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Abstract: Species distribution models (SDMs) are one of the most widely used tools to 
predict areas with potential for occurrence of native, invasive and endangered species, 
based on current and future environmenal and climate conditions. Despite their global 
use, evaluating the accuracy of SDMs based only on presence records is still a challenge. 
The performance of models depends on the sample size and species prevalence. 
Recently, studies to model the distribution of species in the Caatinga biome in Northeast 
Brazil have gained force, raising the question about the minimum number of presence 
records adjusted to different prevalences that are necessary to generate accurate SDMs. 
In this context, the objective of this study was to indicate minimum numbers of presence 
records for species with different prevalences in the Caatinga biome to obtain accurate 
SDMs. For that purpose, we used a method involving simulated species and performed 
repeated evaluations of the models’ performance in function of the sample size and 
prevalence. The results indicated that for this approach in the Caatinga biome, the 
minimum required numbers of specimen records were 17 and 30 for species with narrow 
and widespread distributions, respectively.
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INTRODUCTION
Species distribution modeling with presence-
only algorithms relies on environmental 
preferences of the target species obtained from 
places of known occurrence to estimate the 
similarity of environmental conditions of any 
area (Phillips et al. 2006, Hijmans & Elith 2017). 
The result is expressed as the habitat suitability 
index of the species at each point, and can be 
used to predict probability of presence only by 
using specific modeling settings (Merow et al. 
2013, Phillips et al. 2017).

In this respect, it is necessary for the presence 
records to closely represent the environmental 
scope of the species being modeled (Raes 2012), 
which is not always the case of species for which 
data have been collected from museums and 

herbaria, where the number of specimen records 
is generally deficient (Elith et al. 2006, Oliveira et 
al. 2016). Therefore, the bias from the sampling 
effort or collecting bias can be transposed to 
environmental bias, where only a fraction of 
the environmental conditions suitable to the 
species’ occurrence is really represented in the 
sample, thus impairing the accuracy of the final 
model (Kadmon et al. 2003, 2004, Phillips et al. 
2009).

Various studies have confirmed that the 
accuracy of species distribution models (SDMs), 
with the area held constant, increases with the 
number of presence records (McPherson et al. 
2004) Hernandez et al. 2006, Pearson et al. 2007, 
Wisz et al. 2008, Bean et al. 2012). On the other 
hand, smaller sample sizes cause an increase in 
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environmental bias, which negatively affects the 
accuracy of the models’ predictions (Hernandez 
et al. 2006, Pearson et al. 2007, Wisz et al. 2008). 

However, the increase in environmental 
bias depends on the species’ range sizes. 
Widespread species tend to require a 
larger number of presence records for good 
representation (Pearson et al. 2007, Wisz et al. 
2008), while specialist species tend to generate 
more accurate models even with samples 
considered small, since these species occupy 
a much narrower niche (Hernandez et al. 2006, 
van Proosdij et al. 2016).

Hernandez et al. 2006 and van Proosdij et al. 
2016, using subsampling and species simulation 
approaches respectively, demonstrated that 
the minimum number of presence records to 
generate accurate models also depends on 
the species prevalence, defined as the fraction 
of the modeled area occupied by the species 
(Phillips et al. 2009, Elith et al. 2011). 

The relationship between the species 
prevalence and sample size reflects a more 
accurate ecological property (Allouche et al. 
2006). However, when using models generated 
only with presence records, there is concern 
regarding the effects caused by the species 
prevalence on the accuracy indicators of SDMs 
(Vanderwal et al. 2009, van Proosdij et al. 2016). 
Therefore, assessment of the accuracy of SDMs 
that only use presence records is challenging 
(Elith et al. 2006, Hernandez et al. 2006). 
Objectively, that pattern results from the lack 
of data for independent tests, as well as the 
dependence on the species prevalence, intrinsic 
to the conventional evaluation methods, which 
use data from sampling tests (Lobo et al. 2008, 
Vanderwal et al. 2009, Jiménez-Valverde 2012, van 
Proosdij et al. 2016). This is the case of the Area 
Under the Receiver Operating Characteristic 
Curve (AUC), a method that is widely used to 
assess the predictive performance of SDMs  

(McPherson et al. 2004) Allouche et al. 2006), 
but that has been criticized, particularly when 
applied to presence-only algorithms, since in 
these cases we do not have absences. These 
are replaced by background points or pseudo-
absences (Lobo et al. 2008, Vanderwal et al. 
2009, Jiménez-Valverde 2012).

