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ABSTRACT
The low budget and tight schedule of many CubeSat educational
projects make important systems engineering practices unfeasible
due to the high cost of the computational infrastructure and com-
mercial software tools, which require long setup and learning times.
Simulation of space mission operational scenarios is one of the best
practices recommended for system engineers to get familiarity with
the expected behavior of the satellite in orbit. This work presents
the results of the use of Atom SysVAP, an alternative for mission
analysis studies in the context of concept of operation of CubeSat-
based space projects. By building their simulation environment on
tools like Atom, designers have the flexibility to add complexity to
the model according to necessity and achieve reliable initial results
in a costless and swift manner.

CCS CONCEPTS
• Computing methodologies→ Model verification and vali-
dation; Modeling methodologies; Simulation types and techniques;
Simulation tools.
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1 INTRODUCTION
In recent years, one can observe an exponential growth in the num-
ber of CubeSats. Initially introduced for educational purposes, the
growth of CubeSat projects has been supported by the various ini-
tiatives of both universities and companies to provide solutions in
products, services, and tools that attract more and more interest
in the sector, as depicted in Figure 1. This quick advance was pos-
sible because of reduced development time and cost, allied with
technological evolution such as miniaturization of components and
subsystems, and interface standardization, with the potential to
perform scientific and commercial missions [6]. But the availability
of standardized solutions and rapid prototyping might mistakenly
suggest that important stages of development, particularly the clear
and concise definition of the mission and thus the elicitation of com-
plete technical requirements, may be skipped. The lack of attention
to the elicitation of appropriated technical requirements is one of
the causes of CubeSat failure in orbit. Even with the components’
reliability increasing over time due to technology maturation [8],
the use of systems engineering (SE) practices remains a key and
necessary factor for mission success [1].

Figure 1: Nanosat Launches by organization. Source: Erik
Kulu [5]

Systems engineering methodologies usually adopted in space
missions are burdensome and costly, adopting commercial soft-
ware and high workload processes that would make a CubeSat
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project prohibitively expensive. Therefore, efforts on tailored SE
practices have been observed in recent literature, focusing on in-
expensive modeling and simulation while maintaining desired re-
liability. Examples of this development can be seen in [7] and [3],
where CubeSats are inserted in model-based systems engineering
environments.

Simulation of operational scenarios is a critical factor in the
decision-making on mission analysis of a project [3]. Evidence of
failure in operational scenario simulation early in the project antic-
ipates the designer’s understanding regarding resource constraints
and the expected behavior of the communicating subsystems. This
understanding can prevent engineers from realizing the insuffi-
ciency of common resources only later in the project, like power
generation or data transmission, when design rework is more expen-
sive and often unfeasible. Furthermore, an overestimation of these
parameters can also be avoided, which would result in increasing
the cost and weight of the system.

Therefore, simulators are largely used in the concept analysis
of space missions for the context of verification and validation
of mission requirements and the mission concept of operation.
Through their use, designers can certify that the proposed solution
satisfies user requirements, where expected operation scenarios
would not lead to undesirable results after project realization. In
the early stages, simulators are commonly used to assess power
and data balance on the satellite, while the following phases might
require further assessment, such as orbit, thermal and structural
simulations, as well as refined results from power and data.

Most of the simulators available on the market have high license
costs, slow learning curves, and a long time required for simulation
setup. Therefore, CubeSat projects, especially educational ones,
have the challenge of finding cheap and reliable alternatives for the
mission concept analysis.

This paper presents the use of a state machine simulation soft-
ware, called Atom SysVAP, to implement a costless, fast, and reliable
simulation environment for CubeSats. The results are compared
with the professional simulation tool ForPlan, INPE’s proprietary
simulator, highlighting differences and improvement possibilities
for each tool. The results will give further insights into the sim-
plification of operational scenario simulation for CubeSat-based
mission, improving accessibility into an important verification and
validation tool, following the partnership with ADVANCE1

The remainder of this paper is organized as follows: Section 2
(context) presents the tools Atom SysVAP and ForPlan with their
purposes and uses, as well as a brief description of the NanoSatC-
Br2 space segment simulated in both software. Section 3 (method-
ology) shows part of the simulation code in Atom and presents
the simulation setup and operational scenarios used on both tools.
Finally, section 4 presents the simulation results and the discussion
comparing both tools and their uses and potential.

