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Abstract: Remote sensing of disturbance in the savannas from Brazil is challenging, especially
due to confounding effects of the vegetation phenology and natural soil exposure on the detection
of clearing and fire events. In this study, we investigated the detection of disturbance over this
global hotspot of biodiversity using seven vegetation indices (VIs) calculated from the Landsat
time series (2017–2019) and the Continuous Change Detection and Classification (CCDC) algorithm.
The selected VIs represented distinct biophysical characteristics of the savannas. We evaluated the
effects of disturbance on these VIs and assessed the accuracy of CCDC-detection in 2019, considering
individual VIs, ensemble VIs, and the type of disturbance (savanna clearing and fire). Finally, we
analyzed the possible existence of seasonal patterns of disturbance in a study area located at the new
agricultural frontier of the Cerrado biome. The results showed that the overall accuracy of CCDC
detection of total disturbance ranged from 51.2% for the Green-Red Normalized Difference (GRND)
to 65.9% for the Normalized Burn Ratio (NBR2). It increased to 71.2% for ensemble VIs, whose
multivariate approach reduced the omission errors in the analysis when compared to the use of single
VIs. For detecting events of savanna clearing and fire, the most important VIs used near-infrared
and shortwave infrared reflectance bands on their formulations (NBR2, NBR, and Moisture Stress
Index—MSI). The CCDC accuracy was generally higher for detecting clearing than for mapping
burned areas. In contrast, the recorded date of disturbance occurrence was less precise for detecting
clearing than for recording events caused by fire, especially due to the existence of some gradual
processes of vegetation degradation until complete clearing. Our findings showed also the existence
of a seasonal pattern of disturbance occurrence. Savanna clearing predominated in the transition
from the rainy to the dry season (April to July) to open new areas for agriculture. It preceded most
events of fire disturbance between August and October that occurred near the consolidated areas
of agriculture and extended into the native vegetation areas. Results reinforce the importance of
data-driven approaches for generating early warning alerts of disturbance in the Cerrado to be further
checked in the field.
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1. Introduction

Savannas in Brazil comprise a global hotspot of biodiversity that has already lost half
of the native vegetation cover to crops and pastures [1,2]. Locally known as the Cerrado,
the savannas are the second largest biome in the country and the second largest terrestrial
source of carbon emissions after the Amazon biome [3,4]. Savannas show gradients ranging
from grasslands to woodlands, having species well adapted to natural and human-induced
fires as well as to the strong seasonality of precipitation [5–7].

In addition to its biodiversity, the Cerrado is also very important for agriculture, and
has half of the croplands in Brazil [8–10]. The recent expansion of soybean over native
vegetation of the northern portion of the Cerrado (new agricultural frontier) has increased
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the number of disturbance events in this region [11–15]. As in other regions of the Cerrado,
clearing and fire are the main drivers of disturbance. However, the seasonal pattern of
occurrence of these two types of disturbance is not entirely understood. The comprehension
of the relationships between fire and clearing over each year requires further studies. For
land management, fire is a common practice that generally invades the native vegetation
areas. Although part of the savanna vegetation is adapted to fire, an excessive number
of events may cause biodiversity loss and land degradation [16,17]. Fire is also used in
recently cleared areas to burn and clean the non-photosynthetic vegetation left on the
ground after disturbance (e.g., rest of leaves, branches, and trunks).

To monitor vegetation disturbance caused by clearing and fire in the Cerrado, remote
sensing programs have been developed in Brazil. The use of satellite imagery is perhaps the
only way for large-scale monitoring of this biome [18]. An example of these initiatives is the
project for monitoring the Cerrado developed by the Brazilian National Institute of Space
Research (INPE), which is mostly based on the visual interpretation of several satellite
data. The objective of the INPE’s project is to provide annual rates and warning alerts
of savanna clearings [19]. Monitoring disturbance in the Cerrado is part of the strategies
used to mitigate greenhouse gas emissions and to conserve biodiversity. For instance, if
a similar agreement to the Amazonian Soy Moratorium is adopted to the Cerrado, such
types of remote sensing programs can adequately support the major exporting companies
to not buy and finance soybean production from new savanna-cleared areas. This would
probably reduce savanna-clearing rates, as was observed in the last decade for tropical
deforestation in the Amazon region.

