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Relying on computer vision, many clever things are possible in 

order to make the world safer and optimized on resource 

management, especially considering time and attention as 

manageable resources, once the modern world is very abundant in 

cameras from inside our pockets to above our heads while crossing 

the streets. Thus, automated solutions based on computer vision 

techniques to detect, react or even prevent relevant events such as 

robbery, car crashes and traffic jams can be accomplished and 

implemented for the sake of both logistical and surveillance 

improvements. In this paper, we present an approach for vehicles’ 

abnormal behaviours detection from highway footages, in which 

the vectorial data of the vehicles’ displacement are extracted 

directly from surveillance cameras footage through object detection 

and tracking with a deep convolutional neural network and inserted 

into a long-short term memory neural network for behaviour 

classification. The results show that the classifications of 

behaviours are consistent and the same principles may be applied 

on other trackable objects and scenarios as well. 
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1 INTRODUCTION 
The remote sensing area has benefited for decades from images and 

data acquired from above ground level, being since then considered 

essential for applications in that science area. The applications make 

use of those images for information extraction and then decision 

making. To do so, several technologies for obtaining those data 

have been applied and developed [1]. 

An area that can benefit from these solutions is the highway 

monitoring area. [2] made use of computer vision techniques for 

vehicles' speed estimation, in order to detect violations on speed 

limit laws, and [3] applied others computer vision's techniques on 

a camera monitoring system to identify and count traffic on 

highways, and [4] had an approach with vehicles' trajectory 

extraction from aerial images, something relevant for traffic 

management. 

The integration of sophisticated artificial intelligence 

techniques have shown to be a promising solution for behaviours 

detection, and can, for example, be applied for prevention and 

reaction on harmful events where immediate decisions are crucial, 

like traffic accidents, robbery, fire and the like [5]. Considering 

road scenarios, such solutions can be applied for detection and 

reaction to accidents and traffic jams, and if techniques to detect 

the behaviours of the vehicles on the road be used, it's even possible 

to mobilize preventive actions to such events on relevant 

 

 

 
Fig. 1: Methodological process applied in the project. 

 

behaviour detections such as erratic behaviours (typical of drunk 

drivers, for example), reckless driving and slowness [6]. 

The development is motivated mainly but not exclusively by the 

following factors: 1) minimization of quantity and severity of 

failures on computer vision based security systems by extracting, 

processing and interpreting data, allowing the identification of 

more precise informations and then knowledges that allows more 

appropriate decisions making on these systems; 2) resources 

optimization through automation, by making the automated 

systems depend less on monitoring from human operators and by 

less interventions from them; and 3) the development of computer 

vision area by the development and practice of skills that allow a 

better understanding and application of concepts that fit this area. 

This project aims to develop an application and method capable 

of receiving road images from a wide perspective, such as those 

made available by surveillance cameras or low-height aerial 

drones, and detecting occurrences of relevant behaviours of 

vehicles in them. 
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2 THEORETICAL BACKGROUND 
In this section, we summarize and discuss some theoretical 

background surrounding the approach applied in this paper. 

 

2.1 Behaviour detection 
Considering the idea of "behaviour", there's a wide amount of 

research around this topic. However, the factual existence of a 

consolidated and established research area aimed at behaviour 

detection inside the computer vision area is difficult to notice, once 

there aren't behaviours' representation standards as the ones that can 

be found for object detection and classification, for example. 

Despite this, there are papers in recent literature detailing the 

application of computer vision for the detection and identification 

of behaviours, and it is important to note that these are ad hoc 

applications, thus distancing them from generalism by definition. 

For example: 1) [4] presented an example where a method was 

proposed to autonomously extract vehicles' trajectories from aerial 

images, thus also allowing the analysis of behavioural deviations; 

2) [7] presented a paper where long-range cameras were applied to 

detect suspicious activity on the Texas-Mexico border; 3) the paper 

of [8], where they presented a system for detecting irregular 

behaviour in courts; 4) [9] presented an approach to analyzing and 

detecting sleep-related movement disorders based on nocturnal 

behaviours captured using sensors on the Kinect One device. 