In light of this context, the use of simulated 
species can be useful to test adequate 
parameters for modeling. The simulation of 
species in a computational environment has 
been a recurring tool in studies of ecology and 
biogeography in recent years (Duan et al. 2015, 
Leroy et al. 2016, van Proosdij et al. 2016). The 
use of simulated species assumes control over 
the environmental parameters that define the 
presence of species, and their true distribution 
is known, permitting systematic evaluation of 
the models without the interference of the 
errors commonly found in data on real species 
(Hirzel et al. 2001, Jiménez-Valverde et al. 2009, 
Miller 2014).

Some studies have used the simulated 
species approach to evaluate the performance of 
SDMs with different sample sizes and prevalence 
classes (Jiménez-Valverde & Lobo 2007, Jiménez-
Valverde et al. 2009, van Proosdij et al. 2016), as 
well as to reduce the effects of sampling bias on 
the modeling (Varela et al. 2014).

The use of SDMs has been growing 
worldwide, including in the Caatinga biome, a 
unique ecological region located in Northeast 
Brazil that contains the largest tropical 
seasonally dry forest in South America (Silva 
et al. 2018, Nascimento et al. 2020, Cavalcante 
et al. 2020). The minimum number of presence 
records considered in these studies has 
generally been a number recommended by 
the algorithm applied in the model. Therefore, 
it is opportune to indicate numbers that offer 
more statistical quality of biotic data, and hence 
greater precision of the models generated. 
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The objective of this study was to indicate the 
minimum numbers of presence records for 
species of different prevalence classes in the 
Caatinga biome, for the purpose of improving the 
accuracy and reliability of the SDMs produced.

MATERIALS AND METHODS
Modeling and Simulation
We used a species simulation approach 
implemented in the R computational 
environment (R Core Team 2019) as suggested 
by van Proosdij et al. (2016), as well as their 
proposal for assessment of the SDMs generated 
based on simulated species. The scripts in R 
adapted for this study are identified separately 
(Supplementary Material - Appendices S1-S4).

As predictor layers we used 19 climatic 
variables obtained from WorldClim 1.4 (2018) 
(Hijmans et al. 2005), with spatial resolution of 
30 arc seconds (~ 1 km), and three topographic 
variables derived from the digital elevation 
model of the Shuttle Radar Topographic Mission, 
with spatial resolution of 3 arc seconds (~ 90 m) 
(CGIAR-CSI 2018). The spatial resolutions of the 
layers were standardized to 1 arc minute (~ 2 
km), resulting in a total of 245,086 cells (pixels) in 
the area studied (Caatinga biome). Furthermore, 
we tested two other spatial resolutions (2.5 and 
5 arc minutes), whose results are presented 
separately in tables (Appendices S5 and S6), 
because they did not present significant 
differences with the results reported here.

To reduce the correlation between the 
predictor layers, we used a 0.7 thresshold to 
Spearman’s rank correlation coefficient to define 
sets of correlated variables (Spearman’s |rho| > 
0.7) (Dormann et al. 2013). Thus, we performed a 
principal component analysis (PCA) to select the 
variable with the strongest explanatory power 
within each set of correlated variables. Thus, 
from the initial set of 22 variables, we selected 

7: altitude (Alt); standard deviation of altitude 
(Alt-sd); mean daily thermal amplitude (Bio2); 
temperature seasonality (Bio4); maximum 
temperature in the hottest month (Bio5); 
annual precipitation (Bio12); and seasonality 
of precipitation (Bio15). These variables were 
used to construct two orthogonal variables (van 
Proosdij et al. 2016), corresponding to PCA axes 
1 and 2, which together represented 64.7% of the 
environmental variability in the study area.

The habitat suitability of each simulated 
species was defined based on a bivariate 
normal function, for which the values of the two 
orthogonal variables (Figures 1a, b) under each 
cell chosen randomly within the boundaries 
of the biome were used as the midpoints of 
the bivariate normal response curve. For this 
purpose, we used the “dmvnorm” function of 
the R library “mvtnorm” (Genz et al. 2019). The 
result was the defined habitat suitability (Figure 
1c).

The defined presence (Figure 1d), in turn, 
was limited to the central interval of the bivariate 
normal density curve, which had probability of 
68%. Therefore, we defined species’ prevalence 
as the fraction of raster cells where the species 
is present and adjusted five prevalence classes 
(0.1, 0.2, 0.3, 0.4 and 0.5) utilizing increments in 
the standard deviation of the bivariate normal 
response, until approximation of the estimated 
prevalence of less than 1%. 

