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Abstract. The numerical solution of partial differential equations requires the choice of a time
integration method capable of simulating the evolution of a problem. While traditional methods
are usually categorized into explicit and implicit, each with their own sets of advantages and
disadvantages, a more recent approach is the combination of both types into the so called IMEX
schemes. These were designed to solve equations containing fast and slow time-scales in such
a way that the slow terms can be solved explicitly, while the slow terms are solved implicitly,
mitigating the disadvantages of each individual scheme. In this work, the finite difference ap-
proach is used to solve the viscous Burgers’ equation through each of the aforementioned time
integration schemes (implicit, explicit, IMEX) in a series of numerical experiments. Numerical
results are evaluated against the analytical solution, and the processing time for the different
schemes can be compared.
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1 INTRODUCTION

Computational simulations are based on mathematical models developed for certain nat-
ural phenomena. The solution of partial differential equations (PDEs) present in such models
requires the choice of a method for time integration capable of performing a simulation while
preserving numerical stability. There are methods that are more suitable to certain classes of
phenomena, and therefore no single, general method can be applied to every problem. The
choice must take into account not only the accuracy and stability of the method, but its compu-
tational efficiency as well.

Traditional methods are usually categorized into two families: explicit and implicit. Ex-
plicit methods are easily implemented, but their stability is conditioned by a relation between
temporal and spatial discretizations, according to the Lax equivalence theorem. Such constraints
may imply in very small time steps for certain problems, significantly increasing the execution
time. Implicit methods, on the other hand, have no such restrictions. While the latter approach
is unconditionally stable, it can also lead to computationally expensive systems of nonlinear
equations that must be solved at each time step.

A more recent approach, called an IMEX (Implicit-Explicit) scheme, attempts to combine
these methods to solve a particular class of problems – equations containing both fast and slow
time-scales. Slow terms, which are usually nonlinear but not prone to cause instabilities, can be
solved explicitly; meanwhile, the fast terms are solved implicitly. This results in a combination
of different schemes that optimizes processing time by avoiding unnecessarily small time steps
for the fast terms and removing the nonlinear component from the slow term. IMEX schemes
have been used since the 1980s, often in conjunction with spectral methods such as in the works
of Kim and Moin (1985) and Canuto et al. (1987). However, it is the classic work of Ascher et
al. (1995) that first analyzes the performance of such methods and proposes improvements that
will set the tone for its modern use in applications such as sea ice dynamics (Lemieux et al.,
2014), wave equations (Weller et al., 2013), and radiation hydrodynamics (Kadioglu and Knoll,
2011), among many others.

This work proposes a comparative study of the three different strategies, by means of nu-
merical experiments performed on Burgers’ equation in one and two dimensions, with corre-
sponding velocity components. Since its analytical solution is well known (Fletcher, 1983),
it allows numerical experiments to be evaluated against the expected results for a given set of
initial and boundary conditions.

2 NUMERICAL TIME INTEGRATION TECHNIQUES FOR PDE

Analytical solutions of partial differential equations, as Anderson (1996) notes, consist in
closed-form expressions that represent the variation of all dependent variables continuously
across the entire domain. Numerical solutions, however, can only provide values at certain
discrete points along the domain (called grid points). Similarly, in the time dimension, the
continuous aspect of the equation is replaced by small increments along the temporal evolution
of a problem (called time steps). Simulation of any physical phenomena by this method, then,
starts from a well known initial condition and integrates the discretized equations over time,
generating new values at each discrete time step.
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This time integration can be done by a variety of methods, and can utilize one or more time
steps to calculate the future values. In this section, the basic differences between the implicit
and explicit ways of performing time integration are presented, emphasizing the disadvantages
of each one. The ways in which IMEX schemes can mitigate such disadvantages is also shown.

Explicit schemes possess a single unknown variable at each grid point, un+1, which can
be calculated using only information from previous states. Because this information is known,
each grid point for time step n + 1 can be calculated directly with no dependence on any other
unknown grid points, leading to very simple computational implementations. However, these
schemes must conform to CFL (Courant-Friedrichs-Lewy) stability conditions to satisfy the
Lax equivalence theorem. This means that for any given value of spatial increments (∆x, ∆y),
the time step ∆t must be smaller than a certain limit that is determined by the scheme and the
problem at hand. In many cases, particularly when solving stiff systems, the required value is
so small that the number of time steps required to complete the integration becomes too large.
Chapra and Canale (2010) define a stiff system as one that involves both rapidly and slowly
changing components.