However, it is important to emphasize that the concept of 

"behaviour" is differently approached between different sciences, 

which defines and explores them accordingly, so it's essential to 

disambiguate the concept of "behaviour". It is defined that the 

concept of "behaviour" of the detected agents (vehicles) considered 

in this project concerns the attributes referring to pure vectorial 

physical quantities (such as modulus and direction), combinatorial 

(speed) and derivatives (displacement, acceleration), in particular 

its variations in the observed fields (images that compose the 

footages). Considering this definition, anomaly detection in road 

traffic is a suitable field for research, and [10] delivered a survey 

exploring several approaches, in which [11] stands out by trying 

an approach applying LSTMs to discriminate behaviours; [12] 

approach defines outliers as abnormal behaviours, identified by K-

Means clustering, and applies a Markov Hidden Model to detect 

them; [13] uses object’s dimensions and displacement to identify 

vehicles in sidewalks and persons in roads; and [14] takes speed 

information to detect road laws infringements. All these approaches 

make use of surveillance security cameras as image source. 

 

2.2 Machine learning 
The machine learning area consists of technologies and methods 

modeled in a way that allow the tuning of their features in order to 

deliver improved results. Several machine learning techniques can 

be applied under the work context. 

We shall consider an emphasis on artificial neural networks, 

especially convolutional networks (CNN) and recurrent networks 

(RNN), which have proven to be efficient for learning patterns in 

images and sequential data, respectively, in addition to being able 

to be applied in other tasks. 

Among the convolutional neural networks, LeNET-5 by [15] 

started a lineage of CNNs for computer vision, and AlexNet by 

[16] gave rise to what became known as deep convolutional neural 

networks (DCNN) and represents a watershed in computer vision 

approaches for detecting and classifying objects in images. Just 

ahead, the Spatial Pyramid Pooling approach by [17] introduced 

relevant performance improvements, and Darknet from [18], with 

the DCNN YOLO, became a popular solution aggregating 

resources present in the approaches considered as state of the art. 

YOLOv4, a modification of YOLO from [18] developed by [19], 

remains a popular DCNN resource for object detection and 

classification in images. 

Among recurrent neural networks, the networks with long and 

short-term memory (LSTM) are a common approach for learning 

sequential data such as time series, audio and video. The LSTMs 

were first proposed by [20]. 

 

2.3 Highway imaging 
The presence of highways is a common feature in actual societies, 

and the existence of laws for their use, resulting from the inherent 

risks of vehicular traffic, makes surveillance of these environments 

desirable. The presence of road surveillance cameras seeks to 

fulfill this purpose, along with other remote sensing approaches for 

control and surveillance. 

Road imaging surveillance can be performed by virtually any 

imaging device, from smartphone's cameras to drones, but 

surveillance camera circuits (administered by highway 

authorities) are a common solution in these societies. These 

cameras are ideally positioned in locations that are advantageous to 

the observed environment in order to acquire images with a wide 

field of view, and the imaging sensors may provide images in the 

visible spectrum or in other spectra, depending on the surveillance 

needs. 

 

3 METHODOLOGY 
With the purpose of identifying abnormal behaviours performed by 

vehicles, one of the ways is to present their behavioural 

characteristics referring to vector quantities as input. The 

methodological process comprises a series of interactions. One way 

is to acquire data. Among the various alternatives, the use of varied 

artificial neural networks and the analysis of derived data stands 

out. However, in order to train a neural network to discriminate 

behaviours, one proposal considers that it receives vector data from 

each vehicle, and for that purpose these vector data must be 

extracted directly from the video stream input. 

The Figure 1 shows the ordered flowchart of the methodological 

process applied in this project, characterized by 1) images capture, 

2) labeling of vehicles present in the images, 3) data segmentation 

in a training and validation set, 4) modeling of the CNN for 

vehicles' detection and training with the prepared data, 5) activation 

of the CNN for vehicles detection in road videos and tracking of 

the detected objects, 6) time series extraction from tracked vehicles, 

7) exploration and analysis of time series sets in order to extract 

behavioural characteristics, 8) classification the time series of 

vehicles in normal and abnormal behaviours, 9) modeling of 

LSTMs and training with the time series, and 10) experimentation 

of the LSTMs with cross validation methods. Therefore, this 

approach takes features 
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applied by [12-14], considering the footage from surveillance 

cameras as well from aerial non-static perspectives of a drone. 