2 CONTEXT
For the development of the simulations, a basic knowledge of the
used tools Atom SysVAP and ForPlan is necessary, as well as the
modeled mission NanoSatC-Br2

1https://www.advance-rise.eu

2.1 Atom SysVAP
Atom SysVAP2 is an open source software, protected by GNU Gen-
eral Public License v3.0. It is a simulation and development tool that
allows for the representation of Mealy and Moore state machines.
The software was built on Java, and the state machine models
within the project can be coded with the language Lua [? ].

The tool works as a general-purpose state machine simulator
with an integrated coding environment (IDE). Despite its general
purpose characteristic, the implementation of the satellite concept
of operation simulations can be performed with a fast learning
curve, especially with the examples created by the author and made
available with the tool distribution. The use of the tool for satellite
flight plan simulation was explored in [? ].

Figure 2: Example of Atom’s state machine model for an SLP.
Source: Authors

Figure 2 illustrates a state machine representation of a Langmuir
Probe (described in section 2.3), with the following states: Idle,
collecting measurements and saving data to buffer, waiting for on-
board computer (OBC) commands to either start collecting data
again or to transfer data to OBC, and the I2C data transfer mode.
In each of the states, it is possible to insert code that will run
on entering, exiting or unrecognized event in the state. The code
from all parts of a project shares variables, making it possible for
triggering events in any machine or state to share data among them
as global variables. The state changes happen through a "sendEvent"
command programmatically or via user manual input.

Furthermore, it is also possible to loop a state’s code with a self-
referencing transition, represented in "TIMEOUT". this functions
as a "while loop" repeatedly running the "OnEnter" and "OnExit"
codes, and the exit command is inside the code when a particular
condition is true, transitioning to another state. It is possible to
insert a timeout in the transition. In this example, the code loops
according to processor capacity, with the time increment already
present in the variable "SLP_Buffer".
2https://github.com/andreivo/Atom
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Another advantage of the state machine simulator is that it
is possible to simulate not only the components of the satellite
but also the environmental factors affecting its behavior in orbit.
Examples are the solar energy generated, the visibility of the ground
station, and the passage through the region of interest (ROI), all
automatically synchronized by the orbit propagation, which is also
possible to include in the code.

A detailed explanation of all the tool functionalities and possi-
bilities is presented in [? ].

2.2 ForPlan
ForPlan Satellite Simulator is a software designed at INPE for the
simulation of satellite concepts, especially used at CPRIME for
pre-phase A studies [2]. The software is registered at brazilian’s
National Institute of Industrial Property (INPI) under the process
number BR 51 2020 000534-9.

The simulator, based on Julia’s library SatelliteToolbox3 from the
same author, presents an environment for the analysis of mission
concepts, with a focus on power and data balance, evaluating instru-
ments operation parameters, while generating power in sunlight
and unloading data in ground stations visibility regions [3].

The simulation setup requires basic knowledge in Julia program-
ming language since it does not have a graphical interface for this
purpose. The configuration script includes several parameters, like
an equipment list with power and data, battery pack definition,
ground stations, orbit definitions, and functions that govern instru-
ment operation.

2.3 NanoSatC-Br2 Mission
The NanoSatC-Br2 mission is part of the NanoSatC-Br program at
INPE, a program integrated mainly by students and professors from
UFSM and INPE, with educational, scientific, and technological
goals. The space segment is accomplished with a 2U CubeSat carry-
ing a sweeping Langmuir Probe and a magnetometer to study the
South Atlantic Magnetic Anomaly, a communication store forward
experiment, not modeled in the simulation discussed herein, and
two radiation tolerant circuits and sensor.

