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Dynamic scaling of out-of-plane fluctuations in freestanding graphene
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We study the dynamical behavior of the mean-square displacement of height fluctuations of freestanding
graphene using a phase-field-crystal model introduced recently. We find that the dynamic scaling behavior
obtained numerically at long times is well described by the scaling theory of polymerized membranes. The
critical exponent characterizing the power-law increase with time depends only on the equilibrium roughening
exponent ξ as α = ξ/(1 + ξ ). For sufficiently long times it crosses over to linear behavior for finite-size systems.
The critical exponent α is in good agreement with the anomalous diffusion exponent observed experimentally
in graphene, suggesting this is a property that could also be observable in other two-dimensional crystalline
materials.
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I. INTRODUCTION

The dynamics of flexible two-dimensional (2D) materials
has recently received considerable attention. Of particular
interest is freestanding graphene, which has many potential
technological applications [1–5]. Its high degree of mechan-
ical deformability induces significant flexural modes that
can, e.g., control thermal conduction in freestanding pristine
graphene [6]. While the effects of thermal fluctuations have
been studied by different approaches [1,2,5,7–11], there is
still a lack of detailed and fundamental understanding of the
dynamical behavior of such fluctuations [1,3–5,12,13]. Accu-
rate measurements have been performed on the mean-square
height displacement [1] induced by thermal fluctuations, with
scanning tunneling microscopy (STM). Surprisingly, the time
dependence of height fluctuations has revealed anomalous
subdiffusive behavior at long times t , with a power-law be-
havior tα and α ≈ 0.3. Since out-of-plane fluctuations of
graphene can be well described by elastic membrane mod-
els [7,8,14], an interesting question concerns the possible
universality of such dynamic behavior. If this were the case,
this behavior should not depend on the microscopic details.
The value of α would then be constrained by the more funda-
mental roughening and dynamical critical exponents ξ and z.
They characterize the power-law increase of the mean-square
out-of-plane fluctuations as L2ξ , and their crossover time as
Lz, for a system of linear size L.

To examine these phenomena we use here a phase-
field-crystal (PFC) model of 2D graphene that incorporates
out-of-plane deformations in addition to in-plane deforma-
tions while still maintaining atomic resolution. Previously

2D PFC models have been used to study a variety of phe-
nomena of atomistically thin films, including moiré patterns,
grain boundary energies, triple junction energies, and poly-
crystals in graphene [15–17], and inversion boundaries and
the formation and dynamics of defects in hexagonal boron
nitride (hBN) [18,19]. Such models have also been used to
study thermal fluctuation effects in adsorbed layers [20,21].
These models were able to predict grain boundary energies
and structures, dislocation and inversion boundary energies,
and motion in overall agreement with molecular dynamics,
quantum-mechanical density functional theory, and exper-
iments. Recently, a PFC model of layered materials was
introduced specifically for graphene and hBN and bilayers of
such systems [22]. For an atomistically thin layer, the PFC
model with out-of-plane deformations describes the system
by two coupled continuous fields, one representing the par-
ticle density and the other height fluctuations with a small
amplitude. Thus, such a model is particularly suitable for
the study of the universal dynamical properties of crystalline
membranes, such as freestanding graphene.

In the present Letter we thus focus on the dynamical be-
havior of freestanding graphene using the PFC model with
out-of-plane deformations as mentioned above. The numerical
simulations of the mean-square height displacement fluctu-
ations show that at sufficient long times in finite systems
the behavior is diffusive with α = 1, but at intermediate
times the exponent corresponds to subdiffusive behavior with
α < 1. We find that this behavior can be described by a
dynamic scaling theory already developed for polymerized
membranes [23]. The data for different system sizes collapse
as predicted by the theory. For sufficient large systems, only
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the short-time and intermediate-time behavior would be ob-
served within a limited timescale. Remarkably, the scaling
theory also predicts that the exponent α is given analytically
as α = ξ/(1 + ξ ), being independent on the particular type
of dynamics. The results are in good agreement with the ex-
perimental observation of subdiffusive behavior at long times
in freestanding graphene [1]. It indicates that it is a universal
property resulting from thermal fluctuations and the nonlinear
coupling between in-plane and out-of-plane fluctuations that
could also be observable in other 2D crystalline materials.