The first step consists of acquiring the images consumed in the 

project. These data can be made up of individual images and videos 

(from which individual images can also be extracted) presenting 

road scenes in high perspective where the vehicles' flow can be 

observed, as well as images from cameras of road surveillance. 

Having the data, it can be analyzed and evaluated about their 

quality and suitability for the project purposes. 

After acquiring the images, an important step is the selection 

of data to be presented to the object detectors. A common practice 

is a labeling process where samples are extracted containing 

vehicles duly discriminated in their classes (cars, trucks, 

motorcycles, among others). The technique that has stood out is 

CNN, in which these samples are inserted during training for the 

detection and classification of vehicles. After labeling and prior to 

the development process of this network, a process of segmentation 

into subsets for training and its validation is important, mainly, to 

employ strategies that provide adequate training of the CNN. 

With the samples set ready, a CNN for object detection and 

classification in images is modeled and trained. This CNN is trained 

with the collected samples until it reaches a satisfactory 

performance in the detection of vehicles in the images applied in 

the project. 

The trained CNN, once validated about its ability to detect 

vehicles in the images, is applied in an application that also is able 

to track them between the images sequences (process presented in 

block 5 of the Figure 1) so that each detected vehicle has its own 

persistent identifier throughout the entire sequence of images 

where it is present. This application also stores the data of each 

vehicle in each frame of the video where it is detected, with storage 

of the frame number, vehicle identifier and its positional 

information; therefore, the application stores time series that allow 

knowing where and when each vehicle was present in the video 

sequence (block 6 of the Figure 1). 

In possession of the time series, they undergo a restructuring, 

exploration and analysis to extract derived information from the 

data then collected, which comprise what is defined as the 

behaviour of the vehicles referring to them. Among the relevant 

derivative information that can be extracted, the speed and 

direction of displacement of each vehicle stand out, as well as how 

straightforward are such displacements. After the exploration 

process of the collected data, the extracted information is analyzed 

together to define the thresholds that separate behaviours 

considered normal from those abnormal (block 8 of the Figure 1). 

Then the LSTMs are trained, a process that starts with the 

classification of the time series based on the aforementioned 

criteria and then their segmentation in training and validation 

subsets. The LSTM networks then receive these properly structured 

and labeled data in order to learn with them how to discriminate the 

so-called normal and abnormal behaviours. Several LSTM 

networks can be modeled and trained, thus comprising experiments 

in search of the best results. 

Finally, the LSTM networks must have their performance 

validated and evaluated. For this, a cross validation process is 

applied, comprising several distinct subsets and also combined in 

the various LSTM networks that have been developed (block 10 

of the Figure 1). 

4 DEVELOPMENT AND EXPERIMENTS 
In this session, we detail the development process, in which the 

aforementioned methodology was applied. 

 

4.1 Data capture 
The data captured for the project are several videos presenting road 

scenarios, with a high perspective to highways and vehicles from 

different angles of sight and focal length, in different places and 

weather conditions. The Figure 2 shows some pictures from the 

carried out footages. All videos used for behaviours discrimination 

were captured by surveillance road cameras and are under public 

domain. Data were obtained from a highway in the region of Vale 

do Paraíba, in the State of São Paulo, Brazil (Figure 3). 
 

 

Fig. 2: Excerpts from the footages used in the project, where 

the six images on the left refer to six road surveillance cameras 

(datasets T1 to T6) and the three images on the right refer to 

some footages taken by drone. Each surveillance camera is 

located between about 11 km from each other. 

 
Fig. 3: Map highlighting the Tamoios Highway (line in red), 

where the images were captured, between the cities of São José 

dos Campos and Caraguatatuba. On the right side, there are 

perspectives showing the state of São Paulo (blue silhouette) and 

Brazil (green silhouette). 