The Langmuir Probe is a sensor capable of measuring electron
temperature and density, and the plasma density in the ionosphere.
It is used to study this atmospheric layer, which is greatly affected
by the magnetic anomaly.

The magnetometer provides direct measurements of the mag-
netic field on the anomaly and provides information about the
satellite’s attitude.

The fault-tolerant attitude determination system (SDATF) is a
scientific and technological payload, which works with data from
magnetometers, sun sensors, and orbital parameters. It works with
three micro-controllers for redundancy purposes and since it is
a newly developed system, it is meant to be validated in flight
conditions.

The SMDH payload consists of radiation-tolerant field program-
mable gate arrays and application-specific integrated circuits also
being validated onboard NanoSatC-Br2.

AMSAT-BR is a payload capable of storing and replicating mes-
sages from amateur radios. It was not included in the modeling,
3https://github.com/JuliaSpace/SatelliteToolbox.jl

since it is not one of the main payloads and it is not present in the
model used as a starting point for the simulations.

3 METHODOLOGY
The ultimate goal of this work is to compare the simulation results
done on a simple state machine developed in the Atom SysVAP
with a similar simulation of operational scenarios configured in the
professional environment ForPlan.

The simulation in ForPlan was configured based on previous
work [3], although some parameter modifications in the input file
and adjustments in the software source code to accept region of
interest detection functions were necessary.

In Atom, the simulation was built on top of a power balance
model from the software author, with the addition of the orbit
and data balance simulation, region of interest, and ground station
detection, as well as other details relative to the satellite scenario.

3.1 Simulation code
The simulation code in Atom was developed in state machines rep-
resenting each relevant onboard component, the transition between
sunlight and eclipse, and the internal clock looping in a timeout
transition and running the main section of the code. In accordance
with the simplicity of the model, the state machines for the instru-
ments were developed with only two states, on and off, with the
mean power consumption and data generation. The receiver, OBC,
and electric power system are always on, while the transmitter will
decrease internal memory during ground station visibility.

The extracts of the code below outline the simulation approach:

-- operation times
SMDH_on, SMDH_off = T_orbital * 10, T_orbital * 6
SDATF_on, SDATF_off = T_orbital * 1, T_orbital * 15
-- Simulation scenario
SMDH_always, SDATF_always = false, false
SLP_always, Mag_always = false, false

The operation times define the timed schedule for SMDH and
SDATF. The flags in the simulation scenario section determine
whether the instruments will remain continuously active or follow
the predetermined operation schedule and functions.

---- Orbit Propagation ----
-- Update Latitude
Sat_lat = Sat_lat + Sat_speed
if Sat_lat > 90 then

Sat_lat = 180 - Sat_lat
Sat_speed = - Sat_speed
Sat_long = Sat_long - 180

end
if Sat_lat < -90 then

Sat_lat = -180 -Sat_lat
Sat_speed = - Sat_speed
Sat_long = Sat_long - 180

end
-- Update Longitude
Sat_long = Sat_long - earth_speed
if Sat_long < -180 then
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Sat_long = Sat_long + 360
end

The simplified orbit represents a circular 90◦ inclination orbit,
which allows for uncoupling of the longitudinal movement, caused
by the earth’s rotation, and the latitudinal motion by the satellite
speed. This simplification reduces the time for coding and execu-
tion while maintaining a similar path to ForPlan results at 97.9◦
inclination. The extracts of the code below outline the simulation
approach.

-- Turn on mag and slp on ROI
if Br2_Mag_state~=nil then

if (not (Mag_always and SLP_always)) then
-- sunlight is illuminating the system
if Br2_Mag_state:getName() == 'Off' then

if onROI() then
if not Mag_always then

sendEvent('MAG_ON')
end
if not SLP_always then

sendEvent('SLP_ON')
end

end
else

if not onROI() then
if not Mag_always then

sendEvent('MAG_OFF')
end
if not SLP_always then

sendEvent('SLP_OFF')
end

end
end

end
end

The sequence above presents how the instrument SLP and mag-
netometers are turned on and off based on the squared region of
interest. A function is also in place to detect ground station visibility
to activate the transmitter.