However, satellite monitoring of human-induced disturbance in the Cerrado is not
a trivial task. It still requires the development and testing of new approaches for the
detection of disturbance and the reduction of uncertainties in the data analysis. Some
factors that affect detection are: the distinct resilience of savanna vegetation types to dis-
turbance events; the significant changes in satellite spectral response due to vegetation
phenology; the natural soil exposure due to the presence of more open canopies in the
savanna formations; and the frequency of satellite observations affected by cloud cover.
To reduce the influence of vegetation phenology on clearing detection, vegetation indices
(VIs) calculated in a fixed period of each year (e.g., dry season) can be used as input data
for algorithms. When compared to band reflectance, VIs can reduce data variability associ-
ated with the geometry of data acquisition and with terrain illumination or topographic
effects. This is especially valid for VIs with a band reflectance normalization on their
formulations [20–22]. Algorithms like the Landsat-based detection of Trends in Distur-
bance and Recovery (LandTrendr) retrieve the annual rates of disturbance from Landsat
time series [16,23]. In this case, early warning alerts of disturbance cannot be generated.
Alternatively, algorithms that consider the seasonal response of vegetation can be used
for near real-time detection of disturbance. This is the case of the Continuous Change
Detection and Classification (CCDC), which can detect land cover changes continuously
using all available Landsat data or every time a new image is collected [24].

When compared to other methods, CCDC has the advantage of working with multiple
input variables for providing robust detection of land covers, especially when working with
high quantities of missing data in the time series, as demonstrated in a simulation study
by Awty-Carroll et al. [25]. CCDC uses ordinary least squares in a time series model that
has components of seasonality, trend, and overall values. The CCDC algorithm has been
successfully used in forest environments [26,27]. As far as we know, there are no studies
using CCDC over the savannas in Brazil. When VIs are considered for change detection in
other environments, most studies generally focus on the Normalized Difference Vegetation
Index (NDVI). However, in the Cerrado, it is particularly important to consider adding other
VIs that capture the information of different savanna properties associated with canopy
structure, biochemistry, and plant physiology [28]. There are also specific VIs proposed
to be sensitive to disturbance by fire, such as the Normalized Burn Ratio (NBR) [29]. For
detecting disturbance in the Brazilian savannas, the performance of each VI, or all VIs in
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a multivariate approach with CCDC (henceforth named “ensemble VIs”), has not been
evaluated yet.

In this study, we investigated the detection of disturbance over the savannas in Brazil
using seven VIs calculated from a Landsat time series (2017–2019) and the CCDC algorithm.
The specific objectives were to evaluate: (1) the effects of disturbance on savanna reflectance
spectra and VIs time series; (2) the accuracy of CCDC-detection in 2019, considering single
VIs, ensemble VIs, and the type of disturbance (savanna clearing and fire) in the analysis;
and (3) the possible existence of seasonal patterns of occurrence of fire and clearing for a
better understanding of the dynamics of disturbance in the savannas.

2. Data and Methodology

The main methodological steps for the detection and analysis of disturbance in the
savannas are presented in Figure 1. In the accuracy assessment of the CCDC-derived
maps of disturbance, the detections were compared with reference data (validation points).
Such high-quality data were collected through a sample-based approach (sampling design),
allowing for a careful interpretation of specific areas of the map (response design). Response
design was the step to determine whether the map and reference data would agree. The
reference data were then used to compare the results and finally estimate the accuracy and
area of the changes, and their related confidence intervals (data analysis). The steps are
detailed in the next sub-sections.
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Figure 1. Main methodological steps used for detecting disturbance over the savannas.

2.1. Selection of the Study Area

The study area is located in MATOPIBA, an acronym for the names of four Brazilian
states that compose this region (Maranhão, Tocantins, Piauí, and Bahia). Intensive savanna
clearing for single cropping (soybean, maize, and cotton plantations) or double cropping
(soybean-corn or soybean-cotton rotations) activities in this region is a consequence of sev-
eral factors. These factors include the spillover effect of the Amazon Soy Moratorium to the
Cerrado biome and several local actions for promoting recent agriculture expansion [11–13].
Savanna clearing rates vary with: market oscillations in commodities and land prices; local
policies of credit incentives to agriculture; infrastructure improvement; and technological
advances in soil/crop management practices [14,15].

We selected a study area of 215 km × 215 km located close to the municipalities of
Balsas and Uruçuí in the Brazilian states of Maranhão (MA) and Piauí (PI), respectively
(Figure 2). Intensive savanna clearing, especially for soybean expansion, has already
removed 22% of the native vegetation cover. Native vegetation is mainly composed of
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savanna grasslands (Formações Campestres), shrub savannas (Formações Savânicas), and
woodland savannas (Formações Florestais) [30].

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. Main methodological steps used for detecting disturbance over the savannas. 

 
Figure 2. Location of the study area in the Cerrado biome in Brazil. The MATOPIBA region, indicated 
by the hatched area in yellow, is the newest agricultural frontier of the country. 

2.2. Pre-Processing of Landsat Time Series and Selection of VIs for CCDC 
We used surface reflectance data obtained from 1 January 2017 to 31 December 2019 

by the Enhanced Thematic Mapper Plus (ETM+)/Landsat-7 and Operational Land Imager 
(OLI)/Landsat-8. Despite the data gaps associated with the Scan Line Corrector (SLC) fail-
ure in ETM+ imagery, the remaining pixel observations are useful because they maintain 
the same radiometric and geometric corrections as data collected prior to the failure. All 
the available images from both sensors in the period were considered in the data analysis, 

Figure 2. Location of the study area in the Cerrado biome in Brazil. The MATOPIBA region, indicated
by the hatched area in yellow, is the newest agricultural frontier of the country.

