected in the class delineation in the mapping result.
For savanna and grassland, the highest F1-scores (0.92 and 0.84, respectively) were achieved
with the same dataset with best OA, RGB + EVI2.

To analyze in more detail the results of Table 4, Fig. 8 shows selected patches of the
WorldView-2 image, the reference, and the thematic maps using the RGB + EVI2 and the
RGB + LSMM datasets. In this scale, the misclassified areas between grassland and savanna
(G × S), grassland and forest (G × F), and savanna and forest (S × F) are highlighted in different
colors. Despite the small difference between the best (RGB + EVI2) and the worst (RGB +
LSMM) datasets of 1.9% points, the resulting maps show significant dissimilarities.

In all maps, the major areas of misclassification occur between grassland and savanna
(G × S), followed by savanna and forest (S × F). There are only few areas of confusion between
grassland and forest (G × F). This behavior is expected, since the confusions of classification
occur mainly in transition areas, considering an increasing scale of vegetation density in the
existing physiognomies (i.e., G × S and S × F). In addition, the higher forest F1-score with
RGB + LSMM, already observed in Table 4, is also reflected in the maps. In Fig. 8, we notice
a better delineation of forest areas when using this dataset, even better than in RGB + EVI2
dataset results.

3.2 Detailed Physiognomies Mapping

For the hierarchical classification, we used the input dataset composed by RGB + EVI2 bands,
since it achieved the best performance in the assessment of the spectral input information for the
first level, especially for savanna and grassland. For the first level of classification, the accuracy
during training was of 97.9%, achieved after 147 epochs. The confusion matrix for the validation
step is presented in Table 5. The matrix is presented in terms of number of pixels, and the OA
was of 92.8%. Forest obtained the highest F1-score of 0.95, and the other two classes achieved

Table 4 OAs (%) and classes F1-score for all input datasets. The
highest values are given in bold.

Input dataset OA (%)

Classes F1-score

Grassland Savanna Forest

RGB + LSMM 87.4 0.81 0.90 0.91

Eight band 87.6 0.81 0.90 0.89

LSMM 87.8 0.82 0.90 0.91

RGB + NIR1 + NIR2 87.9 0.82 0.90 0.89

RGB + NIR1 + NIR2 + RedEdge 88.3 0.83 0.91 0.90

RGB + RedEdge 88.4 0.82 0.91 0.89

RGB (532) 88.6 0.83 0.91 0.89

RGB + EVI2 89.3 0.84 0.92 0.91
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Table 5 Confusion matrix (in number of pixels), precision, recall, and F1-score (highlighted in
bold) for the first level of classification, using the RGB + EVI2 dataset. OA = 92.8%.

Predicted

Reference

Grassland Savanna Forest Total Precision

Grassland 5,906,317 315,673 8,084 6,230,074 0.95

Savanna 697,394 7,788,065 93,307 8,578,766 0.91

Forest 36,929 96,423 2,441,111 2,574,463 0.95

Total 6,640,640 8,200,161 2,542,502 — —

Recall 0.89 0.95 0.96 — —

F1-score 0.92 0.93 0.95 — —

Fig. 8 Patches of: (a) the WorldView-2 image; (b) the reference data; (c) resulting thematic map
using RGB + EVI2 dataset; and (d) resulting thematic map using RGB + LSMM datasets. G ×S are
the misclassified areas between grassland and savanna; S × F, between savanna and forest; and
G × F, between grassland and forest.
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F1-scores higher than 0.91. The grassland recall (0.89) was the only metric lower than 0.90, as
10.5% of the grassland pixels were misclassified as savanna. In general, our deep learning
approach yielded a very accurate classification of the three classes. The confusion between grass-
land and savannas, which presented the highest error rate, occurs mainly along the class borders,
where it is indeed difficult to define when one class becomes another, even in field campaigns.

In a hierarchical classification, results of the first level affect directly the performance of the
second level. Considering the detailed reference of savanna physiognomies and the resulting
classification of the first level, it is shown that 92.7% of the woodland savanna was correctly
included in savanna class, while 6.4% was misclassified as forest (Table 6). The typical savanna
had the highest percentage of area classified as savanna (98.2%). While the Rupestrian savanna
showed the highest percentage of misclassification, 88.3% of the area were classified as savanna,
whereas 10.5% was classified as grassland. Pixels of savanna classified as forest or grassland
were included as errors in the recall of the second level of classification for savanna physiog-
nomies (Table 7).