Implicit schemes have no such restrictions, and are far more efficient at solving stiff systems
(Nielsen et al., 2014). However, as they utilize the values at a grid point’s neighbors at time step
n+1 to calculate its value. Because these values are not yet known, equations need to be written
for each grid point, resulting in a large system of equations that, once solved, provides values for
all grid points simultaneously. In a nonlinear problem, these systems require iterative methods
at each time step, greatly increasing the execution time of its numerical implementation.

IMEX schemes are a class of methods designed to solve equations that contain different
terms with fast and slow time-scales. The fast terms are usually related to a linear diffusive
process, which can lead to extremely small time steps in order to conform to the Lax equivalence
theorem if solved explicitly (Ascher et al., 1995). It would be advantageous, then, to solve them
implicitly. The slow terms, on the other hand, are possibly nonlinear in nature, which has the
disadvantage of slowing down the simulation considerably if solved implicitly due to Jacobian
matrix evaluations.

To solve this problem, IMEX schemes propose the solution of the fast term implicitly and
the slow term explicitly. This way, it is possible to avoid unnecessarily small time steps and a
situation where the solution is too complex to be processed efficiently. As noted by Ascher et
al. (1995), systems such as the one described here can be written in the form of:

ut = f(u) + νg(u) (1)

where subscripts mean derivative, f(u) represents the slow term and νg(u) the fast term. Differ-
ent strategies can be applied to f and g, resulting in a new method that combines two previously
unrelated schemes. It is worth noting that IMEX methods must also conform to the CFL sta-
bility conditions, such as the ones faced by explicit methods. Because the fast terms are treated
implicitly, these conditions are softened, and the computational performance of such methods
can be improved by using larger time steps when compared to a purely explicit scheme. If a
stability condition can be reached such that the increase in time step size offsets the heavier
computations per single time step, then the overall runtime can be lessened.
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3 NUMERICAL EXPERIMENTATION: BURGERS’ EQUATION

Burgers’ equation is one of the fundamental partial differential equations in fluid mechan-
ics, as noted by Zhu et al. (2010). Initially introduced by Bateman (1915), it was later used by
Burgers (1948) in his study of turbulence. Since then, it has been used to model several physical
phenomena, such as shock waves, traffic flow, and acoustic waves, among many others. In its
most fundamental form, with only one spatial dimension, it reads:

ut + uux = νuxx (2)

where ν is the diffusion coefficient – also known as the viscosity coefficient in the context of
fluid dynamics. While seemingly a simple model, Burgers’ equation is nonetheless capable
of modeling the interaction between nonlinear convective processes and diffusive viscous pro-
cesses. It has therefore gained prominence in the testing of new numerical implementations, as
noted Liu and Wang (2015).

It is possible to separate the terms of Eq. (2) in its slow (advective) and fast (diffusive)
components, hereby represented by f(u) and g(u) respectively. In this form, the new equation
reads:

ut = f(u) + νg(u) (3)

where

f(u) = −uux (4)

g(u) = uxx (5)

and mirrors the canonical IMEX form described by Eq. (1), making it a suitable candidate to
test this type of integration.

When considering two spatial dimensions (x, y) and two velocity components (u, v), Burg-
ers’ equation becomes a system of two coupled PDEs, which are essentially a simplification of
the Navier Stokes equations (Srivastava et al., 2011):

ut + uux + vuy = ν(uxx + uyy) (6)

vt + uvx + vvy = ν(vxx + vyy) (7)

As with the one dimensional case, it is possible to rewrite Eq. (6) and Eq. (7) into a single
equation in matrix form that matches the IMEX form:

Φt = f(Φ) + νg(Φ) (8)

where Φ is the velocity vector with components u and v, and functions f and g are given by:

f(Φ) = −1

2
∇(Φ · Φ) (9)

g(Φ) = ∇2Φ (10)

In order to compare the three different time integration strategies – explicit, implicit, and
IMEX – a series of discretization schemes for Burgers’ equation both in its one-dimensional

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianpolis, SC, Brazil, November 5-8, 2017



A. M. Zarzur, H. F. Campos Velho, S. Stephany, S. R. Freitas

and two-dimensional forms were implemented in this work. Spatial discretizations can be han-
dled by many different methods; however, this work will focus only on the finite differences
approach, using second order approximations for the derivatives. Accordingly, discretizations
for the one-dimensional spatial derivatives are given by:

ux ≈
uni+1 − uni−1

2∆x
(11)

uxx ≈
uni+1 − 2uni + uni−1

∆x2
(12)

where uni denotes u(xi, tn).