For the formation of training sets, all videos were analyzed and 

some arbitrarily selected frames were extracted under the criteria 

of having at least one vehicle noticeable at glance, with the 

objective of building a dataset with wide variety of vehicles. Only 

the videos captured by the road cameras were used in such format 

in the final application; there are six videos with 10 minutes each, 

adding up to exactly 1 hour of video. In all, 2 hours, 6 minutes 

and 29 seconds of video were captured, from which 411 images 

were extracted for the process of training set generation. 

 

4.2 Training set 
The images extracted from the videos may present up to a few 

dozen vehicles of different discriminatory classes. Each of these 

images was then submitted to a labeling process where the 

instances of these vehicles are marked and classified (Figure 4), 
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thus resulting in the extraction of samples to compose the training 

set; this labeling process was performed with LabelImg [21]. 

Vehicles labeled are classified as car, motorcycle, truck, pickup 

truck, van, bus, bicycle, tractor or airplane (although these last two 

aren't present in the videos where the network is finally applied). 
 

 
Fig. 4: Labeling example, which consists of delimiting image 

samples between a pair of coordinates (maximum and 

minimum point of the bounding box) and assigning classes to 

them. Coordinates are stored in relative values (between 0 and 

1), making the sampling invariant to scales and reusable in 

cases of image resizing. 

In the labeling process, the delimitation of each instance tightly 

covers all the pixels referring to it; each sample is therefore 

characterized by its class and maximum and minimum point 

coordinates of its bounding box in the image where it is present. 

The labeling also followed some definition criteria, where vehicle 

drivers are also marked as part of the instance (important in cases 

of motorcycles and bicycles) and the trunks and payloads of trucks 

and pickup trucks are also considered part of the vehicle rather than 

separate instances. For greater rigor, this entire process was carried 

out by just one person who delimited and labeled each instance of 

vehicle that could be perceived in the images. 

The set of labeled images comprises the training set for CNN 

training. Finally, the entire set of samples was segmented into a 

training and validation subset with a ratio of 70% and 30%, 

respectively. 
 

 
Fig. 5: Diagram with YOLOv4 architecture. 

 

4.3 CNN modeling and training 
The chosen CNN for detection of the instances of vehicles 

present in the images is the YOLOv4, a deep convolutional neural 

network with 137 layers and whose architecture is represented in 

the diagram in the Figure 5. Prior to the training, the network 

architecture and training parameters were adjusted to best fit the 

training set formed, as detailed in Table I. 

The network training was carried out with the Darknet 

framework, and the network was trained for 18000 epoches (as set 

by max batches), finally reaching a mAP (mean Average Precision) 

of 90.4% and a loss of 0.4942. Throughout the training process, the 

Darknet algorithm also applies Cross mini-Batch Normalization, 

which contributes to increasing the training performance, as 

explained in [19]. 
 

Parameter Value 

Input layer dimensions 416 x 416, with 3 color 

Batches 64 

Subdivisions 16 

Momentum 0.949 

Decay 0.0005 

Learning rate 0.0013 

Burn-in 1000 

Max batches 18000 

Steps 14400 to 16200 

Table 1: Parameters used in the trained CNN. 

After the training, the YOLOv4 CNN was applied to an 

algorithm for vehicles' detection in the captured videos, in order 

to evaluate its performance in such a task. As a result, the trained 

CNN has proven itself capable of detecting all vehicles in the field 

of view within several meters of the camera, delimiting them tightly 

and consistently between the video frames. 

 

4.4 Vehicle detection and tracking 
For this paper, an application for detecting and tracking objects in 

videos was developed. This application has as input the video 

where the objects must be detected and tracked and the CNN 

trained to detect such objects. With that, the application reads the 

video frame by frame and applies the CNN in these frames to detect 

and classify the vehicles presented in them, storing, therefore, the 

class and coordinates of the maximum and minimum points of each 

detected instance. 
 

 

Fig. 6: An example frame from a output video generated by the 

algorithm, showing instances of detected vehicles with 

bounding boxes, class discrimination and assignment of 

identifiers. 

More than just detecting, the application is also able to track 

objects between frames. For this, the Deep SORT framework by 

[22] is used, which assigns the same identifier to instances between 

different frames based on the displacement distance and visual 

similarities. The distance is calculated using the Mahalanobis 

distance equation, which has the advantage of being invariant to 

scales, and the comparison of the visual characteristics of the 

instances is performed by a deep association 
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metric model, which applies a Kalman filter for error minimization 

and a Hungarian method for optimization in the association. Using 

Deep SORT also makes the classification more consistent. 