Similar to Table 6, typical savanna showed the best performance in the classification of the
detailed physiognomies, with F1-score of 0.91 (Table 7). The other three savanna physiogno-
mies achieved F1-scores from 0.84 (shrub savanna) to 0.88 (Rupestrian savanna). Most of the
misclassified pixels of woodland and shrub savannas were labeled as typical savanna. That was
an expected behavior, since shrub, typical, and woodland savanna (in this order) compose an
increasing scale of vegetation density and biomass. Regarding Rupestrian savanna, the network
was able to identify its pattern among the savanna physiognomies, resulting in a precision of
0.91. However, the confusion of 10.5% of this physiognomy with grassland in the previous level
of classification leads to a recall of only 0.84. During the training step, the accuracy for savanna
physiognomies was of 96.6% when 190 epochs were executed. In the validation step, the OAwas

Table 6 Analysis of the result of the second level of classification for savanna physiognomies
regarding the first level resulting map (%).

Predicted (first
level)

Reference (savanna physiognomies)

Woodland
savanna

Typical
savanna

Shrub
savanna

Rupestrian
savanna

Savanna (correct) 92.7 98.2 91.0 88.3

Classif. as
grassland

0.9 0.7 8.4 10.5

Classif. as forest 6.4 1.1 0.6 1.2

Table 7 Confusion matrix (in number of pixels) for the savanna physiognomies, in the second
level of classification (OA = 86.1%). Precision, Recall and F1-score are highlighted in bold.

Predicted

Reference

Total Precision
Woodland
savanna

Typical
savanna

Shrub
savanna

Rupestrian
savanna

Woodland savanna 286,275 40,812 2,348 888 330,323 0.87

Typical savanna 23,794 4,107,171 295,190 6,227 4,432,382 0.93

Shrub savanna 2,258 325,652 2,402,537 4,019 2,734,466 0.88

Rupestrian savanna 232 10,219 11,411 231,146 253,008 0.91

Total 337,128 4,566,258 2,980,008 274,599 — —

Recall 0.85 0.90 0.81 0.84 — —

F1-score 0.86 0.91 0.84 0.88 — —
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of 95.6%. However, when errors from the first level of classification are propagated to the second
level, the OA becomes 86.1%.

Considering the reference of the detailed grassland physiognomies, almost all (99.4%) open
grassland were correctly classified as grassland in the first level (Table 8). Rupestrian, shrub, and
humid open grassland had 94.1%, 85.5%, and 79.4% of their areas classified as grassland,
respectively. For the shrub and humid open grassland, 14.2% and 18.0%, respectively, were
misclassified as savanna in the first level. In the hierarchical classification system proposed
by Ribeiro and Walter,11 humid open grassland is a subtype of open grassland. However, it was
considered an independent class in this work as it presents a pattern very different from the
traditional open grassland. Besides that, preliminary experiments showed that separating these
two classes increased the open grassland’s OA by more than 2% points.

During the training step, the OA of the classification of the detailed grassland physiognomies
was 96.3% with 171 epochs. In the validation, the network achieved an OA of 95.6%. After the
inclusion of the errors from the first level of the classification, the grassland physiognomies OA
decreased to 85.0%. The resulting confusion matrix is presented in Table 9. The F1-scores varied
from 0.86 (humid open grassland) to 0.94 (open grassland). Shrub and Rupestrian grassland had
F1-scores of 0.89 and 0.93, respectively. The largest amount of misclassified pixels of shrub
grassland was classified as open grassland. For open, Rupestrian, and humid open grassland,
the largest amount of misclassified pixels was classified as shrub grassland, the majority grass-
land physiognomy in the BNP.

The results of savanna and grassland physiognomies are presented in Fig. 9. This figure also
includes gallery forest, generated in the first level of classification. Therefore, a detailed mapping
of all physiognomies in the BNP is created. In addition to the reference and the predicted images,

Table 8 Analysis of the result of the second level of classification for grassland physiognomies
regarding the first level resulting map (%).