Similarly, discretizations for the two-dimensional spatial derivatives are given by:

ux ≈
uni+1,j − uni−1,j

2∆x
(13)

uy ≈
uni,j+1 − uni,j−1

2∆y
(14)

uxx ≈
uni+1,j − 2uni,j + uni−1,j

∆x2
(15)

uyy ≈
uni,j+1 − 2uni,j + uni,j−1

∆y2
(16)

where uni,j denotes u(xi, yj, tn).

3.1 Time integration schemes for Burgers’ equation

A simple explicit integration scheme can be achieved by utilizing a forward-Euler method
for temporal component, and second order central differences for the spatial components. The
general form for this scheme, known as FTCS (Forward-Time, Central-Space), reads:

un+1 − un

∆t
= f(un) + νg(un) (17)

Srivastava et al. (2011) show that Burgers’ equation can be integrated implicitly using the
Crank-Nicolson scheme. The scheme reads:

un+1 − un

∆t
=

1

2
[f(un+1) + f(un)] +

ν

2
[g(un+1) + g(un)] . (18)

In the one-dimensional case, this implicit discretization generates a system of nx nonlinear
equations that must be solved at each time step, where nx is the number of grid points along the
spatial axis. For this work, the iterative Newton-Raphson method is used to approximate the
solution of the nonlinear system after an evaluation of its associated Jacobian matrix. In two
dimensions, the system contains 2nxny equations, where ny is the number of grid points along
the y axis, because the two velocity components must be solved simultaneously.

Durran and Blossey (2012) propose a series of multistep IMEX methods categorized into
families. These are general formulations that allows the matching of different strategies via a set
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of parameters. This work implements the family based on the combination of Adams implicit
and Adams-Bashforth explicit schemes. Equation (19) shows the integration strategy for the
implicit term, and Eq. (20) the one for the explicit term:

g(u) ≈ (1 + c)

2
g(un+1) +

(1− 2c)

2
g(un) +

c

2
g(un−1) (19)

f(u) ≈ (3 + b)

2
f(un)− (1 + 2b)

2
f(un−1) +

b

2
f(un−2) (20)

Therefore, the generalized time stepping scheme for Burgers’ equation based on this family
of IMEX methods is given by:

un+1 − un

∆t
=

(3 + b)

2
f(un)− (1 + 2b)

2
f(un−1) +

b

2
f(un−2)

+ ν

[
(1 + c)

2
g(un+1) +

(1− 2c)

2
g(un) +

c

2
g(un−1)

]
(21)

where the choice of parameters b and c defines the resulting multistep IMEX scheme.

Two variations of this family of methods were implemented. In the first, the choice of
parameters b = 5

6
and c = 1

2
results in a combination of a two-step Adams-Moulton scheme for

g(u) and a three-step Adams-Bashforth explicit scheme for f(u). This implementation will be
henceforth referred to as AM2*-AB3 in order to maintain consistency with the nomenclatures
used by Fornberg and Driscoll (1999) and Durran and Blossey (2012). Equation (21) then
becomes:

un+1 − un

∆t
=

23

12
f(un)− 4

3
f(un−1) +

5

12
f(un−2) + ν

[
3

4
g(un+1) +

1

4
g(un−1)

]
(22)

The second scheme is similar to Eq. (22), but uses a three-step Adams implicit scheme. To
achieve this, parameters b = 5

6
and c = 3

2
are chosen. This method is hereby called AI2*-AB3,

and its general form is given by:

un+1 − un

∆t
=

23

12
f(un)− 4

3
f(un−1) +

5

12
f(un−2)

+ ν

[
5

4
g(un+1)− g(un) +

3

4
g(un−1)

]
(23)

The schemes discussed in this section were implemented for the one-dimensional case,
described by Eq. (3), as well as the two-dimensional case described by Eq. (8). Because IMEX
schemes treat the nonlinear term explicitly, the resulting system of equations is linear and thus
much simpler to solve. In two dimensions, it has the added effect of uncoupling the solutions
for u and v at the time step level.