The study area has well-defined rainy and dry seasons, with an average annual
precipitation of 1100 mm [31]. In 2019, the year of our analysis of disturbance, the total
precipitation was 1065 mm. From May to September (dry season), the monthly accumulated
precipitation was generally lower than 35 mm. During the rainy season, rainfall reached
values higher than 170 mm per month between January and March (Figure 3).
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From a geomorphological point of view, there are plateaus and depressions in the
study area. The elevation ranges from 160 m to 663 m with plateaus having more than 400
m of elevation. In contrast to depressions, plateaus allow mechanized agriculture because
of the more favorable slope conditions for the displacement of tractors [16]. Crops are
mostly planted over oxisols that are managed to improve soil fertility.

2.2. Pre-Processing of Landsat Time Series and Selection of VIs for CCDC

We used surface reflectance data obtained from 1 January 2017 to 31 December 2019
by the Enhanced Thematic Mapper Plus (ETM+)/Landsat-7 and Operational Land Imager
(OLI)/Landsat-8. Despite the data gaps associated with the Scan Line Corrector (SLC)
failure in ETM+ imagery, the remaining pixel observations are useful because they maintain
the same radiometric and geometric corrections as data collected prior to the failure. All
the available images from both sensors in the period were considered in the data analysis,
including 469 images from four tiles: 215 images from Landsat-7 and 254 images from
Landsat-8.

On the Google Earth Engine (GEE) cloud-computing platform [32], the reflectance of
the ETM+ bands was radiometrically adjusted to that of the OLI bands using slopes and
intercepts reported by Roy et al. [33] This procedure is recommended to face the spectral
differences in spectral response functions of the bands from both sensors. Such differences
tend to produce, for instance, greater NDVI values for OLI than for ETM+ [33]. Therefore,
statistical functions to adjust the band reflectance between the sensors ensure temporal
continuity of the time series generated from ETM+ and OLI. Moreover, we excluded pixels
under clouds and cloud shadows using the CF-mask algorithm [34,35].

From the surface reflectance data, we calculated seven VIs for detecting disturbance
(savanna clearing and burned areas). Equations and references of the VIs are listed in
Table 1 [29,36–40]. They were selected because of their sensitivity to different biophysical
parameters of the savannas. For instance, the Enhanced Vegetation Index (EVI) and the
Soil-Adjusted Vegetation Index (SAVI) are the VIs more sensitive to changes in vegetation
structure produced by disturbance. They were proposed to reduce constraints of the
NDVI that are mainly associated with signal saturation over dense vegetation, or with
soil background influence over sparse vegetation. On the other hand, the Green-Red
Normalized Difference (GRND) and the Moisture Stress Index (MSI) may detect changes
in old/new foliage and leaf/canopy water stress resulting from gradual processes of
savanna clearing or degradation, respectively. Finally, we also considered in the data
analysis the Normalized Burn Ratio (NBR) and its variant (NBR2), which are VIs sensitive
to fire disturbance. They use near-infrared (NIR) and shortwave infrared (SWIR) bands
on their formulations (Table 1). Therefore, besides their sensitivity to different biophysical
parameters of the savannas, such VIs explore different band combinations of OLI and
ETM+ in the visible, NIR, and SWIR spectral regions.

Table 1. Vegetation indices (VIs) used in the CCDC algorithm for detecting disturbance over the savannas.

VIs Equation Reference

Enhanced Vegetation Index (EVI) 2.5 × ((NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1)) [36]
Green-Red Normalized Difference (GRND) (Green − Red)/(Green + Red) [37]

Moisture Stress Index (MSI) (NIR − SWIR1)/(NIR + SWIR1) [38]
Normalized Burn Ratio (NBR) (NIR − SWIR2)/(NIR + SWIR2) [29]

Normalized Burn Ratio2 (NBR2) (SWIR1 − SWIR2)/(SWIR1 + SWIR2) [29]
Normalized Difference Vegetation Index (NDVI) (NIR − Red)/(NIR + Red) [39]

Soil-Adjusted Vegetation Index (SAVI) 1.5 × ((NIR − Red)/NIR + Red + 0.5)) [40]

2.3. Continuous Change Detection and Classification (CCDC)

The selected VIs of Table 1 were used individually as input data (univariate approach)
and in an ensemble approach (multivariate) for the detection of disturbance with the
CCDC algorithm on the GEE platform. Thus, the algorithm was run eight times: one
run for each of the seven VIs and another run for the ensemble approach (VIs together as
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seven input variables). The ensemble approach explored indirectly the distinct spectral-
biophysical information provided by the seven VIs for disturbance detection. The CCDC
is an online algorithm that uses a data-driven statistic threshold (adjusted for each pixel)
to detect changes in the time series [24]. An online approach means that a model is fitted
to observations from the beginning to the end of the time series, being updated as new
observations become available. Thus, if new observations over the time series do not
diverge widely from the fitted model, they are added to the time series before updating
the model.