Predicted (first level)

Reference (grassland physiognomies)

Open
grassland

Shrub
grassland

Rupestrian
grassland

Humid open
grassland

Grassland (correct) 99.4 85.5 94.1 79.4

Classif. as savanna 0.5 14.2 5.5 18.0

Classif. as forest 0.1 0.3 0.4 2.6

Table 9 Confusion matrix (in number of pixels) for the grassland physiognomies, in the second
level of classification (OA = 85.0%). Precision, Recall and F1-score are highlighted in bold.

Predicted

Reference

Total Precision
Open

grassland
Shrub

grassland
Rupestrian
grassland

Humid open
grassland

Open grassland 1,662,547 78,198 4,319 3,426 1,748,490 0.95

Shrub grassland 110,249 2,858,558 9,961 16,827 2,995,595 0.95

Rupestrian grassland 3,898 12,359 379,596 3,283 399,136 0.95

Humid open grassland 4,170 12,286 938 740,197 757,591 0.98

Total 1,791,208 3,461,580 419,588 962,759 — —

Recall 0.93 0.83 0.90 0.77 — —

F1-score 0.94 0.89 0.93 0.86 — —
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the image representing the differences between both is also presented to clearly show right and
wrong results. To better visualize the development of the hierarchical classification, two zoomed
regions are also presented. Just like in Tables 7 and 9, the errors from the first level of classi-
fication are carried over to the second level, so no misclassified area from the first level can
become correctly classified [represented in dark blue, Fig. 9(c)] in the second level.

4 Discussion

4.1 Assessment of Spectral Input Information and Samples Generation

The majority of research in optical RS that applies deep learning techniques use images with the
three most common channels (spectral bands), the RGB (red, green, and blue).22,32 Others also

Fig. 9 Result of the detailed physiognomies mapping, showing: (a) predicted classified image;
(b) reference image; (c) difference between predicted and reference images; and (d) zoom of two
regions to show the result in more detail.
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include an NIR channel.25,33 These works rarely use all available satellite bands, sometimes
because of the increase in processing time, or because the network architecture and the algo-
rithms are prepared to use only three input layers. In the RS field, several extraspectral infor-
mation, such as yellow or red-edge bands (available inWorldView-2), may be used. Zhang et al.47

tested the efficiency of using datasets containing four and eight bands of the WorldView-2 and
WorldView-3 images. The authors achieved better accuracies with the eight-band dataset,
although they classified only different urban targets (e.g., buildings and roads). While more
bands in general improve the results, in this study, it was observed that the use of some bands,
such as the yellow band (present in the 8 band dataset), did not improve the classification of
vegetation patterns. Thus, the increase in the number of bands is not necessarily directly related
to an increase of OA.

Deep learning networks learn features from the training data to identify the desired classes.
For this reason, it is believed that it is not necessary to give the network supplementary infor-
mation, commonly called handcrafted features (e.g., vegetation indices, fractions of the LSMM),
in addition to the satellite spectral bands.48 However, our results showed the opposite: by com-
bining a handcrafted feature (vegetation index) and original data, we obtained the best OA. The
EVI2 enhanced the information regarding vegetation biomass in a way that does not occur when
using only the red and the NIR bands. Thus, the OA of the RGB + EVI2 dataset was higher than
the OA of other datasets containing red and NIR bands (eight band, RGB + NIR1 + NIR2, and
RGB + NIR1 + NIR2 + RedEdge). A better performance when including vegetation indices was
also observed by Kerkech et al.,49 although the authors used different indices and tested them in
a different domain (crop disease detection).

On the other hand, the inclusion of the three fractions (vegetation, soil, and shade) of the
LSMM as input did not increase the OA. However, the vegetation and shade LSMM frac-
tions highlighted and represented well the conditions of the dense and high vegetation as
well as the presence of shades (due to differences in tree heights), improving the forest
delineation. This resulted in the highest F1-score for this class using RGB+LSMM dataset.
The extraction of LSMM fractions from high spatial resolution images is still useful, since
the mixture of vegetation targets is still present in a 2 × 2 m pixels.50,51 In a pixel of wood-
land savanna, for instance, the proportions of vegetation and shade fractions are mainly
higher than in a pixel of shrub savanna. These fractions are widely used to classify vegeta-
tion in Cerrado14,15,17,52,53 with traditional machine learning techniques. In the deep learning
field, new methodologies have been tested to generate the LSMM fractions as results of
some CNN,54 but they were never tested as input layers in semantic segmentation using
deep learning approach.