In order to complete the discretization of Burgers’ equation, finite difference operators are
applied to the spatial variables. In the one-dimensional case, the derivatives in Eqs. (4 – 5) are
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replaced using approximations given by Eqs. (11 – 12), whereas the derivatives resulting from
Eqs. (9 – 10) are replaced using approximations given by Eqs. (13 – 16). This provides second
order approximations for both the advection and diffusion terms.

The temporal (∆t) and spatial (∆x, ∆y) increments in the numerical experiments were
chosen to ensure the stability of the proposed methods at first. As the spatial resolution and
viscosity increase, but the temporal increment remains fixed, stability is pushed to its limits until
the method is no longer stable. To solve this problem, a smaller value of ∆t would need to be
picked. The objective of this strategy is to show empirically that the proposed IMEX schemes
remain stable at higher resolutions than the fully explicit method. This means that, given a
fixed resolution, a larger value of ∆t can be used to integrate the problem using an IMEX
method, which in turn decreases the number of overall time steps required to complete the
simulation. While smaller time increments would in theory provide higher accuracy, Mesinger
and Arakawa (1976) show that errors in spatial discretization far outweigh those originating
from time discretization, and therefore grid refinements provide better gains in accuracy than
smaller ∆t.

4 NUMERICAL EXPERIMENT IN ONE DIMENSION

In this section, the accuracy of the proposed methods in solving the one-dimensional Burg-
ers’ equation is evaluated via a test case that has already been presented in in the literature.

Problem 1. Nielsen et al. (2014) show that an exact solution to the one-dimensional Burgers’
equation, representing a wave that propagates left-to-right as time advances, is given by:

u(x, t) = 1− tanh

(
x− t

2ν

)
(24)

The first test case considers a spatial domain bounded by x ∈ [−10, 10] with initial condi-
tions given by Eq. (24) at t = 0, and boundary conditions given by the same equation at each
time step of ∆t = 10−3. For this test case, the viscosity coefficient chosen is ν = 0.0625. The
simulation is considered over at t = 5s, i.e. 5000 time steps.

Table 1 shows the error given by the L1 norm of u, taken at t = 5s, for the different methods
and for a variety of grid sizes. For finer grids, such as nx = 2000, the explicit scheme is no
longer within its stability conditions, and thus its error is not shown.

The second test case employs the same initial and boundary conditions, and the same
timestep of ∆t = 10−3, but with a higher viscosity coefficient ν = 0.5, in order to evaluate
how the implicit treatment of the diffusion term affects accuracy. The results are presented in
Table 2.

Figure 1 shows that the solution obtained with the AM2*-AB3 scheme at three different
integration times (t = 0, t = 2.5, t = 5s), using a 500-point grid, is consistent with those
obtained by Nielsen et al. (2014), giving further confirmation of the proposed method’s capacity
to simulate the problem.

Figure 2 shows a close-up on the wave front at t = 5s, comparing the analytical solution
to that given by the AI2*-AB3 IMEX scheme using a 500-point grid, and showing that both
solutions are practically superposed.
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Table 1: Error given by the L1 norm in u for the different methods and for various grid sizes in Problem 1,
using ν = 0.0625 and ∆t = 10−3

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

100 2.23521 E-002 2.19635 E-002 2.19647 E-002 2.19640 E-002

125 1.14021 E-002 1.11344 E-002 1.11360 E-002 1.11350 E-002

250 1.79243 E-003 1.72960 E-003 1.72987 E-003 1.72967 E-003

500 4.34950 E-004 3.78677 E-004 3.78789 E-004 3.78692 E-004

1000 1.53812 E-004 9.17426 E-005 9.18667 E-005 9.17651 E-005

2000 N/A 2.28338 E-005 2.29382 E-005 2.28461 E-005

Table 2: Error given by the L1 norm in u for the different methods and for various grid sizes in Problem 1,
using ν = 0.5 and ∆t = 10−3