The time series modeled by CCDC have components of overall value (mean VI
throughout the time series), seasonality, and trend. In our study, Least Absolute Shrinkage
and Selection Operator (LASSO) regression fitting estimated the coefficients of the model.
After testing different parameters in pixels with available information of disturbance, the
model based on the overall value was then selected for analysis. When we considered
single VIs as input data for CCDC, a disturbance caused by clearing or fire was flagged
when the difference between observed and predicted values by the model exceeded three
times the normalized root mean square error (RMSE) for three consecutive observations. In
the ensemble approach, the algorithm averages and normalizes such differences (observed
minus predicted) by three times the RMSE for all VIs. A disturbance was marked in the
time series when the result was larger than one for three consecutive observations. This
number of observations was set to avoid the pseudo-detection of disturbance caused by
noise in the time series [34]. While noise factors tend to be ephemeral, land cover change
is more persistent through time. The results of the disturbance detection that occurred in
2019 were evaluated.

2.4. Data Analysis from Sampling and Response Designs

The data analysis was divided into three parts. In the first one, the CCDC’s ability to
correctly detect disturbance in 2019 was evaluated per VI and ensemble VIs, considering
also the performance of the metrics as a function of the type of disturbance (savanna
clearing or fire). In the second part, the ability of the algorithm for precise detection of the
time of disturbance occurrence was analyzed. Finally, the last part looked for the possible
existence of temporal patterns of clearing and fire in 2019. The strategy used for accuracy
assessment is described below.

2.4.1. Accuracy Assessment per VI, Ensemble VIs, and Type of Disturbance

The sampling and response design for the accuracy assessment of the CCDC dis-
turbance detection in 2019 was based on the Area Two [41] and Collect Earth Online
(https://collect.earth/; accessed on 30 June 2021) tools, respectively. These applications
provide the necessary tools to comply with the recommended practices and international
guidelines for assessing map accuracy. Using these approaches, we estimated the optimal
number of samples and randomly located them in the study area (sampling design). In ad-
dition, we built a reference dataset for these sample locations (response design) to support
the validation of the results. The sampling design considered only the native vegetation
areas in 2018. Land cover changes observed until 2018 and reported by the INPE’s program
of Cerrado monitoring were masked.

A stratified random sample design with equal sample allocation on each class (dis-
turbed and non-disturbed) was adopted in the work. The stratification was based on the
classes (disturbed by fire, clearing, and non-disturbed) and on the inspection of ancillary
maps. There are two main purposes for stratification. First, the strata are important to
report accuracy per class. Second, the stratification ensures a sufficient representation of
each class, even that occupying a small proportion of the area (e.g., disturbance class). The
sample unit is pixel. We choose an equal number of samples per strata to make possible
the comparison of accuracy per type of disturbance. We selected 588 samples for the
spatial accuracy assessment and area estimation of disturbance in 2019. In addition to
the visual inspection of the Landsat time series, we used other satellite data with more

https://collect.earth/
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detailed spatial resolution than the Landsat instruments for the identification of disturbed
and non-disturbed areas. Examples of these satellites include the MultiSpectral Instru-
ment (MSI)/Sentinel-2 images having some bands with 10-m spatial resolution, and the
PlanetScope satellite constellation with 3-m spatial resolution data.

From the 588 allocated samples, we selected 294 non-disturbed sites and 294 disturbed
sites. We divided also the set of 294 disturbed areas into two groups having an equal
number of samples: one group affected by fire and another one affected by clearing. The
cross-tabulation of the class label (disturbed and non-disturbed) assigned from the CCDC
results against the reference dataset generated the error matrix. The error matrix was the
basis for quantification of the overall accuracy, user’s accuracy (and its complementary
measure, commission error), and producer’s accuracy (and its complementary measure,
omission error) estimates. Based on these estimates, we identified the performance of
each VI and the ensemble VIs for overall detection of disturbance and specific detection of
savanna-cleared and fire-affected areas.

2.4.2. Accuracy of the Detected Time of Disturbance

For evaluating the accuracy of time detection of disturbance by CCDC, we used the
set of 294 disturbed samples by clearing and fire. We tracked them over time in the Landsat
images and VI profiles using the Collect Earth Online. This tool was customized here
to record the type and date of each disturbance in the attributes of the validation points
(shapefile). Thus, the date of change was obtained visually for the reference data and was
compared with the CCDC output to obtain the difference between them. The evaluation of
the date of disturbance occurrence was affected by the number of clear observations in the
images. In other words, the reference date of disturbance occurrence can be different from
the exact time of the event due to the limitations imposed by cloud cover, cloud shadows,
and temporal resolution of the instruments.