Regarding the generation of samples for the network training and validation, we employed
two procedures. The first, used in the analysis of spectral input data, splits the image in three
parts, two of which generated the training and validation samples and the last one was used to
test the network. In the second procedure, employed in hierarchical classification, the samples
were generated based on superpixel centroids. The first procedure is commonly used, since it is
able to detect patterns of the same class in different regions of the image.55,56 However, in a case
with several classes with different occurrences across the study site, the second procedure may be
more appropriate to ensure the classification represents all classes and contexts. In this study, the
OAwith the first procedure was of 89.3%, raising to 92.8% in the second one. Both of them for
the first level of classification and using the RGB+EVI2 dataset.

Fu et al.57 used an approach similar to the second procedure. They generated the samples
using object centroids but with a multiresolution segmentation algorithm to classify general
classes (e.g., water, road, and building). The accuracies of this approach with a CNN were
5% to 10% higher than the accuracies achieved with GEOBIA. Superpixel segmentation algo-
rithms, such as SLIC, create more uniform objects, whereas traditional segmentation algorithms
(e.g., multiresolution segmentation) generate objects with different sizes and shapes. Using this
last case to create the network samples could potentially generate patches with irregular pro-
portions of the classes due to the centroid positions:58 in segments with irregular shapes, the
centroids are not always located inside the patch. A supposed elongated and curved segment
of gallery forest, for example, could generate a centroid outside that class and fail to represent
that pattern.
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4.2 Hierarchical Classification

The high OAs achieved in our results are assumed to be mainly related to two aspects: the deep
learning methodology and the high spatial resolution of the WorldView-2 imagery. Using coarser
spatial resolution and the same three classes of the first level, previous works6,14,59 achieved
lower OAs using traditional machine learning techniques. Although these works identified only
three classes, it is worth noting that each class has a high intraclass variability. Therefore, the
grassland class, for instance, contains the pattern (i.e., spectral behavior) of many different types
of grasslands (four, in the BNP). Still using coarser spatial resolution (30 m), Ferreira et al.17 and
Schwieder et al.18 improved the detail of vegetation classes. Schwieder et al.18 had recalls of
86% and 64% for gallery forest and shrub grassland, respectively, whereas we achieved
95% and 83%.

In Ref. 17, the classes shrub Cerrado and woodland Cerrado are equivalent to our shrub
grassland and shrub savanna classes, respectively. While they correctly classified 75% of both,
we presented recalls of 83% and 81% for shrub grassland and shrub savanna. Thus, probably
only the handcrafted features, used by the traditional machine learning algorithms, are not
enough to acquire all the information needed about the vegetation classes. Improving the spatial
resolution of the input imagery is also not enough to classifying the Cerrado vegetation. Keeping
the RF algorithm and switching to the same spatial resolution used in this work (2 m), Girolamo
Neto15 and Neves et al.12 obtained 88.9% and 88.2%, respectively, when differentiating the
classes forest, savanna, and grassland. When dealing with the physiognomies, they achieved
recalls of 39.15% and 39.25% for shrub savanna and 63.32% and 72.51% for shrub grassland,
respectively, whereas we achieved 81% and 83% for these two classes.

Each detailed physiognomy has its own floristic composition, vegetation density, and
edaphic factors. The woodland savanna, due to its dense vegetation, is often confused with
forests, whereas the shrub savanna, with a more sparse vegetation, is confused with shrub
grassland, a grassland physiognomy.12,15,16 The confusion between forest and grasslands is
rather rare. Although such a confusion is surprising, it may be related to the presence of humid
open grassland areas in the BNP. This physiognomy is located predominantly close to the
gallery forests11 and, consequently, the misclassified areas occur at the boundaries between
these two classes.