Finally, the internal memory and battery level of the satellite
are incremented or decremented based on equipment operation,
ground station visibility, and sun exposure. The simulation emits
a warning message and stops execution if the battery reaches the
minimum depth of discharge or if the memory is full.

The simulation code is available with the tool’s distribution
under the name "Br2_sim_orbit.vap". Alternatively, the Nanosat-
br2 sub-folder4 contains the standalone file for download.

3.2 Simulation Scenarios
The simulations implemented in Atom were carried out for three
operation scenarios, seeking a solution where battery levels and
internal memory remained stable after long periods of operation.
This approach also shows the importance of such simulations, in

4https://github.com/andreivo/Atom/blob/master/binaries/Examples/Nanosat-
br2/Br2_sim_orbit.vap

which an operation scenario with the battery discharging below
the minimum depth of discharge or the internal memory saturating,
violates operational requirements and would lead to mission failure.
Hence, serving as feedback to the development team if modifica-
tions in the operation schedule or even on the instruments and
solar panels are necessary.

Since the main goal of this study is to evaluate the use of simple
models for the simulation, and the model built in Atom can be as
complete as the programmer is willing to code, two orbital models
were used for comparison purposes. The first model, easier to code,
uses a simplified and unrealistic polar orbit, where the longitudinal
and latitudinal components are uncoupled and the modeling is
very simple. The second model was the same sun-synchronous
orbit mathematical model used in ForPlan simulations, with an
inclination of 97.9◦.

Finally, the results from the simulation of the final operation
scenario, with stable battery and memory levels, were compared
for the two orbit models in Atom, and the results from ForPlan.
The differences are discussed together with the potential for each
tool and model used. The flexibility of the simulations for new
functionalities, the learning curve for simulation building and setup,
and costs were considered in the comparisons.

The mean data generation and power consumption for each
instrument were obtained from the project documents and are used
in the simulation as presented in Table 1. The power generation
during sun exposure was used as constant and equal to 3.7𝑤 with a
conservative calculation from the solar panel’s data. The downlink
rate when in the ground station range is 4800𝑏𝑖𝑡/𝑠 and the available
internal memory of 100𝑀𝑏 is purposefully smaller than in the real
case to improve the visualization of its usage.

Payload Data generation [bit/s] Power use [mW]
Magnetometer 96 16

SLP 800 800
SDATF 512 264
SMDH 5 1092
OBC 5 383

Transmitter - 1078
Receiver - 193
Table 1: Instruments power and data parameters

4 RESULTS AND DISCUSSION
This section presents the results of the simulations performed in
the Atom and ForPlan tools, as well as a discussion of the results
and a comparison of the simulators.

As a first step, consecutive operation scenarios were simulated
using the refined orbit version of the Atom model, in a search for
maintaining stable levels of battery and internal memory. The first
scenario consists of all instruments powered on during the whole
operation of the satellite. In the second scenario, only the SDATF
worked in continuous operation, while the other instruments fol-
lows the scheduling from Table 2. Finally, all instruments were
modeled to follow the operation schedule.

It is possible to see from Figures 3 and 4 that the first scenario
is unsustainable, in which the battery would discharge completely
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Payload Operation Off Time On Time
Magnetometer ROI

SLP ROI
SDATF Pre-established 15 orbits 1 orbit
SMDH Pre-established 6 orbits 10 orbits

Table 2: Payloads Operation Times

Figure 3: Battery Usage by Scenario.

Figure 4: Memory Usage by Scenario.

and the memory would overflow. The second scenario attempted to
keep the attitude determination experiment always on but was also
not possible due to the data generation from this payload. Finally,
It was possible to keep both power and data in balance with the
SLP and magnetometers activation only over the SAMA region of
interest and a timed operation for the other two payloads.