The algorithm also has graphical computation functions to 

generate an output video where the detected instances are 

highlighted (their bounding boxes, classes and identifiers), as can 

be seen in the Figure 6, and a time series with the detections is 

generated. Therefore, the algorithm works as the following: 
1. Loads video; 

2. Loads CNN; 

3. Initialize tracker; 

4. Initialize video and time series writers; 

5. Reads video, frame by frame, in which each frame: 

5.1. Detect the vehicles; 

5.2. Compares the detected instances in the actual frame with the 

instances in previous frames: 

5.2.1. If it’s an instance of a new vehicle, assigns a new identifier 

to it; 

5.2.2. If it’s an instance of a previously detected vehicle, assigns 

the same known identifier to it. 

5.3. Draws the bounding box of each instance in the image with a label 

with its class and identifier; 
5.4. Stores the detected instances in a time series. 

6. Closes the writers. 

 

4.5 Time series formation 
As evidenced in the aforementioned algorithm, each instance of 

vehicle detected in the video is inserted into a time series. These 

time series are two-dimensional structures where each line is an 

instance detected in the video and the columns store information 

of the frame where it was detected, the vehicle identifier and the 

coordinates of the maximum, minimum point and centroid of the 

bounding box. Therefore, with this the time series contains 

information to know where and when each vehicle was detected 

in the video, also with a notion of vehicle size based on the 

dimensions of the bounding box as also [13] did. 

The time series generated by the application, however, are 

formed with the instances of all vehicles, while it is desirable that 

each vehicle has its own time series and so that it be possible to 

do an analysis. Then, after the formation of the time series of each 

video, the data is segmented by identifier, so that each vehicle 

detected in the video has its own time series. A schematic of this 

process can be seen in Figure 7. 

As each detected vehicle had its own time series, one of the first 

things noticed was a varying length of the resulting time series, as 

a consequence of the fact that the vehicles appeared in different 

amounts of frames. So that all time series had the same dimensions, 

the lines formed by the positional coordinates were interpolated in 

1000 values, under the criteria of cubic interpolation. 

It is important to take into account that the amount of values 

for the interpolation must not be less than the number of frames 

present in the videos, thus guaranteeing that even a vehicle that was 

present in all frames wouldn't provide a larger amount of values 

than the interpolation, thus avoiding loss of vectorial information. 

Still, one of the side effects of interpolation is the loss of temporal 

information and therefore speed information for each vehicle (here 

treated simply as pixels per frame rather than real world units). 

Therefore, before the interpolation, the vehicle speeds were 

extracted and stored as a new column. 

Finally, all time series were gathered in a single data structure 

for analysis of behavioural profiles as a whole. 
 

 

Fig. 7: Schematic of the process of segmenting video time series 

into different vehicle time series. It can be also noticed that in 

this segmentation occurs the discretization of vehicle identifiers 

and their classes. The scheme also shows that the time series 

dimensions vary after this process, as vehicles appear in 

varying amounts of frames. 

 

4.6 Time series analysis 
Assuming that most drivers perform behaviours considered normal, 

the time series were analyzed with the main intent of finding 

outliers, like [12] once did. Based on this, some metrics based on 

vectorial physical characteristics that comprise the vehicle 

displacements were considered for the analysis, which were then 

weighted for a final thresholding. 
 

 

Fig. 8: Gaussian distribution of the observed factors in each 

dataset: speed, traveled distance and displacement smoothness 

(lines in red, blue and yellow, respectively), which exert an 

influence of 45%, 25% and 30% on the weighted arithmetic 

means (black lines), respectively. The dashed lines over the 

distributions are the classification thresholds, where the central 

values are defined as normal behaviour and the lateral values 

are defined as abnormal behaviour. 
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These metrics were distributed in Gaussian models and, based 

on that, the thresholds that separate normal and abnormal 

behaviours (which can be seen in the Figure 8) were defined. 