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

100 1.14792 E-003 1.10247 E-003 1.10114 E-003 1.10113 E-003

125 7.51261 E-004 7.01639 E-004 7.00102 E-004 7.00092 E-004

250 2.29472 E-004 1.76976 E-004 1.75044 E-004 1.75030 E-004

500 1.04186 E-004 4.59543 E-005 4.38312 E-005 4.38180 E-005

1000 N/A 1.31947 E-005 1.09838 E-005 1.09710 E-005

2000 N/A 5.01417 E-006 2.76501 E-006 2.75213 E-006

Figure 1: Solution of problem 1 using the AM2*-AB3 scheme at three different integration times
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Figure 2: Close up of wave front given by the analytical and AI2*-AB3 solution at t=5s

The experiment shows that both IMEX schemes are able to simulate the problem with
accuracy comparable to a purely implicit scheme, with the advantage of the nonlinear term
being treated explicitly. It also shows that they can maintain stability even in certain regions
where the explicit scheme can no longer be reliable.

5 NUMERICAL EXPERIMENTS IN TWO DIMENSIONS

In this section, the accuracy of the proposed methods for solving the two-dimensional Burg-
ers’ equation is evaluated. Two different test cases were chosen, both already presented in the
literature, in order to assess the performance of the proposed implementation.

Problem 2. The exact solutions obtained by Fletcher (1983) and tested by Zhu et al. (2010),
given by Eq. (25) and Eq. (26), are used to generate initial (taken at t = 0) and boundary
conditions for the spatial domain x ∈ [0, 1], y ∈ [0, 1].

u(x, y, t) =
3

4
− 1

4(1 + e(−t−4x+4y)/(32ν))
(25)

v(x, y, t) =
3

4
+

1

4(1 + e(−t−4x+4y)/(32ν))
(26)

The first test is taken directly from the work of Zhu et al. (2010), in order to evaluate the
accuracy of the implementation. A viscosity coefficient ν = 1

80
is used, and the equation is

integrated from t = 0 to t = 0.5s using a time step of 0.00025s (i.e.: 2000 time steps). Table 3
shows the error given by the L1 norm of u, taken at t = 0.5s, for each implemented method. The
corresponding solution of u using the AI2*-AB3 scheme is shown in Figure 3 at three different
stages: (a) at t = 0, showing the initial conditions to the problem; (b) an intermediary solution
at t = 0.25s, after 1000 time steps; and (c) the end of the integration at t = 0.5s. Table 4 shows
the same error metrics for v, and the corresponding solution by the AI2*-AB3 scheme is shown
in Figure 4.
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Table 3: Error given by the L1 norm in u for each method in solving Problem 2

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

10x10 9.76529 E-004 9.74884 E-004 9.74886 E-004 9.74885 E-004

20x20 2.38956 E-004 2.37644 E-004 2.37646 E-004 2.37645 E-004

30x30 1.04980 E-004 1.03780 E-004 1.03781 E-004 1.03781 E-004

40x40 5.94381 E-005 5.81135 E-005 5.81147 E-005 5.81144 E-005

50x50 3.85050 E-005 3.71850 E-005 3.71861 E-005 3.71857 E-005

Figure 3: Solution of u(x,y,t) for Problem 2 at (a) t=0, (b) t=0.25s, and (c) t=0.5s using AI2*-AB3
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Table 4: Error given by the L1 norm in v for each method in solving Problem 2

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

10x10 9.76529 E-004 9.74884 E-004 9.74886 E-004 9.74885 E-004

20x20 2.38956 E-004 2.37644 E-004 2.37646 E-004 2.37645 E-004

30x30 1.04980 E-004 1.03780 E-004 1.03781 E-004 1.03781 E-004

40x40 5.94381 E-005 5.81135 E-005 5.81147 E-005 5.81144 E-005

50x50 3.85050 E-005 3.71850 E-005 3.71861 E-005 3.71857 E-005

Figure 4: Solution of v(x,y,t) for Problem 2 at (a) t=0, (b) t=0.25s, and (c) t=0.5s using AI2*-AB3

Both IMEX methods closely match the accuracy of the fully implicit method for this prob-
lem, providing a solution consistent with results obtained by the authors via a different imple-
mentation. This confirms that the proposed schemes are capable of solving the studied test case.
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It should be noted that, given the precision adopted in this work, Tables 3 and 4 look identical.
This illusion is caused by the similarity of the initial conditions, which makes the difference
between errors so small as to only show up in the 12th to 14th decimal, or in this case E-016 to
E-018. In practice, the difference is so close to machine zero that for all intents and purposes
the error is considered identical.