The date of change for clearing events considered the time when the vegetation was
completely removed (clear-cutting). The date of change for fire events considered the time
when active fire or burned areas were first recorded in the reference samples. The accuracy
of time detection of disturbance by the CCDC algorithm was then calculated by comparing
this reference dataset with the CCDC outputs of the time of occurrence of each disturbance
type in 2019.

2.4.3. Seasonal Patterns of Savanna Clearing and Fire Events

The relationships between savanna clearing and fire are not completely understood
in the Cerrado environment. In order to look for temporal patterns of occurrence of these
events in the study area, we first inspected our reference dataset by plotting the type of
disturbance on a per-month basis in 2019. We compared these results with the CCDC-
derived disturbance maps.

Because of the difficulties of CCDC to separate both types of disturbance in the time
series, we complemented our analysis using ancillary data from savanna clearing in 2019
provided by the INPE’s program entitled “Sistema de Detecção de Desmatamento em Tempo
Real” (DETER Cerrado; http://terrabrasilis.dpi.inpe.br/; accessed on 21 July 2021). In
addition, we used the 250-m Moderate Resolution Imaging Spectroradiometer (MODIS)
FireCCI v.5.1 product (European Space Agency—ESA) to compare the CCDC results with
the burned areas detected by MODIS in 2019. Such comparisons used the validation points
of disturbance that were also recorded on each product.

3. Results
3.1. Time Series of Vegetation Indices and the Detection of Disturbance

Savanna clearing and fire produced a great variety of changes in surface reflectance
that depended on the intensity of disturbance, the disturbed savanna physiognomy, and
the soil background composition before and after disturbance. For instance, when a
woodland savanna area was cleared in the study area, we observed a reflectance increase

http://terrabrasilis.dpi.inpe.br/
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in the visible and SWIR spectral intervals and a reflectance decrease in the NIR region
(Figure 4a). This response was a combination of the soil reflectance with the reflectance of
non-photosynthetic vegetation left on the ground after clearing (e.g., litter, branches, and
twigs). In contrast, the effect of fire on shrub savannas was to decrease the reflectance of the
NIR and SWIR-1 OLI/Landsat-8 bands (Figure 4b). Recently burned areas over savanna
grasslands had low reflectance for the sensor, which gradually increased from the visible
and NIR (VNIR) to the SWIR.
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Both events of disturbance reduced the VIs response. Because the reflectance after
savanna clearing increased in the red band (640–670 nm) of OLI/Landsat-8 and decreased
in its NIR band (850–880 nm) (Figure 4a), this type of disturbance produced a significant
change in the temporal profile of NDVI (Figure 5a). To be labeled as a disturbance (“break”
in the time series) by the CCDC algorithm, such NDVI modifications for a given pixel
should be distinct from the seasonal NDVI variations produced by vegetation phenology.
NDVI decreased from the rainy to the dry season of each year, reaching the lowest values
toward September under maximum water stress for the plants. As demonstrated in
Figure 5a, clearing can be also followed by a quick vegetation regrowth that may produce
an increase in NDVI and a new pattern of seasonal profile (see NDVI after October 2019 in
Figure 5a).

For detecting disturbance by fire, VIs like NBR were especially important when
used with CCDC because they tracked the reflectance changes over time in the NIR and
SWIR spectral intervals (Table 1; Figure 4b). In our study area, disturbance by fire over
the savannas generally transformed positive NBR values into negative ones. Therefore,
“breaks” in the NBR time series were created because of the NIR reflectance decrease and
the SWIR reflectance increase caused by biomass burning (Figure 5b).
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October 2019.

3.2. Variations in Accuracy Metrics per VI, Ensemble VIs, and Type of Disturbance

The CCDC algorithm detected 1.24 ± 0.12 Mha of total disturbance (clearing plus
fire) in 2019. This result is based on the ensemble approach. The other VI-area estimates
presented approximately similar results, since the estimates were based on a stratified
estimator. This number represents an area equivalent to 41.8% of the native vegetation
of our site. The overall accuracy of detection ranged from 51.2 ± 4.2% for GRND to
65.9 ± 4.2% for NBR2, and increased to 71.2 ± 4.0% for ensemble VIs (Table 2). The best
single VIs for detecting total disturbance were therefore metrics that used NIR, SWIR-1,
and SWIR-2 reflectance bands of the Landsat instruments on their equations (NBR2, NBR,
and MSI in Table 1).
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Table 2. Overall accuracy (OA) with confidence intervals (CI) for the CCDC detection of disturbance over savannas using
different vegetation indices (VIs) and ensemble VIs. Producer’s (PA) and User’s (UA) accuracies are also indicated for the
disturbance and non-disturbance classes.