Sampling
For each of the five prevalence classes, we 
simulated 100 species, for a total of 500 species, 
and for each of these species we get the presence 
records from the defined presence cells (Figure 
1d) with 30 different sizes (3 to 20, 25, 30, 35, 
40, 45, 50, 55, 60, 65, 70, 75 and 100), for a total 
of 15,000 samples sets with different sample 
sizes. The habitat suitability scores (Figure 1c) 
were used as the probability of selection of the 
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presence records, based on the assumption that 
specimens should be more probably to find in 
places with higher suitability scores (Lomolino 
et al. 2010).

All the models were generated with the 
Maximum Entropy algorithm - MaxEnt (Phillips et 
al. 2006), indicated as one of the best algorithm, 
even with few presence records,  compared 
to others algorithms (Hernandez et al. 2006, 
Pearson et al. 2007, Wisz et al. 2008). The MaxEnt 
algorithm only requires presence records and 
background points (Elith et al. 2006, Phillips et 
al. 2006). For each sample set, we generated 
10,000 random background points for use in the 
modeling, resulting in 15,000 SDMs generated 
with MaxEnt (Figure 1e). Models replicate were 

not calculated for the same sample set, since 
random test points were not extracted from the 
sample sets. All presence records were used in 
models training.

Assessment of the models’ accuracy
We used the AUC as the main method to evaluate 
the accuracy of the SDMs generated. The AUC is 
based on the estimate of the correct presences 
(sensitivity) and false absences (1 - specificity) 
forecast (Allouche et al. 2006, Phillips et al. 2006). 
Hence, it represents the chance that a randomly 
chosen presence receives a higher suitability 
score than a randomly chosen absence (Merow 
et al. 2013). Accordingly, AUC values of around 
0.5 indicate the model has a nearly random 

Figure 1. Methodological steps for species simulation with prevalence of 0.3 in the Caatinga biome. 1a, 1b - 
orthogonal predictor variables (PCA 1 and 2), 1c - habitat suitability defined by the simulation, 1d – presence 
defined by the simulation and selected presence records, 1e - habitat suitability predicted by MaxEnt (SDM).
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distribution, while values near 1.0 indicate high 
ability to distinguish between presences and 
absences (Elith et al. 2006).

In the step of evaluating presence-only 
models, as is the case of MaxEnt, the background 
points are utilized as pseudo-absences (Phillips 
et al. 2006, Elith et al. 2006, Merow et al. 2013). This 
procedure causes the number of background 
samples classified as having false absences to 
increase with species prevalence (Lobo et al. 
2008, Vanderwal et al. 2009, Jiménez-Valverde 
2012), so that the maximum AUC value in these 
cases is not 1, but 1 minus half of the prevalence 
(1 – a/2), where a is the species prevalence, 
unknown a priori (Phillips et al. 2006, Raes & 
ter Steege 2007). Because of this dependence 
on prevalence, the AUC has been questioned 
as a single evaluation criterion in models with 
only presence (Lobo et al. 2008, Vanderwal et 
al. 2009). 

On the other hand, the Real AUC was 
calculated based on the cross-validation between 
the suitability scores predicted by MaxEnt and a 
random subsample of 10% of the presences and 
absences defined by the simulation. For that 
purpose, we used the “evaluate” function of the 
R library “dismo” (Hijmans et al. 2017).

An alternative to using the MaxEnt AUC as 
the only evaluation criterion is to compare it 
with the performance of null models and check 
whether the AUC of the model being evaluated is 
better than the random expectation (Raes & ter 
Steege 2007). SDM null models have been used 
to improve testing for statistical significance 
(Raes & ter Steege 2007, Merckx et al. 2011, Bohl 
et al. 2019). For each sample size, we generated 
99 null models with randomly selected presence 
records in the entire area studied, in a number 
equal to the sample sizes considered. Random 
presence records were modelled similarly as 
the species, resulting in 99 null models AUCs for 
each sample size. The Real AUC and MaxEnt AUC 

values are regarded significantly better than 
random expectation if those values exceed rank 
number 95, when ranked with the 99 null model 
AUC values, corresponding a 95% statistical 
significance threshold (p-value 0.05).

In complement, we directly compared 
the predictive result of MaxEnt with the true 
distribution of the simulated species through 
the Spearman correlation coefficient (rho), 
calculated by cell-by-cell comparison between 
the defined and predicted habitat suitability 
layers.