II. PFC MODEL WITH OUT-OF-PLANE DEFORMATIONS

We use the PFC approach to describe the freestanding
graphene as a 2D membrane in thermal equilibrium, allowing
for deformations out of the plane, in addition to in-plane
deformations. The model is described by the effective Hamil-
tonian [22]

H

cg
=

∫
d�r

[(
�B

2
n2 + Bx

2
n
(∇2

s + 1
)2

n + τ

3
n3 + v

4
n4

)

+ 1

2
κ

∫
d�r′C(�r − �r′)h(�r)h(�r ′)

]
, (1)

where n(�r) is the density field and h(�r) is the height displace-
ment measured from a base plane with �r = (x, y), and cg is
an energy-scale parameter. In Fourier space, C(k) = k4 for
k < kmax and C(k) = Cmax for k > kmax. Values of Cmax and
kmax are chosen to eliminate small-scale fluctuations of h(�r).
The surface Laplacian is approximated by

∇2
s ≈ ∇2

xy − (
h2

x∂
2
x + h2

y∂
2
y + 2hxhy∂x∂y

)
, (2)

assuming a small gradient expansion of h(�r), where hx =
∂h/∂x and hy = ∂h/∂y. The values of the parameters entering
Eq. (1) were chosen to model graphene [22] and are given
in Sec. IV. The parameter �B largely controls the transition
from liquid to crystalline states. The second term in Eq. (1)
leads to the emergence of periodic equilibrium states and
is responsible for in-plane elasticity. For τ > 0 (τ < 0), the
equilibrium has honeycomb (triangular) symmetry. The last
term controls the bending energy of the sheet.

The time evolution is obtained from dissipative dynamics,
which drives the system to the minimum of the free-energy
functional. The dynamics of the density field n is conservative,

∂nh

∂t
= ∇2 δH

δnh
+ ηn(r, t ), (3)

while it is nonconservative for the height field h,

∂h

∂t
= −δH

δh
+ ηh(r, t ), (4)

where ηn and ηh are white noise terms describing the effects
of thermal fluctuations [20] at temperature T , with zero mean
and

〈ηn(�r, t )ηn(�r′, t ′)〉 = 2T ∇2δ(�r − �r′)δ(t − t ′), (5)

〈ηh(�r, t )ηh(�r′, t ′)〉 = 2T δ(�r − �r′)δ(t − t ′). (6)

As shown previously [22], the model reduces to the continu-
ous elastic model used to study flexible sheets [24] in the limit

of small deformations. In this limit and T = 0, the stationary
solutions of these equations correspond to the minimization
of the energy functional of Eq. (1), leading to the von Kármán
equations for the bending of thin plates [25].

The numerical simulations described in Sec. IV were
performed mainly with conservative dynamics for n(r) but
additional calculations used nonconservative dynamics anal-
ogous to Eq. (4).

III. DYNAMIC FINITE-SIZE SCALING

The scaling theory for the mean-square displacement
of height fluctuations has already been considered in the
context of polymerized membranes [23]. Fluctuations can
be described by an elasticity theory where the in-plane
and out-of-plane deformations are coupled by a nonlinear
term [24,26]. The combined effect of this coupling and ther-
mal fluctuations leads to the mean-square fluctuations out of
the plane of the membrane, 〈h2

p〉, increasing with system size
L as a power law 〈h2

p〉 ∝ L2ξ , with the roughening exponent
ξ ≈ 0.6 significantly different from its value in the absence
of the nonlinear coupling, ξ = 1. The time evolution of the
mean-square height displacement 〈�h(t )2〉 = 〈[h(r, t0 + t ) −
h(r, t0)]2〉 can be divided in three different regimes. For short
times, the behavior depends on the details of dynamics at short
length scales and is not expected to be universal. On the other
hand, at intermediate and long times it does not depend on
the microscopic length, although it can still depend on the
type of dynamics. As in critical phenomena, one then expects
that at intermediate and long times it should satisfy the scaling
form [23]