Differently of [12], however, the vectorial characteristics 

considered are the speed, the distance traveled and the smoothness 

of the displacement, which exerted an influence on the weighting 

in the arithmetic mean of 45%, 25% and 30%, respectively. 

Therefore, the premise considers vehicles that stand out from the 

others when they travel much slower or much faster, travel much 

more or much less space to move between the limits of the field 

of view or move with much more or much less smoothness are 

performing abnormal behaviours. 

Since each video is considered a different dataset, as it presents 

varied perspectives and slightly different road characteristics 

(being some straights and some with corners, also as some with 

multiple ways, as can be seen in the Figure 2), the thresholds that 

separate normal from abnormal behaviours differ according to the 

video where the time series were extracted. Still, the thresholding 

criteria remains the same regardless of the distribution profile. 

Finally, once the thresholds that separate the behavioural profiles 

considered normal and abnormal were defined, the analyzed time 

series were labeled according to this and, as well as the data set for 

CNN training, were segmented into training and validation in 

proportions of 70% and 30%, respectively. A mixed dataset was 

also generated, containing a balanced mixture of all six prepared 

datasets and which was also segmented with the same proportion 

for the same purposes. 

 

4.7 LSTMs modelling and training 
Following the premise of discriminating behaviours considered 

normal and abnormal in road images, neural networks designed 

for this purpose were modeled and trained. In order to experiment 

the approach, different neural network architectures were selected 

and implemented, all of them being LSTMs. The use of LSTM for 

classification is motivated by its premise of specially processing 

sequential data (such as time series) and anomalies detection, and 

by its sensibility to discrete features rather than the only defined 

by a human being. 

Three different LSTM architectures were modeled, all of which 

receive time series containing vectorial information (speed and 

maximum, minimum and center point coordinates of the instance) 

as input and process them to return a binary value. where 1 refers 

to normal behaviour and 0 refers to abnormal behaviour. The first 

architecture has four layers, with 16 units in the first layer, 8 in the 

second, 4 in the third and 2 in the output layer; the second 

architecture has five layers, with 32 units in the first layer, 16 in the 

second, 8 in the third, 4 in the fourth, and 2 in the last layer; and the 

third architecture has four layers, with 128 units in the first layer, 

32 in the second, 8 in the third, and 2 in the fourth. These 

architectures were respectively named as 16-8-4-2, 32-16-8-4-2 

and 128-32-8-2. Having three different input sizes allow us to check 

if more or less timespan is needed to deliver a better discrimination, 

and graphic representations of these architectures can be seen in 

Figure 9. 

A network of each architecture was modeled for each dataset 

(including the mixed set). Therefore, 21 LSTM networks were 

trained, in training sessions with up to 1000 epochs under the 

condition of stopping if the loss didn't decay for 10 epochs straight. 

 

 
Fig. 9: Graphical representation of the modeled architectures, 

showing the difference in the complexity (amount of input data 

and its funneling) of each one, being the upper 128-32-8-2, the 

bottom-left 32-16-8-4-2 and the bottom- right 16-8-4-2. 

 

5 RESULTS ANALYSIS 
The 21 LSTM networks were extensively tested following 

permutations with the available test sets, in order to classify the 

networks on their ability to discriminate behavioural profiles as 

normal and abnormal. Therefore, there were 147 executions of 

LSTM networks, whose results, in addition to choosing the most 

appropriate network to discriminate behaviours in the discussed 

scenarios, allow to measure both the quality of the implemented 

architectures and the representativeness of each training set over 

the full set. 

Since the networks perform only binary classifications, the 

metrics of the results are discretized to only the accuracy in the 

discrimination of each class (normal and abnormal) and the general 

accuracy (the mean between both). The results, however, vary 

considerably between high and low values among the applied 

training sets, so the generalized results hide cases of both good and 

bad performance. 

 

5.1 Architecture analysis 
Considering all training sets, we theoretically can infer which of the 

modeled architectures achieve the best performance. The results 

indicate, however, an overall accuracy among all architectures of 

66.38%, ranging between 67.87% and 63.84%; these results can be 

seen in the Table 2. 
 