Input Data OA (%) 95% CI PA (%)
Disturbance Class

UA (%)
Disturbance Class

PA (%) Non-
Disturbance Class (%)

UA (%) Non-
Disturbance Class

Ensemble VIs 71.2 4.0 35.0 90.2 97.3 67.5
NBR2 65.9 4.2 17.5 97.6 99.7 63.4
NBR 64.9 4.3 13.7 96.0 99.6 63.0
MSI 61.0 4.3 7.8 97.0 99.8 59.7
EVI 59.6 4.4 5.1 98.9 100 58.7

SAVI 57.9 4.3 4.5 97.4 99.9 57.1
NDVI 57.9 4.3 4.5 97.4 99.9 57.1
GRND 51.2 4.2 1.7 93.3 99.9 50.8

For ensemble VIs, the producer’s accuracy varied from 35.0% (high omission error) to
97.3% (low omission error) for the disturbance and non-disturbance classes, respectively
(Table 2). On the other hand, user’s accuracy ranged from 90.2% to 67.5%, indicating a low
commission error for detecting disturbance. In Table 2, the contrast between producer’s and
user’s accuracies occurs because of the differences in the proportion of the disturbed and
non-disturbed classes. The disturbance class had higher user’s accuracy (small commission
error) and lower producer’s accuracy (large omission error) than the predominant non-
disturbance class in the scene. The use of an unbiased estimator accommodates the effects
of map classification errors in the area estimates. Compared to the use of single VIs, a
practical effect of the ensemble CCDC approach was to reduce the omission error and
slightly increase the commission error (Figure 6).
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When we considered the performance of detection of each VI or ensemble VIs per
type of disturbance, we observed higher accuracies over cleared areas than over burned
areas (Figure 7). NBR2 had the highest accuracy values for detecting fire (34.0%) and
clearing (55.2%) disturbance. Such values increased to 36.7% and 71.4%, respectively, when
ensemble VIs were used as input data to CCDC (Figure 7).
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3.3. Assessment of the Correct Time of Disturbance

The evaluation of the correct time of CCDC-detection of disturbance occurrence from
the ensemble VI approach showed larger uncertainties in days for events of savanna clear-
ing than for events caused by fire. This fact was indicated in Figure 8 by the lower data
dispersion around the zero-day line recorded for fire disturbance detection (Figure 8b)
when compared to clearing detection (Figure 8a). Disturbance by fire comprised more
abrupt events than savanna clearing, which usually includes gradual processes of degrada-
tion before the complete removal of vegetation cover. The degradation process produces
uncertainties in establishing the exact date of vegetation suppression. On the other hand,
clearing events are more detectable than disturbance by fire because of the predominant
period of their occurrence in the beginning and middle of the dry season. The great
availability of cloud-free images in this period favors the detection of three consecutive
observations of clearing change by the CCDC algorithm, which does not occur for fire.
Using single VIs in the data analysis, results were approximately similar to those observed
with the ensemble approach.

The availability of clear observations in the images of the study area was variable over
space and time. The greatest difficulties of tracking over time such disturbance events were
noted during the rainy season, when the frequency of satellite observations decreased due
to cloud cover and related shadows. For instance, the average number of Landsat clear
observations per pixel reached its maximum value in the dry season between July and
August (Figure 9). Therefore, the assessment of the correct time of disturbance occurrence
detected by the CCDC was biased to some extent by the dry season period. Moreover,
disturbances that occurred in areas with a low number of clear observations can be detected
with greater delay when compared to the real date of its occurrence.
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Figure 8. Time accuracy of CCDC-detection over (a) cleared- and (b) burned-savanna areas. Negative
values indicate early detection compared to the reference, while positive values indicate late detection.
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were omitted for better graphical representation.

From the set of reference samples detected as disturbance by CCDC, 74% of them
matched ±5 days of the occurrence of fire. Considering the most favorable period of
imagery (dry season), when the combination of sensors can generate up to four monthly
observations (Figure 9), this difference in days is likely non-statistically significant. It is
lower than the 8-day spaced interval of data acquisition in the dry season. For clearing, 70%
of the reference samples matched ±30 days of the occurrence of the events. As mentioned
before for savanna clearing, early detection by the CCDC was generally associated with
processes of vegetation degradation preceding the complete removal of vegetation.
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3.4. Seasonal Patterns of Occurrence between Savanna Clearing and Fire

Inspection in the reference dataset of the date of occurrence of clearing and fire events
revealed the existence of a seasonal pattern of disturbance in the study area (Figure 10).
Savanna clearing predominated between April and July, while fire disturbance mainly
occurred between August and October. This result is important because the discrimination
between these two types of disturbance is not an easy task using data-driven procedures.
Therefore, there is a period more favorable to detect cleared areas (April to July) that
precedes the largest occurrence of biomass burning (August to October) (Figure 10).