〈�h(t )2〉 = L2ξ
(t/Lz ), (7)

where z is the dynamic critical exponent. In a finite system
with free-boundary conditions, the center-of-mass diffusion is
the dominant contribution in the long-time regime, leading to
a linear behavior 〈�h(t )2〉 ∼ Dcmt , where Dcm is the diffusion
coefficient and thus the scaling function 
(x) ∝ x for large x.
Moreover, since Dcm ∝ 1/L2, the dynamic exponent is con-
strained to

z = 2(1 + ξ ). (8)

In the intermediate-time regime, where the behavior is size
independent, the scaling function should behave as 
(x) ∼
x2ξ/z. Then from Eq. (8) the scaling form implies that
〈�h(t )2〉 ∝ t2ξ/z ∼ tα with the critical exponent given by

α = ξ

(1 + ξ )
. (9)

This subdiffusive behavior corresponding to α < 1 results
from the collective effects of internal modes, which dominate
the dynamical behavior at the intermediate-time regime.

A notable feature of the scaling relation of Eq. (9) is that α

depends only the critical exponent ξ , which is a static equilib-
rium property. This is a consequence of the scaling relation (8)
for the dynamical exponent z, which is determined by ξ , rather
than being an independent critical exponent. Therefore, α is
independent of the details of the particular dynamics chosen
to model the time evolution of the system. Other properties,
however, may depend on the dynamics.
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We find it useful to include the temperature T explicitly
in the scaling form. Assuming that the center-of-mass diffu-
sion constant obeys the usual Einstein’s relation, Dcm = T μ,
where μ is the mobility, and that 〈h2〉 ∝ T L2ξ , as obtained
from harmonic elasticity theory [26], the same arguments
above lead to the scaling form

〈�h(t )2〉 = T L2ξ
(t/Lz ). (10)

In the Appendix, we demonstrate this scaling form in the
absence of the nonlinear coupling between in-plane and out-
of-plane deformations, corresponding to Bx = 0 in Eq. (1),
and also show that in the presence of this coupling the lin-
ear behavior 〈�h(t )2〉 ∝ T t remains valid in the long-time
regime.

For the experiments on graphene, the scaling theory should
be valid in the temperature regime where topological defects
are absent. This condition is well satisfied since experiments
are usually performed around room temperature [1], where
the thermal energy is much smaller than the excitation energy
of such defects. Moreover, since from Eqs. (7) and (10), the
crossover time τ , where the long-time behavior of linear dif-
fusion sets in, scales as

τ ∝ Lz, (11)

only the intermediate-time behavior is observed for large
systems within the limited experimental timescale, with the
power-law behavior 〈�h(t )2〉 ∼ tα . Thus the critical exponent
α given by Eq. (9) corresponds to the anomalous diffusion
exponent observed at long times in the experiments. Us-
ing the value of ξ obtained from Monte Carlo simulations
of graphene [7] ξ = 0.575, we obtain α = 0.365, which is
in good agreement with the anomalous exponent found ex-
perimentally [1]. In the next section, we present numerical
simulation results from the PFC model of Eq. (1) providing
support to the scaling forms of Eqs. (7) and (10) for freestand-
ing graphene.