Architecture Normal Abnormal General 

General 68.19 62.28 66.38 

16-8-4-2 70.31 50.96 63.84 

32-16-8-4-2 69.62 60.38 67.87 

128-32-8-2 64.63 75.48 67.44 

Table 2: Mean accuracy results for each architecture on all 

training sets. 

Comparing the networks in their overall ability of discriminating 

normal behaviours, the distance is slightly greater, with an overall 

accuracy of 68.19%, ranging between 70.31% and 64.63%. The 

ability of discriminating abnormal behaviours showed the most 

accentuated variation, with an overall accuracy of 62.27% and a 

variation between 75.38% and 50.96%. 

Thus, we can assume that, among the three modeled 

architectures, the choice of architecture  is a less deterministic 
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factor in the final performance, as the amount of input data and its 

funneling. The LSTM 32-16-8-4-2 network achieved slightly better 

results despite to this. 

 

5.2 Architecture analysis 
Considering all architectures, we can infer, also in theory, which 

training sets best represent the integral set. The mixed set was also 

evaluated, with the aim of showing those representations and how 

universal training sets tend to be in broader scenarios. 
 

Dataset Normal Abnormal General 

T1 26.90 87.96 46.72 

T2 83.83 68.87 79.86 

T3 58.70 57.86 55.59 

T4 63.59 55.36 60.14 

T5 80.64 35.70 66.16 

T6 65.96 53.78 64.12 

Mixed 97.69 76.37 92.09 

Table 3: Mean accuracy results for each training set in all 

architectures. 

As can be seen in the Table 3, the results in the mixed set level 

the overall accuracy at 92.09%, well above the best result in the 

isolated sets, with 79.86% accuracy. The worst result is even lower, 

with 46.72% accuracy. 

Comparing by the ability of discriminating normal behaviours, 

the accuracy in the mixed set reached a high 97.69%, above the 

83.83% of the best isolated set and far from the 26.90% of the worst 

set. As for abnormal behaviours, the mixed set levels the accuracy 

at 76.37% and the best result surpasses this mark, with an accuracy 

of 87.96%, while the worst result is at 35.70%. 

Anyway, no isolated set seems to represent the integral set as 

the mixed set does. Despite this, networks trained only with the 

training set from the T2 scenario has the best overall accuracy, but 

with a disparity when considering only the ability to discriminate 

between normal and abnormal behaviours, where the sets of the 

T2 and T1 scenarios achieved the best results, respectively. 

 

5.3 Training sets analysis by architecture 
Looking at the results more closely allows us to better understand 

their nuances, so that the influence of the architecture for each 

training set becomes more evident. The evaluation of the results 

also considers the leveling of performance from the results in the 

mixed set in comparison with the isolated sets. 
 

Dataset Normal Abnormal General 

T1 38.42 67.93 48.16 

T2 91.85 60.77 83.36 

T3 54.99 63.43 52.87 

T4 56.10 65.31 57.82 

T5 84.00 0.71 57.23 

T6 70.59 32.94 59.53 

Mixed 96.25 65.60 87.90 

Table 4: Accuracy results for each training set in 16-8-4-2 

architecture. 

With the 16-8-4-2 architecture, whose results can be seen in 

the Table 4, the overall accuracy in the mixed set was 87.90%, 

while the best result in a isolated set was close, with 83.36%, and 

far from the worst result, of 48.16%. 

Based only on the ability of discriminating normal behaviours, 

the mixed set reached 96.25% of accuracy, slightly above the 

91.85% of the best result in a isolated set and far from the 38.42% 

of the worst result. Regarding abnormal behaviours, the accuracy 

in the mixed set reached 65.60%, slightly below the 67.93% of the 

best set and well above the 0.71% of the worst set. 

With the 16-8-4-2 architecture, the mixed set is what seems to 

best represent the integral set, being slightly better at this than the 

T2 scenario set (which is also the one that best performs the 

discrimination of normal behaviours). The T1 scenario had the 

worst overall accuracy and, mainly, in the discrimination of normal 

behaviours, despite the better performance in the discrimination of 

abnormal behaviours. 
 