Criteria to define the minimum number of 
presence records
We disregarded 5% of the values of Real AUC, 
MaxEnt AUC, Real AUC Rank, MaxEnt AUC Rank 
and Spearman correlation for the SDMs with 
worst performance of the 100 repetitions for 
each combination between sample size and 
prevalence. We then smoothed the lower and 
upper limits of the remaining 95% of the models 
to attenuate the stochastic effects, employing 
the “loess” function of the R library ‘stats’ (R 
Core Team 2019).

When considering only the lower limit of the 
range of values corresponding to 95% of the SDMs 
evaluated as best for each sample size (p-value 
0.05), the minimum number of presence records 
to generate accurate SDMs was defined as the 
sample size where: a) the Real AUC of the SDM 
exceeded 0.9, characterizing high accuracy of the 
model (Lobo et al. 2008); b) the Real AUC value 
of the SDM surpassed 95% of the null models 
(Real AUC Rank), corresponding to a significantly 
better performance than expected randomly 
(Raes & ter Steege 2007); and c) the value of the 
Spearman correlation between the SDM and the 
defined habitat suitability exceeded 0.9 (van 
Proosdij et al. 2016). As discussed above and 
demonstrated shortly, the values of MaxEnt AUC 
and MaxEnt AUC Rank were not ideal to define 
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the minimum number of presence records, so 
they were disregarded for this purpose.

RESULTS AND DISCUSSION
The accuracy of the models was evaluated 
considering only the lower limit of the range of 
values corresponding to the upper 95% of the 
Real AUC, MaxEnt AUC, Real AUC Rank, MaxEnt 
AUC Rank and Spearman correlation results. 
According to the evaluation criteria used in this 
study, the minimum number of presence records 
to generate accurate SDMs in the Caatinga 
biome increased with higher observed species 
prevalence (Table I). 

We found many minimum numbers of 
presence records as low as 17 for species with 
low prevalence (0.1) and of 30 for species with 

high prevalence (0.5), considering an Real AUC 
> 0.9. The minimum numbers indicated by the 
Real AUC Rank and MaxEnt AUC Rank criteria 
were significantly lower (Table I). This can partly 
be attributed to the nature of these criteria, 
which classify SDMs as better than the random 
expectation instead of just being good on their 
own.

According to the patterns of Real AUC, 
MaxEnt AUC, Real AUC Rank, MaxEnt AUC Rank 
and Spearman correlation obtained for the SDMs 
generated with various sample sizes and number 
of presence records, it was possible to identify 
the number of presence records where the curve 
approached the asymptote in the graphical 
representation (Figures 2, 3, 4). This number rises 
as the species prevalence increases. Sample 
sizes smaller than the minimum threshold 

Figure 2. Predictive performance of the SDMs based on the AUC values (Real and MaxEnt) for each combination 
of sample size and prevalence (separate squares) of species in the Caatinga biome. The solid lines represent 
the lower limits of the ranges of values corresponding to the 95% of SDMs with best performance, represented 
by the shaded area in the graph. The horizontal red line identifies the maximum AUC attained by MaxEnt, which 
corresponds to 1 - a / 2 (where a is the species prevalence).
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produce sampling bias, which can be translated 
into environmental bias, impairing the predictive 
accuracy of the models. According to Luoto et 
al. (2005) and Segurado et al. (2006), widely 
distributed species (high prevalence) are more 
vulnerable to environmental bias caused by 
deficient samples, an observation corroborated 
by our results.

Furthermore, there was large variability in 
the results of the accuracy indicators of the 
SDMs for very low presence record numbers. 
This variability is denoted graphically by the 
shaded regions between the lower and upper 
limits of the range of values for the upper 95% 
of the results (Figures 2, 3, 4). These regions are 
larger for small samples and high prevalences, 
indicating the imprecision of the models 
generated with insufficient presence records for 

the respective prevalence class, as also reported 
by Pearson et al. (2007) and van Proosdij et al. 
(2016).

The performance of the SDMs increased 
progressively with rising sample size until 
reaching stability, represented by the asymptote 
in the graph, as of which an increase in sample 
size no longer produced significant improvement 
of the models (Figures 2, 3, 4). This is in line with 
the finding of Oliveira et al. (2016), who reported 
lower environmental deficit for species with 
higher number of presence records.

The accuracy indicated by the MaxEnt 
AUC value was considerably worse for species 
with high prevalence, although this did not 
correspond to an equally inferior performance 
when considering the accuracy indicated by the 
Real AUC (Figure 2), causing a need to evaluate 

Figure 3. Predictive performance of the SDMs based on the ranking of the AUC values (Real and MaxEnt) in relation 
to the null models for each combination of sample size and prevalence (separate squares) of species in the 
Caatinga biome. The solid lines represent the lower limits of the ranges of values corresponding to the 95% of 
SDMs with best performance, represented by the shaded area in the graph. The horizontal red line identifies the 
95% critical ranking value, considering significance of 0.05.
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it in relation to the theoretical level for each 
prevalence defined by Phillips et al. (2006).