IV. NUMERICAL SIMULATIONS

The coupled Eqs. (3) and (4) are solved numerically in
Fourier space [22] with wave vector �k, as a function of time t
with time step �t . A square lattice is used of linear size L�x
with periodic boundary conditions and mesh size �y = �x.
To eliminate small-scale fluctuations of n(�r), ηn(k, t ) is set
to zero for k > kmax. We set the PFC parameters to �B =
−0.15, Bx = 1, τ = −0.874 818, v = 1, κ = 0.209 726 and
cg = 6.58 eV, which has been shown previously to describe
many properties of graphene in the ground state [22]. Dimen-
sionless units are used in the Hamiltonian. The conversion
factors for temperature and length are cg/kB and 0.353 Å,
respectively. However, it is not possible to convert time to
physical units because the kinetic coefficients in the phe-
nomenological equations, Eqs. (3) and (4), are arbitrary. The
main results are obtained for mesh size �x ≈ 0.5, time step
�t = 0.5, and kmax = 0.5. In dimensionless units, room tem-
perature corresponds to T ≈ 0.004. Figure 1 illustrates the
ground-state configuration and a typical configuration at T =
0.004. The numerical results described below were obtained
at higher temperatures, T � 0.02, and system sizes up to
L = 250 in order to reach thermal equilibrium and observe

FIG. 1. Ground-state configuration (left) and representative con-
figuration at T = 0.004 (right), corresponding to ∼300 K.

crossover behavior within the limited computer time. For this
range of temperatures, the thermal length [27] above which
nonlinear thermal fluctuations are expected to dominate cor-
responds to Lth < 7 Å, well below the system sizes used in the
numerical simulations (∼50 Å) and experiments (∼7 μm).

From the time dependence of the height fluctuations h(r, t )
at a fixed value of �r, we computed its mean-squared dis-
placement 〈�h(t )2〉 = 〈[h(r, t0 + t ) − h(r, t0)]2〉 for different
system sizes. The time average was performed after the ini-
tial ground-state configuration reached thermal equilibrium,
which required typically 105 time steps. Figure 2 shows the
time dependence for small systems (L < 160) at T = 0.04. It
displays three different regimes. The intermediate- and long-
time regimes can be characterized by the power-law behavior
〈�h(t )2〉 ∼ tα . For the smallest system at long times α ≈ 1,
which is the conventional diffusive behavior. For the largest
system L = 160, at intermediate times α ≈ 0.35, before cross-
ing over to α ≈ 1 at long times. For much larger systems,
crossover to the behavior with α ≈ 1 is not observed within
the time available in the present calculation. For the short-time
behavior α ≈ 0.6. We do not observe thermally excited topo-
logical defects, such as isolated dislocations for these system
sizes. However, they are predicted to occur for sufficiently
large systems due to the finite value of the dislocation en-
ergy [25].

The crossover from an intermediate-time regime with
subdiffusive dynamics to normal diffusion at long times is
consistent with the dynamical scaling theory of equilibrium
fluctuations [23] described in Sec. III. In Fig. 3 we show
a scaling plot of 〈�h(t )2〉/L2ξ vs t/L2(1+ξ ), according to
Eqs. (7) and (8), containing a single adjustable parameter
ξ . The best data collapse is obtained with the roughening
exponent ξ = 0.62(9) which is comparable with the previous

FIG. 2. Mean-squared height displacement 〈�h(t )2〉 as a func-
tion of time t for different systems sizes L at T = 0.04. Dotted lines
are power-law fits, at intermediate times for L = 160 and at long
times for L = 50.
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FIG. 3. Scaling plot of the data in the intermediate- and long-
time regimes from Fig. 2 according to Eq. (7) with ξ = 0.62.

estimates from Monte Carlo simulations of an atomistic model
of graphene [7], ξ = 0.575. Simulations and analytical results
for different models of fluctuating tethered membranes give
values in the range [28] ξ = 0.575–0.66. The roughening
exponent can also be obtained directly from the mean-square
out-of-plane fluctuations 〈h2

p〉 = 〈h(r, t )2〉 − 〈h(r, t )〉2, which
is an equilibrium quantity and should scale with system size
as [24,26] 〈h2

p〉 ∝ T L2ξ . As shown in Fig. 4, the size de-
pendence of 〈h2

p〉 can be fitted to a power law giving the
estimate ξ = 0.53(5), consistent with the above estimate from
the dynamic scaling. From Fig. 4, we estimate a typical out-

of-plane fluctuation
√

〈h2
p〉 ≈ 5 Å for a 1-μm sample at room

temperature, which is in the range of measured values [1,2,7].
Additional results were obtained from simulations with

nonconservative dynamics for n(r), analogous to Eq. (4). Ac-
cording to the scaling relation of Eqs. (8) and (9), z and α

depend only on the critical exponent ξ , which is a thermal
equilibrium property. Therefore, they should be independent
of the details of the particular dynamics. Indeed, as shown in
Fig. 5 for T = 0.4, α = 0.72(9), and the scaling plot gives the
same results as obtained above with conservative dynamics
within the estimated errors.