The effects of the payloads and ground station visibility on the
memory balance of the spacecraft can be seen in Figure 5. It is
possible to visualize the necessity of SDATF intermittent operation,
due to its large data generation when powered on.

Finally, the results from both Atom simulations and ForPlan are
compared side by side, for a better assessment of the differences.
The orbit on each simulation can be seen in Figure 6. While the
simplified unrealistic orbit, with straight lines, greatly differs from
the other coincident orbits for large latitudes, it can be seen that the
rate at which the satellite passes over each region is similar for all
simulations, which is ultimately what causes instrument operation
and ground station overpasses.

The battery and memory balance for each simulation tool and
model can be seen in Figures 7 and 8.

Figure 5: Payloads effect on internal memory.

Figure 6: Orbit comparison for each simulation.

Figure 7: Memory balance for each simulation tool and
model.

The results show little difference in the battery balance over
time. The memory has significant differences in specific points,
mostly due to small differences in orbit and instrument activation
between the models. However, in both cases, the general trend for
the internal memory and battery levels over larger periods is similar
in all simulation models.

Pre-phase A of a project consists of early analysis of operation
scenarios and concept analysis of the desired instruments and ar-
chitecture working together. At this stage, even keeping the same
general design, minor modifications up to the final phases will
lead to simulation results different than the initial ones. Therefore,
exact results from the memory and battery are not necessary nor
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Figure 8: Battery balance for each simulation tool andmodel.

representative of the final design, and the important aspect of the
simulation is that the battery will not be depleted or the memory
saturated over time.

Thus, despite the differences between the simulations, all three
results would be valid for the analysis of a concept of operation of
a satellite. This shows that, while more complete and complex sim-
ulators are necessary for later steps of the project, even a simplified
simulator, coded by the engineers of the project, can be used with
confidence for initial simulations.

Some advantages can be observed in using such simplified simu-
lators in this stage of the project. For one, many satellite simulators
usually have a high license cost which alone could hinder a CubeSat
project unfeasible, or even unavailable for general public use, as is
the case of ForPlan at the current time. Furthermore, INPE’s soft-
ware currently only has Linux distributions, while Atom SysVAP
can be used on all platforms.

Simple simulators, even one coded by the project engineers, can
also reduce the work time for their implementation. Atom, for
instance, is a tool with a fast learning curve, using an intuitive
programming language as interface, while ForPlan uses a configu-
ration file in Julia that can take a long time for the user to master.
Such difficulty was even explored by Danilo et al. [3], who uses a
model transformation to generate the configuration file starting
from a Model-Based Systems Engineering approach with a graphi-
cal interface.

Furthermore, simple, open-source simulators, are more flexible,
which allows the systems engineers to implement desired functions
that even costly simulators might not have available. In this case,
the simulations in ForPlan required source code modification to
perform region of interest detection for payload scheduling and to
output a file with the results of the simulation, which was only pos-
sible because of the previous experience of the systems engineers
on the tool code. In Atom, the implementation of these functions
was directly done during the construction of the model.

5 CONCLUSION
From the simulation results, it is possible to conclude that the use
of simple simulation environments, in this case, implemented in
Atom, has the potential to comply with the project’s expectations,
even surpassing complete simulators in some aspects: Low cost

and learning time, high flexibility and simplicity of such simula-
tions allow for an ideal tool in the concept phase, especially for
educational and low-budget, space projects.

The flexible nature of the open source and self-implemented
simulators allow for easy modification and addition of new features
that would otherwise not be possible. The complexity and com-
pleteness of the model can also be increased according to desired
accuracy up to a certain point while remaining cheaper and simpler
than commercial software.

The choice of the simulator depends on several factors, like the
precision required, the stage and complexity of the project, and the
available budget. As a general rule, no tool will be essentially better
than the other. It is up to the engineers to weigh the benefits and
drawbacks, deciding on the most suitable option for each stage and
need of the project. Starting simple and increasing complexity as
necessary, especially on educational projects, is usually a promising
path.
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