The MaxEnt AUC values slightly exceeded the 
predicted maximum AUC based on prevalence 
(a) advocated by Phillips et al. (2006), where: 
AUCMaxEnt = 1 – a/2. This can be partly attributed 
to the optimistic method used in selecting 
the presence records, with probability defined 
by the habitat suitability (Figure 2). Due to its 
dependence on prevalence, the MaxEnt AUC 
value can incorrectly reject adequate SDMs, 
principally for highly prevalent species. For 
this reason, we avoided using it as a criterion 
to define the minimum number of presence 
records in this study. 

Furthermore, the minimum number of 
presence records based on the values of the 
Real AUC Rank and MaxEnt AUC Rank (Figure 3) 

also increased with higher species prevalence. 
However, based on the nature of this evaluation 
method, which classifies models as better than 
the random expectation, the minimum values 
were substantially lower and some stochastic 
effects could be noted.

The Spearman correlation coefficient (Figure 
4) was the most demanding criterion in terms 
of minimum numbers of presence records. 
This was expected, since it is the only one that 
permits an absolute cell-by-cell comparison 
between the defined habitat suitability and 
the value predicted by MaxEnt. According to 
this criterion, we defined minimum numbers of 
presence records as low as 19 for species with 
low prevalence (0.1) and up to 50 for species with 
high prevalence (0.5). The Spearman coefficient 
is a very conservative criterion in relation to the 

Figure 4. Predictive performance of the SDMs based on the Spearman correlation coefficient for each combination 
of sample size and prevalence (separate squares) of species in the Caatinga biome. The solid lines represent the 
lower limits of the ranges of values corresponding to the 95% of SDMs with best performance, represented by the 
shaded area in the graph. The horizontal red line identifies the value of the Spearman correlation coefficient equal 
to 0.9.



AUGUSTO CÉSAR P. SAMPAIO & ARNÓBIO DE M.B. CAVALCANTE SPECIES DISTRIBUTION MODEL AND NUMBER OF SPECIMENS

An Acad Bras Cienc (2023) 95(2) e20201421 9 | 11 

representation of the real distribution by the 
SDM, with the numbers 19/50 being applied to 
increase the accuracy of the models even more, 
but without invalidating the numbers 17/30 
indicated by the AUC Real values, which were 
adequate to construct accurate SDMs in the 
Caatinga biome.

The results of this study corroborate the 
occurrence of a relationship between rising 
sample size and more precise models, in 
line with the findings of other researchers  
(McPherson et al. 2004) Hernandez et al. 2006, 
Pearson et al. 2007, Wisz et al. 2008, Bean et 
al. 2012, Van Proosdij et al. 2016). The results 
also showed that the species prevalence in 
the area studied significantly influenced the 
performance of the models, corroborating the 
theoretical expectation that species with wider 
distribution require more presence records due 
to the greater environmental complexity of their 
niches (Wisz et al. 2008, Hernandez et al. 2006). 
According to Allouche et al. (2006), this reflects a 
true ecological characteristic.

CONCLUSION
The species simulation method was applied 
successfully to the Caatinga biome, helping to 
verify the necessary levels of quantitative and 
qualitative data, as well as improving the accuracy 
and reliability of the SDMs. As was expected, the 
sample size required to generate accurate SDMs 
depended on the species prevalence considered. 
Therefore, it is fundamental to estimate the 
prevalence in advance using exploratory SDMs.

The species prevalence was decisive as an 
evaluation criterion based only on presence 
records, represented here by the MaxEnt AUC 
value, which had lower reliability for species with 
high prevalence. This dependence of the MaxEnt 
AUC value in relation to the prevalence level 
supports the importance of using simulated 

species to define in advance the minimum 
numbers of presence records in models of 
species distribition that only use presences.

In turn, the minimum required numbers of 
specimen records for species in the Caatinga 
biome was 17 for species with low prevalence 
(narrow distribution) and 30 for species with 
high prevalence (widespread distribution). 
Therefore, this study provides a secure estimate 
of the minimum number of presence records 
for modeling the distribution of species in the 
Caatinga biome. However, it should be noted 
that: (1) alternative modeling methods to MaxEnt 
still need to be tested; and (2) these numbers 
should be taken as a base for coarser resolutions, 
common in online climate databases.
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