FIG. 4. Mean-square out-of-plane fluctuation as a function of
system size at T = 0.04. The dotted line is a power-law fit
〈hp(r, t )2〉 ∝ L2ξ with ξ = 0.53(5).

FIG. 5. (a) Mean-square height displacement 〈�h(t )2〉 as a func-
tion of time t for different systems sizes L, with nonconserved
dynamics for n(r) at T = 0.4. Dotted lines are power-law fits at inter-
mediate times for L = 160 and at long times for L = 40. (b) Scaling
plot according to Eq. (7) with ξ = 0.72.

From Eq. (9), the anomalous subdiffusion exponent is in
the range α = 0.3–0.41 using our above estimates of ξ . It
is consistent with the one observed experimentally at long
times [1], α ≈ 0.3, in measurements of the vertical motion
of atoms in freestanding graphene at room temperature. The
absence of crossover to linear diffusion at long times indicates
that the crossover time τ from Eq. (11) is beyond the timescale
of the experiment. Although the temperature here is much
higher, additional calculations at different temperatures give
similar results. In fact, data collapse is found for different
temperatures according to Eq. (10) as shown by the scaling
plot in Fig. 6, with ξ = 0.5(1). Since the temperature appears
just as a multiplicative factor in the scaling form of Eq. (10),
the same crossover behavior should be observed at the lower
temperature of the experiments.

There is a surprising finding in the experiments, however,
that is not reproduced by the present simulations of the PFC
model. The probability distribution of the membrane velocity
obtained from the time dependence of the height displacement
was found to be well described by a Lorentzian distribu-
tion [7]. Instead, we find that the velocity distribution is better
described by a Gaussian, as shown in Fig. 7. This could be
due to the pure relaxational dynamics described by Eqs. (3)
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FIG. 6. Scaling plot including different temperatures, according
to Eq. (10) with ξ = 0.5.

and (4) which ignore, for example, inertial effects [21]. On the
other hand, if the Lorentzian distribution results from mirror
buckling events occurring at very large timescales [1,5,12,13],
as suggested by the atomistic calculations, these effects would
not be observable in the numerical simulations. In the exper-
imental work it was proposed that the anomalous exponent α

is a consequence of such a particular Lorentzian distribution.
Nevertheless, since we find that α depends only ξ , which is an
equilibrium property, it indicates that the anomalous α is not
necessarily a consequence of a particular velocity distribution.

V. SUMMARY AND CONCLUSIONS

Thermally induced fluctuations of freestanding graphene
were studied by a PFC model introduced recently [22], which
incorporates out-of-plane deformations in addition to in-plane
deformations. The mean-square displacement of height fluctu-
ations at sufficient long times in finite systems shows a linear
diffusive behavior tα with α = 1, while at intermediate times
the behavior is subdiffusive, α < 1. The crossover between
the two different regimes and its dependence on system size
can be described by a dynamic scaling theory developed for
polymerized membranes [23]. We have demonstrated that the
data for different system sizes and temperatures collapse into
a single curve as predicted by the scaling arguments. For suffi-
cient large systems, only the short-time and intermediate-time
behavior would be observed within a limited timescale, as

FIG. 7. Velocity probability distribution for L = 160
at T = 0.04, fitted to different analytical forms (dotted
lines). Left panel: Red dashed line shows the Gaussian
distribution e−(v−v0 )2/2σ 2