We plotted the CCDC-detected disturbed areas for the two periods of analysis: April to
July (Figure 11a), and from August to October (Figure 11b). Assuming the existence of the
seasonal pattern of disturbance observed in Figure 10, we anticipate that the extension of
cleared areas is much smaller than that of burned areas. Furthermore, most of the disturbed
areas between August and October occurred predominantly near the consolidated areas of
agriculture (areas in white in Figure 11), indicating possible land conversion for agriculture
expansion (ignition sources). Low air humidity, high temperatures, water stress for the
plants, and great amounts of non-photosynthetic vegetation (fuel load) occur at the end of
the dry season. These factors favor fire expansion.
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The consistency of the results of Figures 10 and 11 was confirmed after the inspection
of cleared areas mapped in 2019 by the DETER Cerrado program (Figure A1 in Appendix A),
and of the burned areas mapped in both periods by the 250-m MODIS FireCCI v.5.1 product
(Figure A2). Figure A1 confirmed the predominance of savanna clearing events between
April and July, while Figure A2 showed the highest frequency of fire disturbance events
recorded in the second period of observation (August to October) in the vicinities of the
agricultural areas (areas in white).
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4. Discussion

Our study has important contributions for the remote sensing of disturbance in the
savanna environment. As far as we know, this is the first investigation using univariate
and multivariate approaches that evaluates the detection of disturbance in the Brazilian
savannas from a set of VIs that respond differently to biophysical attributes of vegetation.
In addition, our investigation demonstrates for the first time the performance of each VI
and ensemble VIs to detect two types of disturbance (savanna clearing and fire). Finally,
it shows the existence of a seasonal pattern of occurrence between these two drivers of
disturbance in the MATOPIBA region.

When compared to the available projects of Cerrado monitoring that are mostly based
on visual interpretation of satellite data, the current approach is automated and does not
require training samples to detect disturbance. This is very important because we have
observed a large reflectance variability over the savanna physiognomies in response to
different types and intensities of disturbance. In this context, our approach using CCDC
and ensemble VIs can optimize the generation of early warning alerts of disturbance to
be further inspected in the field. Our data-driven approach can be extended into other
savanna areas from Brazil, since the selected site is representative of the different patterns
of land use, vegetation physiognomy, and geomorphology observed in a great part of
the biome.

Our findings showed that the most important VIs to detect savanna clearing and fire
used NIR and SWIR Landsat bands on their formulations (e.g., NBR, NBR2, and MSI).
This result is not a surprise, since the first two VIs have been designed to detect burned
areas [29]. Moreover, MSI is sensitive to changes in canopy water that may result from
gradual processes of vegetation degradation [5,28]. It also expresses modifications in
non-photosynthetic vegetation left over in the soil surface after events of savanna clearing
(e.g., dry leaves, branches, and twigs). Our findings also agree with results obtained by
Bueno et al. [42], who showed the importance of the SWIR-derived VIs (e.g., NBR and
NBR2) to detect clearing in highly seasonal areas of Brazilian savannas. When using the
Breaks For Additive Season and Trend (BFAST) algorithm over a savanna site located in
southeastern Brazil, Bueno et al. [43] obtained an overall accuracy ranging from 54.7% to
59.6% for different VIs. This accuracy was approximately consistent with results obtained
in our work with the use of single VIs. On the other hand, it was comparatively lower than
the accuracy reported for our ensemble approach (71.2%).

From a visual comparison between the VI disturbance maps, we observed that their
similarity depended on the intensity of disturbance and on the spectral range of VI opera-
tion. For instance, most VIs detected intense disturbance, while VIs operating at a similar
spectral interval (e.g., NDVI and SAVI) produced maps that were more similar. The ensem-
ble approach using CCDC took advantage of these aspects. Using the CCDC algorithm,
the ensemble VI approach had a better performance for detecting overall disturbance than
the use of single VIs. When compared to NBR2, the ensemble VIs increased the overall
accuracy of detection from 65.9% to 71.2%. This result indicates an advantage of the CCDC
over other time-series algorithms that do not run with multiple input data [23,44–46].
However, even for these algorithms, our results are useful when indicating single VIs that
deserve attention and testing over other savanna areas of the world.

In the literature, it is very difficult to compare the results of different products gen-
erated from distinct approaches, satellite data, and sensor specifications. For instance,
our approach uses a data-driven procedure with Landsat data, while the DETER Cerrado
program involves visual interpretation of medium spatial resolution CBERS/WFI and
endmember-fraction images. Even considering the limitations of such a comparison, we
observed that 73.14% of our reference samples detected as disturbed sites by CCDC were
also assigned as savanna-cleared areas by the DETER Cerrado. On the other hand, when we
compared our CCDC-detected reference samples of fire disturbance with the burned areas
mapped by the 250-m MODIS FireCCI v.5.1 product, the agreement was only 40.7% on a
per-pixel basis.
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The differences in agreement between the clearing and burning products are explained
by different factors. For instance, there is a greater duration of the signals of clearing
disturbance over the OLI/Landsat-8 images when compared to burning events. Overall,
our results showed that the CCDC accuracy was generally higher for detecting clearing
than for mapping burned areas, but the contrary was observed for the accuracy of the
actual date of disturbance occurrence. As mentioned before, the great availability of
cloud-free images in the predominant period of savanna clearing favors the record of three
consecutive observations in the CCDC algorithm for the assignment of change. On the
other hand, fire comprises more abrupt events than savanna clearing, which may include
gradual processes of degradation. Such processes add uncertainties in establishing the
exact date of vegetation suppression.