Problem 3. The exact solutions, obtained by Kweyu et al. (2012) via Hopf-Cole transformation,
are given by Eq. (27) and Eq. (28). These are used to generate initial (taken at t = 0) and
boundary conditions for the spatial domain x ∈ [0, 1], y ∈ [0, 1].

u(x, y, t) = ν

[
−2y − 2πe−2νπ2t sin(πy)(cos(πx)− sin(πx))

100 + xy + e−2νπ2t sin(πy)(cos(πx)− sin(πx))

]
(27)

v(x, y, t) = ν

[
−2x− 2πe−2νπ2t cos(πy)(cos(πx) + sin(πx))

100 + xy + e−2νπ2t sin(πy)(cos(πx)− sin(πx))

]
(28)

Two experiments were made using this set of initial and boundary conditions. The first,
taken directly from the work developed by Kweyu et al. (2012), uses a very low viscosity
coefficient (ν = 1/4000). This test case was chosen to verify the algorithms presented here and
show that the results are consistent with the literature. Table 5 and Table 6 show the error of
each method given by the L1 norm for u and v, respectively, taken at t = 1s using a time step
of 10−3s.

Table 5: Error of u in solving Problem 3 with each proposed method, using ν = 1/4000 and ∆t = 10−3

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

4x4 1.37267 E-009 1.37273 E-009 1.37273 E-009 1.37273 E-009

8x8 4.58934 E-010 4.59020 E-010 4.59020 E-010 4.59020 E-010

16x16 1.27003 E-010 1.27100 E-010 1.27101 E-010 1.27100 E-010

32x32 3.29537 E-011 3.30561 E-011 3.30559 E-011 3.30559 E-011

64x64 8.27575 E-012 8.37981 E-012 8.37961 E-012 8.37960 E-012

The results obtained via the FTCS and Crank-Nicolson schemes match those reported by
the authors for the same test case. Furthermore, the IMEX schemes show accuracy in the same
order of both methods. The similarities between the results are to be expected, due to the very
low viscosity coefficient chosen by the authors – the contribution from g(u) is so small that its
implicit treatment has little to no effect.

That being the case, another experiment was proposed, using a more significant diffusion
coefficient ν = 0.5 with the same initial and boundary conditions from Eq. (27) and Eq. (28).
In this case, the increased viscosity renders the FTCS scheme unstable as the spatial resolution
increases past a certain point, as it also factors in the CFL stability condition. The error of u
and v at time t = 1s, given by the L1 norm, is shown in Table 7 and Table 8, respectively.
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Table 6: Error of v in solving Problem 3 with each proposed method, using ν = 1/4000 and ∆t = 10−3

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

4x4 7.73967 E-010 7.74001 E-010 7.74001 E-010 7.74000 E-010

8x8 3.55949 E-010 3.56016 E-010 3.56016 E-010 3.56016 E-010

16x16 1.10927 E-010 1.11013 E-010 1.11013 E-010 1.11013 E-010

32x32 3.02421 E-011 3.03372 E-011 3.03371 E-011 3.03370 E-011

64x64 7.73355 E-012 7.83221 E-012 7.83203 E-012 7.83202 E-012

Table 7: Error of u in solving Problem 3 with each proposed method, using ν = 0.5 and ∆t = 10−3

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

4x4 3.37083 E-007 3.78923 E-007 3.78238 E-007 3.78638 E-007

8x8 5.20385 E-008 8.58507 E-008 8.52775 E-008 8.56141 E-008

16x16 1.10676 E-008 2.09068 E-008 2.03598 E-008 2.06813 E-008

32x32 N/A 5.15543 E-009 4.61497 E-009 4.93273 E-009

64x64 N/A 1.24730 E-009 7.08456 E-010 1.02530 E-009

Table 8: Error of v in solving Problem 3 with each proposed method, using ν = 0.5 and ∆t = 10−3