/σ
√

2π . Right panel: Lorentzian
distribution (1/π)/{1 + [(v − v0 )/]2}. Velocity is in units
of (�x/�t ) × 10−4.

found experimentally. If the experimental conditions prevent
the center-of-mass diffusion at long times, the linear behav-
ior is replaced by a saturation regime. While the short-time
behavior is nonuniversal, the intermediate-time behavior is
described by a universal critical exponent, given analytically
as α = ξ/(1 + ξ ), in terms of the roughening critical expo-
nents ξ , being independent on the particular type of dynamics.
These results are in good agreement with the experimental ob-
servation of subdiffusive behavior at long times with α ≈ 0.3
in freestanding graphene [1] and could also be observable in
many other two-dimensional crystalline materials. The model
presented in this Letter can also be used to study defected
systems, such as polycrystals, as was also done in earlier
work [22] and by Zhang et al. [29]. It would interesting to
examine the influence of defects on the height fluctuations in
such models.
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APPENDIX

To give context to the results presented in this Letter it
is convenient to consider the limit in which Eq. (4), which
explicitly reads,

∂h

∂t
= −κ∇4h − 2 �∇ · �N + ηh, (A1)

where �N = [ �∇h · �∇( �∇n)](1 + ∇2
s )n is linearized, i.e.,

∂h

∂t
= −κ∇4h + ηh. (A2)

Equation (A2) has a solution for an initial condition h(�r, 0) =
0 in Fourier space,

ĥ(�k, t ) = e−κk4t
∫ t

0
dt ′eκk4t ′

μ̂h(�k, t ′), (A3)

where ĥ and μ̂h are the Fourier transforms of h and μh,
respectively.

The mean-square displacement is then

〈�h2(t )〉 = 2T

(2π )2

∫
d�k

∫ t

0
dt ′e−2κk4(t−t ′ ), (A4)

where 〈μ̂h(�k ′, t ′)μ̂h(�k, t〉 = 2T δk (�k ′ + �k)δ(t ′ − t ) was used.
Integrating in polar coordinates from k = 2π/L to ∞ gives

〈�h2(t )〉 = T L2

16π3κ

[
α π1/2 erf (α) + 1 − e−α2]

, (A5)
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where α ≡ 4
√

2tκπ2/L2 and erf (x) is the error function. Thus
in the small-time limit α  1,

〈�h2(t )〉 = T

√
t

8κπ
+ · · · , (A6)

valid in the limit t  L4/(32κπ4). It can be shown that if
h(r, 0) were an equilibrium solution, the same time depen-
dence would emerge. For the k = 0 mode, which corresponds
to the average of h, a different result is obtained. In this case

〈�h2(t )〉 = 2T
1

L2

∫ t

0
dt ′

∫ t

0
dt ′′δ(t − t ′) = 2T t/L2, (A7)

consistent with the temperature scaling shown in Fig. 6. It is
interesting to note that the nonlinear contributions to Eq. (A1)
are zero in the k = 0 limit, thus Eq. (A7) should be valid for
Eq. (4). The simplified Eq. (A2) also has a prediction for the
mean average square 〈h(�r, t )2〉 in the infinite-time limit, i.e.,

〈h(�r, t )2〉 = T

κ

∫
d�k

(2π )2

1 − e−2κk4t

k4
. (A8)

In the infinite-time limit, integrating from k = 2π/L to ∞
then gives

〈h(�r,∞)2〉 = T L2

8κπ3
, (A9)

implying an exponent of ξ = 1.
If the more general equation

∂h

∂t
= (−1)β+1∇2βh + ηh (A10)

is considered, where β is an integer greater than one, it is
straightforward to show that

〈h(�r,∞)2〉 ∼ T L2(β−1)/κ, (A11)

which gives ξ = β − 1. Additionally, by dimensional analy-
sis, Eq. (A10) gives

t ∼ L2β ∼ L2(1+ξ ), (A12)

implying an exponent z = 4 and justifying the scaling in
Figs. 3 and 5.
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