Dataset Normal Abnormal General 

T1 20.47 96.23 45.18 

T2 95.03 52.11 84.22 

T3 70.99 50.73 63.51 

T4 78.35 41.67 67.01 

T5 66.36 42.62 59.02 

T6 58.18 70.59 65.67 

Mixed 97.98 68.69 90.50 

Table 5: Accuracy results for each training set in 32-16-8-4-2 

architecture. 

Available in the Table 5, the results with the 32-16-8-4-2 

architecture present an overall accuracy in the mixed set of 90.50%, 

while the best results in a isolated set were close, at 84.22%. The 

worst result was 45.18%. 

In the discrimination of normal behaviours, the mixed set 

reached 97.98% of accuracy, slightly above the 95.03% of the 

best result in a isolated set and well above the 20.46% of the worst 

result. Regarding abnormal behaviours, the accuracy in the mixed 

set reached only 68.69%, well below the 96.23% for the best set 

halfway up to 41.67% for the worst set. 

As with the 16-8-4-2 architecture, the results with the 32-16-8- 

4-2 architecture also point to the mixed set as what seems to best 

represent the integral set, also slightly better than the set of the T2 

scenario (which is also the one with the best results in detecting 

normal behaviours). The T1 scenario had the worst overall 

accuracy, again mainly in the discrimination of normal behaviours, 

despite the better performance in the discrimination of abnormal 

behaviours. 

The results with the 128-32-8-2 architecture, whose can be seen 

in the Table 6, present an overall accuracy in the mixed set of 

97.87%, with the best and worst results in the isolated reaching 

82.24% and 46.82%, respectively. 

Limiting the analysis to the discrimination of normal 

behaviours, the mixed set reached an accuracy of 98.84%, slightly 

above the 91.57% of the best result in a isolated set and far from 

the 21.46% of the worst result. With the abnormal behaviours, the 

accuracy in the mixed set reached 94.83%, slightly below the 

99.71% for the best set and still far from 57.80% for the worst set. 
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Table 6: Accuracy results for each training set in 128-32-8-2 

architecture. 

The 128-32-8-2 architecture also presents the mixed set as the 

most representative of the integral set, with the set of the T5 

scenario being the closest (and also with the best results in the 

detection of normal behaviours). The T1 scenario again presented 

the worst overall accuracy, also mainly due to the worst result in 

the discrimination of normal behaviours, even though it reached 

almost 100% in the discrimination of abnormal behaviours. 

Finally, analyzing the results more closely, we can assume that 

the set of scenario T2 is the most representative of the integral set, 

followed by the set of scenario T5. There is a disparity, however, 

when considering that the best results for the discrimination of 

abnormal behaviours was with the T1 set, which presented results 

with low accuracy for the discrimination of normal behaviours. The 

other sets showed more balanced accuracy levels for both classes, 

although without showing the highest accuracy values. 

Regardless of the evident accuracy values in the results, it is 

notable that they are consistent across training sets and 

architectures, which means that LSTM networks have indeed 

learned behavioural profiles consistently. 

Finally, considering the search for the network with the best 

results, the 128-32-8-4 network trained with the mixed set reached 

an overall accuracy of 97.87%, with an accuracy of 98.84% in the 

discrimination of normal behaviours and 94.83% in the 

discrimination of abnormal behaviours. 

 

6 CONCLUSION 
In this paper, a set of LSTM neural networks were trained to 

discriminate vehicle behaviours. The behaviours are represented 

as time series with vehicle vectorial displacement information, 

formed from their tracking in road surveillance footage. Following 

the presented methodological process, it was possible to detect 

abnormal behaviours in road images, as well as normal ones. 

However, we can also assume that the datasets are not balanced in 

order to ensure the best learning of LSTM networks, regardless of 

the implemented architecture. Nevertheless, the results are 

consistent, and the accuracy over 50%, achieving a general 

accuracy around 66%, makes the LSTMs more reliable than just 

chance, so we can also assume that LSTM networks are able to 

learn behavioural profiles consistently. 

The developed system can be enhanced with more extensive and 

diverse datasets in order to make the trained LSTM networks more 

robust. The project can also be expanded with different approaches 

or other types of scenarios and objects of interest, and may be also 

applied to detect collective behaviors. 
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