Grid Size FTCS Crank-Nicolson AI2*-AB3 AM2*-AB3

4x4 1.55049 E-008 1.72357 E-008 1.72090 E-008 1.72265 E-008

8x8 2.94051 E-009 4.76637 E-009 4.73862 E-009 4.75699 E-009

16x16 6.41358 E-010 1.21990 E-009 1.19182 E-009 1.21046 E-009

32x32 N/A 3.03978 E-010 2.75867 E-010 2.94543 E-010

64x64 N/A 7.37489 E-011 4.56236 E-011 6.43088 E-011

At a grid size of 16x16 cells, it is noticeable that the explicit scheme is no longer stable,
as the error for v unexpectedly returns an order of magnitude smaller than the other schemes.
An increase in resolution confirms the instability, as the code fails to finish the following sim-
ulations. Both the implicit and IMEX schemes remain stable for the tested spatial resolutions,
but AI2*-AB3 shows signs of instability at a grid size of 64x64 cells. For the tested resolutions,
AM2*-AB3 provides slightly more accurate results than Crank-Nicolson while still treating the
nonlinear term explicitly.

In addition to the numerical accuracy of the solution, another important consideration when
implementing time integration schemes is the processing time. Where explicit methods are
easy to code and optimize, and thereby inherently faster with naive implementations, IMEX
and implicit schemes require careful code optimization to ensure good performance. While
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this investigation is not the focus of this work, a cursory comparison of the execution times of
AM2*-AB3 and Crank-Nicolson algorithms for Problem 3 is presented in Table 9 for resolu-
tions where the FTCS scheme is no longer stable. The last column shows the speedup achieved
by the AM2*-AB3 scheme over the corresponding Crank-Nicolson one. Initial and boundary
conditions are taken from the experiment detailed in Tables 7 and 8.

Table 9: Execution times (in seconds) of Crank-Nicolson and AM2*-AB3 schemes for Problem 3 and
speedup of AM2*-AB3 over Crank-Nicolson

Grid Size Crank-Nicolson AM2*-AB3 Speedup

32x32 152.376 33.194 4.59

64x64 7013.726 1387.785 5.05

It should be noted that the results are obtained using straightforward, non-optimized imple-
mentations. The execution times of both IMEX methods are identical, since the implementation
uses numerical constants b and c to control the integration scheme, as described in Eq. (21).
Therefore, only the times for AM2*-AB3 are shown.

6 FINAL REMARKS

This work compared some implementations of the IMEX method to the ones using a Euler
explicit method (FTCS) and a Crank-Nicolson implicit method for the numerical solution of
partial differential equations. The test cases are related to the time integration of the 1D and 2D
Burgers’ equation, which are simplified models in fluid dynamics to simulate both nonlinear
advective and diffusive viscous processes.

Explicit schemes are simpler, but are not convenient for problems with fast time scales due
to the small time steps required to ensure numerical stability, which may demand a high number
of calculations in order to complete the simulation. Implicit schemes, on the other hand, are not
convenient for problems with slow time scales, since these often require the solution of a non-
linear algebraic system at each time step by employing iterative schemes that may also demand
high processing times. IMEX schemes can be useful for problems that have both fast and slow
time scales, combining and taking advantage of explicit and implicit schemes. One-dimensional
and two-dimensional test cases with exact analytical solutions were chosen, in order to compare
the accuracy of the solutions obtained by the different numerical implementations correspond-
ing to the proposed IMEX schemes.

The results show that IMEX methods can successfully solve Burgers’ equation with accu-
racy comparable to a fully implicit method, even while treating the nonlinear term explicitly.
Furthermore, such methods remain stable at higher resolutions than the explicit scheme, consti-
tuting an interesting alternative for these cases.

In this work, the focus was the accuracy obtained by the different IMEX schemes in these
test cases, but the computational performance is still being investigated. Nevertheless, a pre-
liminary comparison shows that IMEX schemes perform significantly faster than the Crank-
Nicolson scheme while maintaining the same order of numerical accuracy in test cases that a
fully explicit scheme could not solve. Code optimization is currently underway with a focus
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on some inefficient routines from standard libraries. A more comprehensive analysis of pro-
cessing times, including comparisons with explicit schemes and analysis of stability regions to
determine optimal time step sizes, will be shown in a future work.
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