Another interesting result obtained here is the existence of a seasonal pattern of
disturbance occurrence in MATOPIBA. Our results showed the predominance of savanna
clearing between April and July, and of disturbance caused by fire between August and
October. They were consistent with reports published by Schmidt and Eloy [46] on the
fire regime in the Brazilian savannas. According to them, the lack of fire management
causes wildfires over native vegetated areas, especially during the late dry season (August–
October) and near the agricultural fields. From 2000 to 2018, the new agricultural frontier
of MATOPIBA was responsible for approximately 40% of the total cleared areas of the
Cerrado biome and for 57% of the burned areas, as indicated by data of the MapBiomas and
INPE’s projects of savanna monitoring [47].

Finally, our study has some constraints to consider in future investigations of savannas.
For instance, we did not consider other algorithms in the analysis of disturbance. Recent
studies have proposed also the use of an ensemble of time series algorithms to monitor
land cover changes [48]. By comparing four dense time series algorithms using simulated
data, Awty-Carroll et al. [25] discussed the advantages and limitations of each approach.
They demonstrated the advantage of CCDC in working with multiple input variables
for providing robust detection of land covers, especially when high quantities of missing
data occur in the time series. This is the case with our datasets, which have distinct
frequencies of satellite observations in the rainy and dry seasons of MATOPIBA due to
cloud cover. In this context, we did not consider the inclusion of other satellites than
Landsat (e.g., MSI/Sentinel-2) to produce denser time series. This would require strategies
of data harmonization that may add other uncertainties in the data analysis. The number
of images was still a limiting factor for disturbance detection in MATOPIBA, adding
commission errors during the rainy season and omission errors at the end of the dry season.
This limiting factor also added uncertainties in the definition of the date of disturbance
occurrence. In spite of these constraints, our results reinforce the importance of data-driven
procedures for the fast generation of near real-time warning alerts of disturbance to be
carefully inspected in the images and further checked in the field.

Therefore, future studies should consider hybrid satellite datasets to produce denser
time series. By increasing the number of consecutive observations, the accuracy of distur-
bance detection by CCDC will probably increase. Future studies should also consider the
use of high spatial and temporal resolution data from a constellation of satellites, espe-
cially if reflectance data from the NIR, SWIR-1 and SWIR-2 spectral regions are available
for disturbance analysis. For instance, daily observations from the PlanetScope satellite
constellation with spatial resolution of 3 m should be tested over the savannas.

5. Conclusions

The use of a time series of VIs with different sensitivities to biophysical attributes of
savannas in an ensemble approach improved the CCDC-detection of disturbance when
compared to the detection using single VIs. Considering the specific objectives of the work,
we concluded that:
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(a) The disturbance caused by clearing and fire produced significant reflectance modi-
fications in the NIR and SWIR-1,2 Landsat bands that explained the better performance of
NBR2, NBR, and MSI to detect such events.

(b) The ensemble VI approach with CCDC had an accuracy of 71.2 ± 4.0% for detecting
total disturbance (savanna clearing plus fire), reducing the omission errors when compared
to the use of single VIs in the analysis. The accuracy was generally higher for detecting
clearing rather than for mapping burned areas, but the opposite was observed with respect
to the recorded date of the occurrence of disturbance.

(c) Savanna clearing predominated in the transition from the rainy to the dry season
(April to July), while most events of fire disturbance occurred between August and October
toward the end of the dry season.

Finally, the results highlight the importance of data-driven approaches for generating
early warning alerts of disturbance in the Cerrado to support programs of monitoring of
savannas.
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Figure A1. Savanna-cleared area in 2019 mapped in the study area by the Sistema de Detecção de 
Desmatamento em Tempo Real (DETER Cerrado) from the Brazilian National Institute of Space Re-
search (INPE). Results from the interpretation of MODIS/Terra, WFI/CBERS-4, and endmember 
fraction images confirm the existence of a predominant period of clearing (April–July) in the study 
area indicated in Figure 10. 

Figure A1. Savanna-cleared area in 2019 mapped in the study area by the Sistema de Detecção
de Desmatamento em Tempo Real (DETER Cerrado) from the Brazilian National Institute of Space
Research (INPE). Results from the interpretation of MODIS/Terra, WFI/CBERS-4, and endmember
fraction images confirm the existence of a predominant period of clearing (April–July) in the study
area indicated in Figure 10.
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Figure A2. Burned area in two distinct periods of 2019, registered by the 250-m MODIS FireCCI v.5.1 product (European 
Space Agency—ESA): (a) April to June and (b) August to October. Results confirmed the higher frequency of fire disturb-
ance events observed in the second period, as indicated in Figure 10. White represents consolidated areas of agriculture 
that have been masked before the data analysis. 
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