The physiognomies, according to the classification system used in this work,11 present an
increasing scale of density and, consequently, biomass. Under these circumstances, the most
common errors occur in transition areas between the physiognomies. Although this error is more
intense when coarser images are used, this happen to be an issue in every mapping of savanna
physiognomies.16–18 The majority of works that classified detailed physiognomies using tradi-
tional machine learning techniques performed the validation using independent random
points.12,15,16,52 As we performed a semantic segmentation approach, the validation samples
(as well as the training samples) were independent patches (160 × 160 pixels) entirely classified.
Thus, our approach generates a more robust evaluation of the delineation of the physiognomies
and, consequently, the misclassification in transition areas.

The use of a hierarchical classification approach intended to minimize the confusion between
savanna and grassland physiognomies or between any of them with forest patterns. Despite
accounting for the misclassifications of the first level, this approach was efficient to map the
detailed physiognomies, since it achieved higher accuracy rates than other works that intended
to perform a similar task without using hierarchy.15–18 Compared with the other few works that
also used hierarchical approaches,12,13 ours presented superior accuracy rates. Thus, we dem-
onstrated the potential of applying deep learning techniques to open problems in the RS field.

It is important to note, though, that in many applications, and specially in RS, one of the main
limitations of deep learning is the requirement of a large amount of training samples to achieve
acceptable results.60 The amount of samples used in this work (see Secs. 2.4 and 2.5) was sat-
isfactory to differentiate the physiognomies in the BNP. Despite covering a proportionally small
area of the Cerrado biome, the BNP is a preserved area representative of the Cerrado ecosystems
and contains the major physiognomies of the biome.17 However, due to the physiognomy hetero-
geneity across the Cerrado biome,61 the application of our methodology in the entire biome
would require the inclusion of more samples during the training phase.
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5 Conclusions

This study proposed and evaluated a new methodology based on deep learning techniques to
hierarchically classify the Cerrado physiognomies, according to the Ribeiro and Walter11 clas-
sification system. The use of deep learning techniques enabled the creation of maps with higher
detail and accuracy than other techniques such as GEOBIA and general machine learning.
Although it does not completely prevent misclassifications, the use of a hierarchical approach
reduced the confusion between detailed classes. Testing several datasets as input in the networks
showed that the best dataset was composed by RGB bands plus EVI2.

Each Cerrado physiognomy has a different amount of biomass above and below ground and a
unique biodiversity. Consequently, the proper identification and delineation of the Cerrado phys-
iognomies are fundamental to truly understand the role of savanna biomes in the global carbon
cycle. In addition, Cerrado vegetation maps can be used as a proxy in biodiversity studies, since a
high rate of endemism can be found in its physiognomies. The greatest limitation when mapping
the physiognomies of the Cerrado, the second largest biome of a continental-size country such as
Brazil, is the lack of reference data.

The difficulty in differentiating the physiognomy patterns associated to the biome extension
results in few options of vegetation maps, available only for three classes (usually forest, sav-
anna, and grassland) and with a spatial resolution of around 30 m. This limitation is even more
problematic when dealing with a semantic segmentation approach, since reference points are not
enough and entirely classified patches are required as samples for network training. In addition,
we should point out that using a high spatial resolution image also has some limitations to pro-
vide a ground truth regarding the Cerrado vegetation types. Due to the huge spatial variability of
this vegetation, even in field campaigns it is hard to determine where a physiognomy ends and
another one starts.

Under these circumstances, we performed the hierarchical classification methodology using
deep learning in a relevant protected area, the BNP, and was quite efficient to classify the three
major groups of physiognomies, in a first level, and 10 detailed physiognomies, in the second
level. As the Cerrado contains several particularities across the biome, the reproduction of the
method for the entire biome would require the availability of high spatial resolution images
and reference data in the same spatial resolution to generate more samples for training and
validation.

For future work, we suggest the inclusion of additional satellite data to consider other aspects
of the physiognomies (e.g., satellite image time series to include the physiognomies seasonality
in the analysis) in the mapping. As investigations of time series (without considering the spatial
context) with well-known techniques have been carried out already and may not be enough, it is
also suggested to keep the high spatial resolution and apply deep learning architectures that are
appropriate for time series data, such as the long short-term memory networks. The inclusion of
active RS data, such as radar and LiDAR (light detection and ranging) data, can also provide
additional information, especially of the vegetation structure, to differentiate the physiognomies
patterns.
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